adsorption, 121–122, 152–154, 174
absorption, 121–122, 154
air bubbles, 190–191
affinity chromatography
 column matrices, 179–180
depiction of, 179
 nonspecific intermolecular interactions, 178
amperometric detector, 199
application
 GC
 biomarkers, 132
 and international oil trading, 131–136
 LC
 analyses, 228
drugs, 146, 210–211, 224–230
 internal standards and other quality assurance
 issues, 227–228
mass spectrometric selective ion monitoring
detection, 228–229
melamine, 145
organic wastewater contaminants, 224–230
results, 229–230
sample pretreatment, 225–227
sampling, 225
Sudan dyes, 145–146
asymmetry factor (AF), 51–52
atmospheric pressure chemical ionization (APCI), 193, 194
avtosamplers, 125, 184–185
axial diffusion. see longitudinal diffusion

band broadening, 19–47. see also height equivalent to
 a theoretical plate (HETP)
diffusion, 21–23
 axial (see longitudinal diffusion)
 longitudinal, effects of, 27–28
 radial (see lateral/transverse diffusion)
factors affecting, table, 44
linear velocity, 23–24
mass transfer, rate of, 20
open tubes no stationary phase, 24–27
open tubes with stationary phase, 28–32
packed column, 34
parabolic flow profile and radial diffusion, mobile
 phase, 24–26
practical consequences, 45–47
stationary phase, open tubes with, 28–34
time and diffusion coefficient, effect of, 23
boiling point, 72, 83
broadening relaxation
coupling term, 39
diffusion mechanism, 37–38
flow mechanism, 37–38
 calibration curve, 53–54, 126–128
 capillary gas and liquid chromatography columns, 2, 3
carrier gas, 64, 71, 83
cation exchange cartridge (MCX), 226
chemical ionization (CI), 108
chiral mobile phases, 207
chiral stationary phases (CSPs), 203–207
classes of, 204
cyclodextrin phases, 205–206
macrocyclic phases, 206–207
Pirkle phases, 204
polysaccharide phases, 205
protein phases, 206–207
chromatogram, 3
 antibiotics, 209–211
 bovine serum albumin tryptic digest, 222
caffeine and theophylline, 210
Chinese medicine extract, 220
current vs. time, 100, 102, 108
Gasoline, 62
GC/MS, 107
human urine, 147, 222
IR signals, 105–106
Kovats retention index, 114
oil, 135
selectivity factors, 12
signal vs. time, 4

