Brief Contents

1 Introduction and Mathematical Concepts 1
2 Kinematics in One Dimension 26
3 Kinematics in Two Dimensions 54
4 Forces and Newton's Laws of Motion 79
5 Dynamics of Uniform Circular Motion 121
6 Work and Energy 142
7 Impulse and Momentum 173
8 Rotational Kinematics 197
9 Rotational Dynamics 218
10 Simple Harmonic Motion and Elasticity 251
11 Fluids 281
12 Temperature and Heat 316
13 The Transfer of Heat 348
14 The Ideal Gas Law and Kinetic Theory 367
15 Thermodynamics 388
16 Waves and Sound 422
17 The Principle of Linear Superposition and Interference Phenomena 456
18 Electric Forces and Electric Fields 481
19 Electric Potential Energy and the Electric Potential 514
20 Electric Circuits 541
21 Magnetic Forces and Magnetic Fields 580
22 Electromagnetic Induction 615
23 Alternating Current Circuits 651
24 Electromagnetic Waves 673
25 The Reflection of Light: Mirrors 699
26 The Refraction of Light: Lenses and Optical Instruments 721
27 Interference and the Wave Nature of Light 766
28 Special Relativity 798
29 Particles and Waves 822
30 The Nature of the Atom 844
31 Nuclear Physics and Radioactivity 876
32 Ionizing Radiation, Nuclear Energy, and Elementary Particles 903
Contents

1 Introduction and Mathematical Concepts 1
 1.1 The Nature of Physics 1
 1.2 Units 1
 1.3 The Role of Units in Problem Solving 3
 1.4 Trigonometry 6
 1.5 Scalars and Vectors 8
 1.6 Vector Addition and Subtraction 10
 1.7 The Components of a Vector 12
 1.8 Addition of Vectors by Means of Components 15
 CONCEPT SUMMARY 18

2 Kinematics in One Dimension 26
 2.1 Displacement 26
 2.2 Speed and Velocity 27
 2.3 Acceleration 29
 2.4 Equations of Kinematics for Constant Acceleration 33
 2.5 Applications of the Equations of Kinematics 36
 2.6 Freely Falling Bodies 40
 2.7 Graphical Analysis of Velocity and Acceleration 44
 CONCEPT SUMMARY 46

3 Kinematics in Two Dimensions 54
 3.1 Displacement, Velocity, and Acceleration 54
 3.2 Equations of Kinematics in Two Dimensions 55
 3.3 Projectile Motion 59
 3.4 Relative Velocity 67
 CONCEPT SUMMARY 71

4 Forces and Newton's Laws of Motion 79
 4.1 The Concepts of Force and Mass 79
 4.2 Newton's First Law of Motion 79
 4.3 Newton's Second Law of Motion 81
 4.4 The Vector Nature of Newton's Second Law of Motion 84
 4.5 Newton's Third Law of Motion 85
 4.6 Types of Forces: An Overview 86
 4.7 The Gravitational Force 87
 4.8 The Normal Force 91
 4.9 Static and Kinetic Frictional Forces 94
 4.10 The Tension Force 100
 4.11 Equilibrium Applications of Newton's Laws of Motion 101
 4.12 Nonequilibrium Applications of Newton's Laws of Motion 105
 CONCEPT SUMMARY 110

5 Dynamics of Uniform Circular Motion 121
 5.1 Uniform Circular Motion 121
 5.2 Centripetal Acceleration 122
 5.3 Centripetal Force 125
 5.4 Banked Curves 128
 5.5 Satellites in Circular Orbits 129
 5.6 Apparent Weightlessness and Artificial Gravity 133
 5.7 Vertical Circular Motion 135
 CONCEPT SUMMARY 136

6 Work and Energy 142
 6.1 Work Done by a Constant Force 142
 6.2 The Work–Energy Theorem and Kinetic Energy 145
 6.3 Gravitational Potential Energy 152
 6.4 Conservative Versus Nonconservative Forces 154
 6.5 The Conservation of Mechanical Energy 156
 6.6 Nonconservative Forces and the Work–Energy Theorem 159
 6.7 Power 160
 6.8 Other Forms of Energy and the Conservation of Energy 162
 6.9 Work Done by a Variable Force 162
 CONCEPT SUMMARY 164

7 Impulse and Momentum 173
 7.1 The Impulse–Momentum Theorem 173
 7.2 The Principle of Conservation of Linear Momentum 177
 7.3 Collisions in One Dimension 182
 7.4 Collisions in Two Dimensions 187
 7.5 Center of Mass 187
 CONCEPT SUMMARY 189

8 Rotational Kinematics 197
 8.1 Rotational Motion and Angular Displacement 197
 8.2 Angular Velocity and Angular Acceleration 200
 8.3 The Equations of Rotational Kinematics 202
 8.4 Angular Variables and Tangential Variables 204
 8.5 Centripetal Acceleration and Tangential Acceleration 206
 8.6 Rolling Motion 209
 8.7 The Vector Nature of Angular Variables 210
 CONCEPT SUMMARY 210

9 Rotational Dynamics 218
 9.1 The Action of Forces and Torques on Rigid Objects 218
 9.2 Rigid Objects in Equilibrium 220
 9.3 Center of Gravity 225
 9.4 Newton's Second Law for Rotational Motion About a Fixed Axis 230
 9.5 Rotational Work and Energy 236
 9.6 Angular Momentum 239
 CONCEPT SUMMARY 241

