Preface to the Fourth Edition ix

The Companion Website xv

Acknowledgments xvii

Part I. Fundamentals of Risk Modeling, Assessment, and Management

1 The Art and Science of Systems and Risk Analysis 3

1.1 Introduction / 3
1.2 Systems Engineering / 4
1.3 Risk Assessment and Management / 14
1.4 Concept Road Map / 26
1.5 Epilogue / 35

2 The Role of Modeling in the Definition and Quantification of the Risk Function 41

2.1 Introduction / 41
2.2 The Risk Assessment and Management Process: Historical Perspectives / 43
2.3 Information, Intelligence, and Models / 45
2.4 The Building Blocks of Mathematical Models / 47
2.5 On the Complex Definition of Risk, Vulnerability, and Resilience: A Systems-Based Approach / 51

2.6 On the Definition of Vulnerabilities in Measuring Risks to Systems / 56
2.7 On the Definition of Resilience in Measuring Risk to Systems / 57
2.8 On the Complex Quantification of Risk to Systems / 60

3 Identifying Risk through Hierarchical Holographic Modeling and Its Derivatives 69

3.1 Hierarchical Aspects / 69
3.2 Hierarchical Overlapping Coordination / 70
3.3 HHM / 73
3.4 HHM and the Theory of Scenario Structuring / 76
3.5 Adaptive Multiplayer HHM Game / 79
3.6 Water Resources System / 80
3.7 Sustainable Development / 83
3.8 HHM in a System Acquisition Project / 86
3.9 Software Acquisition / 90
3.10 Hardening the Water Supply Infrastructure / 94
3.11 Risk Assessment and Management for Support of Operations other than War / 98
3.12 Automated Highway System / 103
3.13 Food-Poisoning Scenarios / 108

References / 113
Contents

4 Modeling and Decision Analysis
- 4.1 Introduction / 115
- 4.2 Decision Rules Under Uncertainty / 116
- 4.3 Decision Trees / 118
- 4.4 Decision Matrix / 122
- 4.5 The Fractile Method / 124
- 4.6 Triangular Distribution / 127
- 4.7 Influence Diagrams / 128
- 4.8 Population Dynamic Models / 132
- 4.9 PSM / 139
- 4.10 Example Problems / 144
- References / 152

5 Multiobjective Trade-Off Analysis
- 5.1 Introduction / 155
- 5.2 Examples of Multiple Environmental Objectives / 157
- 5.3 The Surrogate Worth Trade-Off Method / 159
- 5.4 Characterizing a Proper Noninferior Solution / 166
- 5.5 The SWT Method and the Utility Function Approach / 168
- 5.6 Example Problems / 172
- 5.7 Summary / 177
- References / 178

6 Defining Uncertainty and Sensitivity Analysis
- 6.1 Introduction / 179
- 6.2 Sensitivity, Responsivity, Stability, and Irreversibility / 180
- 6.3 Uncertainties Due to Errors in Modeling / 182
- 6.4 Characterization of Modeling Errors / 183
- 6.5 Uncertainty Taxonomy / 185
- 6.6 The USIM / 196
- 6.7 Formulation of the Multiobjective Optimization Problem / 199
- 6.8 A Robust Algorithm of the USIM / 204
- 6.9 Integration of the USIM with Parameter Optimization at the Design Stage / 207
- 6.10 Conclusions / 209
- References / 209

7 Risk Filtering, Ranking, and Management
- 7.1 Introduction / 211
- 7.2 Past Efforts in Risk Filtering and Ranking / 212
- 7.3 RFRM: A Methodological Framework / 213
- 7.4 Case Study: An OOTW / 220
- 7.5 Summary / 224
- References / 224

Part II. Advances in Risk Modeling, Assessment, and Management
- 8 Risk of Extreme Events and the Fallacy of the Expected Value
 - 8.1 Introduction / 229
 - 8.2 Risk of Extreme Events / 230
 - 8.3 The Fallacy of the Expected Value / 232
 - 8.4 The PMRM / 233
 - 8.5 General Formulation of the PMRM / 236
 - 8.6 Summary of the PMRM / 238
 - 8.7 Illustrative Example / 239
 - 8.8 Analysis of Dam Failure and Extreme Flood through the PMRM / 240
 - 8.9 Example Problems / 243
 - 8.10 Summary / 257
 - References / 257

- 9 Multiobjective Decision-Tree Analysis
 - 9.1 Introduction / 259
 - 9.2 Methodological Approach / 261
 - 9.3 Differences between SODT and MODT / 279
 - 9.4 Summary / 281
 - 9.5 Example Problems / 282
 - References / 293

- 10 Multiobjective Risk Impact Analysis Method
 - 10.1 Introduction / 295
 - 10.2 Impact Analysis / 296
 - 10.3 The Multiobjective, Multistage Impact Analysis Method: An Overview / 297
 - 10.4 Combining the PMRM and the MMIAM / 298
10.5 Relating Multiobjective Decision Trees to the MRIAM / 304
10.6 Example Problems / 313
10.7 Epilogue / 325
References / 326

11 Statistics of Extremes: Extension of the PMRM / 329
11.1 A Review of the Partitioned Multiobjective Risk Method / 329
11.2 Statistics of Extremes / 333
11.3 Incorporating the Statistics of Extremes into the PMRM / 338
11.4 Sensitivity Analysis of the Approximation of $f_j(\cdot)$ / 344
11.5 Generalized Quantification of Risk of Extreme Events / 350
11.6 Summary / 356
11.7 Example Problems / 357
References / 368

12 Systems-Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication / 371
12.1 Introduction / 371
12.2 The Journey: The Guiding Principles in the Broader Context of the Emerging Next Generation Developed by the Federal Aviation Administration / 372
References / 387

13 Fault Trees / 389
13.1 Introduction / 389
13.2 Basic Fault-Tree Analysis / 391
13.3 Reliability and Fault-Tree Analysis / 392
13.4 Minimal Cut Sets / 397
13.5 The DARE Using Fault Trees / 400
13.6 Extreme Events in Fault Tree Analysis / 403
13.7 An Example Problem Based on a Case Study / 405
13.8 Failure Mode and Effects Analysis and Failure Mode, Effects, and Criticality Analysis / 409
13.9 Event Trees / 411
13.10 Example Problems / 414
References / 420

14 Multiobjective Statistical Method / 423
14.1 Introduction / 423
14.2 Mathematical Formulation of the Interior Drainage Problem / 424
14.3 Formulation of the Optimization Problem / 424
14.4 The MSM: Step-by-Step / 425
14.5 The SWT Method / 427
14.6 Multiple Objectives / 428
14.7 Applying the MSM / 429
14.8 Example Problems / 432
References / 438

15 Principles and Guidelines for Project Risk Management / 439
15.1 Introduction / 439
15.2 Definitions and Principles of Project Risk Management / 440
15.3 Project Risk Management Methods / 443
15.4 Aircraft Development Example / 450
15.5 Quantitative Risk Assessment and Management of Software Acquisition / 454
15.6 Critical Factors That Affect Software Nontechnical Risk / 458
15.7 Basis for Variances in Cost Estimation / 460
15.8 Discrete Dynamic Modeling / 461
15.9 Summary / 469
References / 469

16 Modeling Complex Systems of Systems with Phantom System Models / 473
16.1 Introduction / 473
16.2 What Have We Learned from Other Contributors? / 474
16.3 The Centrality of the States of the System in Modeling and in Risk Analysis / 476
16.4 The Centrality of Time in Modeling Multidimensional Risk, Uncertainty, and Benefits / 477
16.5 Extension of HHM to PSM / 478