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
INDEX

chromatogram (continued)
solvent focusing, effect of, 93
temperature, effect of, 68
triazine herbicides, 217
two-dimensional, 218–223
chromatography, 3, 4
fundamentals of
- band broadening, 20–47
- emerging trends and applications, 55
- general resolution equation, 47–50
- instrumentation, 53
- key operating variables, 51–53
- peak symmetry, 51
- practice technique, 53–55
- theory, 1–20
random walk model of, 35
specific uses and advances in
- chiral separations, 202–207
- high-speed separations, UHPLC for, 212–216
- preparative-scale, 207–211
tandem column liquid, 216–218
two-dimensional liquid chromatography (2D-LC), 218–223
cold splitless and split PTV injection, 90
column and particles, HPLC
- particle characteristics, 2, 3, 149–151, 185–186
- particle materials, 187
- temperature control, 186–187
common GC
detectors, characteristics of, 98
injection modes
- characteristics of, 86
cool on-column injection, 89
direct injection, 89
discrimination, 90
headspace, 96
inlet discrimination, 90–92
programmable temperature vaporization inlet, 89–90
purge and trap, 95
retention gaps, 93
solid-phase microextraction, 96–97
solvent focusing, effect of, 93
split and splitless, 87–88
stationary phase focusing effects, 92–93
valves and sample loops, 93–95
stationary phases, McReynolds constants, 123
component separation, molecules
common RPLC and GC characteristics, 3
dipole-induced dipole interactions, 5
equilibrium constant, 5
hydrogen-bonding interactions, 5
signal vs. time, 4
stationary and mobile phases, 5, 6
compressibility factor, 81–82
concentration-sensitive detectors, 101, 102, 105
conductivity detector, 170–172
constant temperature, 69
control retention, GC
- adjusting retention time
 - column and stationary phase, 72, 111–124
 - mobile phase flow rate, 69–72
 - temperature, 65–67
 - temperature programming, 67–69
- corrected retention volumes, 79
dipole–dipole, 72
hydrogen-bonding interactions, 72
micropacked columns, 78
open tubular capillary and megabore columns, 72–77
packed columns, 77–78
plate heights (H), 78
PLOT and SCOT columns, 77
retention, measures of, 78–82
separation factors (α), 78
controls and blanks, 124–125
cool on-column injection modes, 89
corrected retention volumes, 79
core-shell particles. see superficially porous particles
corrected flow rate, 81
coupling term, packed column, 39
CSPs. see chiral stationary phases (CSPs)
cyclodextrin phases, 205–207
dead time, 7
derivatization, GC, 128
detecting ions, IEX
 - conductivity detector, 170
two-column ion suppression, 171–172
detection limit, detectors, 98–99
detectors
 - conductivity, 170–172
electrochemical, 199–200 (see also amperometric detector)
electron capture detector (ECD), 108–109
evaporative light scattering detector (ELSD), 198–199
fixed-wavelength, 189
flame ionization detector (FID), 99–102
flame photometric detector (FPD), 109
fluorescence, 191–192
infrared detection (IRD), 105–106
mass spectrometry (MS), 106–108, 193–196
multiple-wavelength, 190
nitrogen phosphorous detector (NPD), 109
photoionization detector (PID), 109–110
refractive index detectors (RIDs), 192–193
thermal conductivity detector (TCD), 101–105
ultraviolet-visible absorbance, 188–191
diffusion
 - bulk flow, 21
 - longitudinal (axial), 27
 - mechanism, 37
 - molecular movement, 21
 - radial (lateral), 24–26, 29, 31
 - within mobile phase, 26
within porous particle, 41–42
within stationary phase, 28, 30
diffusion coefficient, 21
gas vs. liquid, 21, 34, 35
direct injection modes, 89
distribution constant/partition coefficient, 5, 61–63, 69, 76, 111, 155
eddy diffusion, 36
eddy dispersion, 36
Einstein diffusion equation, 21
electrochemical detectors, 199–200
electron capture detector (ECD), 108–109
electron ionization (EI), 107
electrospray ionization (ESI), 193–194
end-capping, 165
enthalpy of solution, 80
enthalpy of vaporization, 66
equilibrium constant, see distribution constant
erythropoietin (EPO), 146. see also recombinant erythropoietin (rEPO)
evaporative light scattering detector (ELSD), 198–199
FID, see flame ionization detector (FID)
filled needle injection, 90
film thickness, 30
fixed-wavelength detectors, 189
flame ionization detector (FID), 99–102
flame photometric detector (FPD), 109
flash vaporization, 84
fluorescence detectors, 191–192
Fourier transform infrared spectroscopy, 105
free energy, 112
of methylene group partitioning, 112–113
gas chromatography (GC)
application of, 131–136
columns, 2, 3
control retention, 64–82
injection systems, 83
instrumentation, 82–110
Kovats indices and McReynolds constants, 111–124
polymeric phases, 74
practice in, 124–131
septa, 125–126
gas chromatography–mass spectrometry (GC/MS), 106–108
Gaussian profile, 13
GC. see gas chromatography (GC)
GC/MS. see gas chromatography–mass spectrometry (GC/MS)
gel permeation chromatography (GPC). see size exclusion chromatography (SEC)
general resolution equation, 47–50
narrow peaks, 50
retention factor, effect of, 48
separation factor effect of, 49
theoretical plates effect of, 47, 48
ghost peaks, 124–125
Giddings equation, 35. see also broadening relaxation, flow mechanism
Giddings, J. Calvin, 35, 40, 148
Golay equation, 28, 35
gradient elution, 160–161, 165
guard column, 187–188
headspace gas chromatography (HSGC), 96
height equivalent to a theoretical plate (HETP), 19–45
particle size on plate height, effect of, 38–39, 46, 213
high-performance liquid chromatography (HPLC), 149
high-pressure liquid chromatography (HPLC), 149
high-resolution mass spectrometry (HRMS), 196–197
high-speed gas chromatography (HSGC), 128
high-speed liquid chromatography, 212–216
HILIC. see hydrophilic interaction liquid chromatography (HILIC)
hold-up time, retention factor, 7
Horvath, Casaba, 148
hot needle injection, 90
HPLC. see high-performance liquid chromatography (HPLC)
HPLC instrumentation, 180–201
autosamplers, 184
column and particles, 185–186
detectors, 188–201
guard columns, 187–188
injections, 183–185
liquid chromatograph system, 181
mixing chamber, 181
proportioning valve, 181
pumps, 181–183
HRMS. see high-resolution mass spectrometry (HRMS)
HSGC. see high-speed gas chromatography (HSGC)
hydrophilic interaction liquid chromatography (HILIC), 146, 173–175
IEX. see ion-exchange chromatography (IEX)
infrared detection (IRD), 105–106
injections, GC, 83–87
autosamplers, 125
cool on-column, 89
direct, 89
discrimination, 90–92
ports, 83–85
programmable temperature vaporization (PTV), 89–90
split, 87–88
splitless, 88
injections, HPLC autosamplers, 184–185
manual, 183–184
injection valves, 93–95
inlet discrimination, 90–92
instrumentation, GC
carrier gas supply, 83
common GC injection modes, 86–97
detectors, 98–110
flash vaporization, 84
gas and liquid solvent, volume of, 85
injection port, 84
liquid stationary phase, 82
mobile phase, 82
oven/column compartment, 97–98
solute injection process, 83–84
split/splitless injection port, 84
instrumentation, LC
columns and particles, 185–186
detectors
electrochemical detectors, 199–200
evaporative light scattering detectors (ELSD), 198–199
fluorescence detectors, 191–192
mass spectrometry detectors (MS), 193–197
refractive index detectors (RID), 192–193
summary table of, 201
ultraviolet-visible detectors, 188–191
guard columns, 187–188
injection, 183–185
mixing chamber, 181
proportioning valve, 181
pumps, 181–183
temperature control, 186–187
intermolecular interactions, 63, 72, 75–76, 120–124
dispersion in GC, 63
International Union of Pure and Applied Chemistry (IUPAC), 8
ion-exchange chromatography (IEX)
detecting ions in, 170–172
exchange equilibria, 167–170
ion suppression, 165, 171
micromembrane suppressor, 171–173
phases, 166–167
uses, 172–173
ion suppression, 171
isothermal analysis, 69
kinetic effects, 19
Kovats retention indices, 111–119
chromatogram, 114
and column properties, 119
distribution constant, 112
retention indices, 111–119
and intermolecular interactions, 115–119
stationary phase selection, 120–124
use in McReynolds constants, 121–124
laminar flow, 24
lateral/transverse diffusion, 20
LC. see liquid chromatography (LC)
linear range, detectors, 98
linear velocity, 23–24
liquid chromatography (LC)
analyses, 145–147
application of, 224–230
column, 2
history of, 148–152
HPLC instrumentation, 180–201
liquid mobile phase, composition of, 53
modes of, 152–180
scope of, 147–148
silica particles, characteristics, 149–152
specific uses and advances in, 201–223
liquid chromatography mass spectrometry (LC-MS), 146–147, 193–197
longitudinal diffusion, 20, 27
mobile phase flow rates, 32
macrocyclic and protein phases, CSPs, 206
mass-sensitive detector, 101, 102, 105. see also flame ionization detector (FID)
mass spectrometry detectors, 106–108, 193–196
Orbitrap, 196
time-of-flight (TOF), 196
to mass-to-charge ratios, 196
mass transfer, rate of, 20
melamine, 145
McReynolds constants
retention indices, 111–119
stationary phase selection, 121–124
megabore columns, 72
microfabricated, GC, 129–131
micropacked columns, 78
mobile phase
flow rates, 32, 69–70
laminar flow, 24
modifiers, 154, 161–163
slow mass transfer, 30
strength, 161
velocity, parabolic flow profile, 24–25
mobile phase modifiers, 154, 161–163
modern packing materials
chromatography, scale of, 151
common silica particles for LC, characteristics of, 152
HPLC silica particles, depiction of, 150
silica, structure of, 149
spherical porous silica particles of, scanning electron micrograph, 150
modes, LC
affinity chromatography, 178–180
hydrophilic interaction chromatography (HILIC), 173–175
ion-exchange chromatography (IEX), 165–173
normal phase liquid chromatography (NPLC), 152–154
reversed-phase liquid chromatography (RPLC), 154–165
size exclusion chromatography (SEC), 175–178
stationary phase, composition of, 53
summary table of, 201
use in McReynolds constants, 121–124
variation of, 119
monolithic columns, 159–160
multiple-wavelength detectors, 190

Net retention volume, 80, 81, 82
nitrogen phosphorous detector (NPD), 109
normal phase liquid chromatography (NPLC), 152–154

obstruction factor, 35
octadecylsilane (ODS) phases, 154
oil analysis, 136
open tubular capillary columns, 72–77
film thickness, effect of, 76
phase ratio, 76
polymer stationary phase, 76
stationary and mobile phases, 75
Orbitrap mass analyzer, 196
organic wastewater contaminants (OWCs), 224, 229

packed column
complete equation for HETP, 34–41
diffusion mechanism of broadening relaxation, 37–38
flow mechanism of broadening relaxation, 37
packing density, 36
reduce broadening, mechanisms, 36–38
stationary phase, effects in, 34
van Deemter equation, physical significance, 41
packing density, packed column, 36
parabolic flow profile. see laminar flow
partition coefficient. see distribution constant
partitioning, 4
in GC, 63
in LC, 154, 156
peak asymmetry factor (AF), 51
peak broadening, see band broadening
peak overlap, effect of broad peaks on, 18
peak symmetry, chromatography, 51
peak width, 13, 14
phase ratio, 8, 76, 111–112
effect on retention, 121
photoionization detector (PID), 109–110
Pirkle phases, CSPs, 204–205
plate height. see height equivalent to a theoretical plate
plate height vs. linear velocity, capillary GC, 70–71
plate theory, 16–19
plates. see theoretical plates
PLOT. see porous layer open tubular (PLOT)
polyaromatic hydrocarbons (PAHs), 154
polysaccharide phases, CSPs, 205
porous layer open tubular (PLOT), 77
porous silica particles, 2, 3
characteristics, 151, 152
practice technique, chromatography
internal standards, 55
quantitation, 53–55
standard additions, method of, 55
preparative-scale chromatography, 207–211
programmable temperature vaporization (PTV) inlets, 89–90
purge and trap sampling, 95

qualitative analysis, practice GC, 126
quantitation, 49, 50
quantitative analysis
internal standards, 55, 126–128, 227
method of standard addition, 55

radial diffusion, 24–26, 29–30, 37
depiction of, 25, 29, 31
rate theory, 19
reciprocating pumps, 181–183
recombinant erythropoietin (rEPO), 147
refractive index detectors (RIDs), 192–193
resolution, 13, 47, 50. see also general resolution equation
definition, 50
retention factor
dead time/hold-up time, 7
effect of on resolution, 48
stationary and mobile phases, 6
retention in GC
column characteristics, effect of, 72–78
flow rate, effect of, 112
stationary phase, effect of, 72–78, 120–124
temperature, effect of, 68
temperature programming, 67–69
retention gaps, 93
retention time, 6
reversed-phase liquid chromatography (RPLC), 1
common mode of, 154
dipole–dipole and hydrogen-bonding interactions, 155
gradient elution, 160–161
intermolecular interactions, description of, 155
mobile phase
modifiers, 161–162
solvent strength, 161
monolithic columns, 159–160
removing some approximations, 156–158
solute partitioning, 154–156
stationary phases, 163–165
stability, 158

sample loops, 93–95
SCOT. see support-coated open tubular (SCOT)
selected ion monitoring (SIM) mode, 107, 196, 228–229
selectivity. see separation factor
selectivity, detectors, 98
separation factor, 11
separations, theory of GC
columns and partitioning, 63–64
equilibrium process, 61
premium unleaded gasoline, chromatogram of, 62
separations, theory of GC (continued)
solute partitioning, depiction of, 63
wall-coated open tubular gas chromatography
column, 64
septum, 125
septum purge flow, 85
silica particles, 2, 3, 149–151, 185
size exclusion chromatography (SEC), 153, 175–178
column packings, 178
retention behavior in, 176–178
uses, 178
soap bubble meter, 79–81
sodium dodecyl sulfate or sarcosyl-polyacrylamide
gel electrophoresis (SDS-PAGE or SAR-PAGE), 147
solid-phase microextraction (SPME), 96–97
solute diffusion, depiction of, 22
specific retention volume, 80
SPME. see solid phase microextraction
split and splitless injection modes, 87–88
sports drugs, 146, 147
stagnant mobile phase, 41, 42, 151
standard deviation
molecules, 21
solute peak, 17
stationary phase
band broadening, process, 31
diffusion coefficient, 28–31
film thickness, 30
gas chromatography, 72–75
mobile phase interface, 30
radial diffusion, effect of, 30
reversed-phase liquid chromatography
amino and cyano phases, 163
der-capping and di-and trifunctional silanes, 165
polar-embedded phases, 163–165 slow mass
transfer, 28
selection of in GC
common GC, McReynolds constants, 123
McReynolds constants, 121–124
stationary phase focusing, 92–93
strong cation exchange (SCX), 222
Sudan dyes, 145, 146
superficially porous particles (SPP), 185–186
support-coated open tubular (SCOT), 77
syringe washing, GC, 124
tandem
column gas chromatography, 129
column liquid chromatography, 216–218
mass spectrometry, 197
TCD. see thermal conductivity detector (TCD)
temperature programming, 67–69
thalidomide, 202
theoretical plates, 13–20
theory, chromatography
component separation, 3–6
mobile phase, GC, 1–3
peak overlap, effects of, 18
resolution and theoretical plates, 13–20
retention factor, 6–11
RPLC, 3
separation factor, 11–13
thermal conductivity detector (TCD), 101–105
thermionic detector. see nitrogen phosphorous
detector (NPD)
time-of-flight (TOF) mass spectrometry, 147, 196
Tswett, Mikhail, 148
two-dimensional liquid chromatography (2D-LC),
218–223
comprehensive, heartcutting, and selective
comprehensive sampling, 221
HILIC and mass spectrometry, 221–223
online, 221
peak capacity, 220–221
sampling modes for, 223
ultra-high performance liquid chromatography
(UHPLC), 146, 212–216
ultraviolet-visible absorbance detectors, 188–191
vancomycin, structure of, 206, 207, 208
van Deemter equation, 40, 41
wall-coated open tubular (WCOT) columns, 72
Wheatstone bridge, 104