10 Simple Harmonic Motion and Elasticity 251
 10.1 The Ideal Spring and Simple Harmonic Motion 251
 10.2 Simple Harmonic Motion and the Reference Circle 255
 10.3 Energy and Simple Harmonic Motion 260
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4</td>
<td>The Pendulum</td>
<td>263</td>
</tr>
<tr>
<td>10.5</td>
<td>Damped Harmonic Motion</td>
<td>266</td>
</tr>
<tr>
<td>10.6</td>
<td>Driven Harmonic Motion and Resonance</td>
<td>267</td>
</tr>
<tr>
<td>10.7</td>
<td>Elastic Deformation</td>
<td>268</td>
</tr>
<tr>
<td>10.8</td>
<td>Stress, Strain, and Hooke’s Law</td>
<td>271</td>
</tr>
<tr>
<td>11.1</td>
<td>Mass Density</td>
<td>281</td>
</tr>
<tr>
<td>11.2</td>
<td>Pressure</td>
<td>282</td>
</tr>
<tr>
<td>11.3</td>
<td>Pressure and Depth in a Static Fluid</td>
<td>284</td>
</tr>
<tr>
<td>11.4</td>
<td>Pressure Gauges</td>
<td>287</td>
</tr>
<tr>
<td>11.5</td>
<td>Pascal’s Principle</td>
<td>288</td>
</tr>
<tr>
<td>11.6</td>
<td>Archimedes' Principle</td>
<td>291</td>
</tr>
<tr>
<td>11.7</td>
<td>Fluids in Motion</td>
<td>295</td>
</tr>
<tr>
<td>11.8</td>
<td>The Equation of Continuity</td>
<td>297</td>
</tr>
<tr>
<td>11.9</td>
<td>Bernoulli's Equation</td>
<td>299</td>
</tr>
<tr>
<td>11.10</td>
<td>Applications of Bernoulli’s Equation</td>
<td>301</td>
</tr>
<tr>
<td>12.1</td>
<td>Common Temperature Scales</td>
<td>316</td>
</tr>
<tr>
<td>12.2</td>
<td>The Kelvin Temperature Scale</td>
<td>317</td>
</tr>
<tr>
<td>12.3</td>
<td>Thermometers</td>
<td>318</td>
</tr>
<tr>
<td>12.4</td>
<td>Linear Thermal Expansion</td>
<td>320</td>
</tr>
<tr>
<td>12.5</td>
<td>Volume Thermal Expansion</td>
<td>326</td>
</tr>
<tr>
<td>12.6</td>
<td>Heat and Internal Energy</td>
<td>328</td>
</tr>
<tr>
<td>12.7</td>
<td>Heat and Temperature Change: Specific Heat Capacity</td>
<td>328</td>
</tr>
<tr>
<td>12.8</td>
<td>Heat and Phase Change: Latent Heat</td>
<td>331</td>
</tr>
<tr>
<td>12.9</td>
<td>Equilibrium Between Phases of Matter</td>
<td>336</td>
</tr>
<tr>
<td>13.1</td>
<td>Convection</td>
<td>348</td>
</tr>
<tr>
<td>13.2</td>
<td>Conduction</td>
<td>351</td>
</tr>
<tr>
<td>13.3</td>
<td>Radiation</td>
<td>357</td>
</tr>
<tr>
<td>13.4</td>
<td>Applications</td>
<td>361</td>
</tr>
<tr>
<td>14.1</td>
<td>Molecular Mass, the Mole, and Avogadro’s Number</td>
<td>367</td>
</tr>
<tr>
<td>14.2</td>
<td>The Ideal Gas Law</td>
<td>370</td>
</tr>
<tr>
<td>14.3</td>
<td>Kinetic Theory of Gases</td>
<td>375</td>
</tr>
<tr>
<td>14.4</td>
<td>Diffusion</td>
<td>379</td>
</tr>
<tr>
<td>15.1</td>
<td>Thermodynamic Systems and Their Surroundings</td>
<td>388</td>
</tr>
<tr>
<td>15.2</td>
<td>The Zeroth Law of Thermodynamics</td>
<td>388</td>
</tr>
<tr>
<td>15.3</td>
<td>The First Law of Thermodynamics</td>
<td>389</td>
</tr>
<tr>
<td>15.4</td>
<td>Thermal Processes</td>
<td>391</td>
</tr>
<tr>
<td>15.5</td>
<td>Thermal Processes Using an Ideal Gas</td>
<td>395</td>
</tr>
<tr>
<td>15.6</td>
<td>Specific Heat Capacities</td>
<td>398</td>
</tr>
<tr>
<td>15.7</td>
<td>The Second Law of Thermodynamics</td>
<td>399</td>
</tr>
<tr>
<td>15.8</td>
<td>Heat Engines</td>
<td>400</td>
</tr>
<tr>
<td>15.9</td>
<td>Carnot’s Principle and the Carnot Engine</td>
<td>401</td>
</tr>
<tr>
<td>15.10</td>
<td>Refrigerators, Air Conditioners, and Heat Pumps</td>
<td>404</td>
</tr>
<tr>
<td>15.11</td>
<td>Entropy</td>
<td>408</td>
</tr>
<tr>
<td>15.12</td>
<td>The Third Law of Thermodynamics</td>
<td>412</td>
</tr>
<tr>
<td>16.1</td>
<td>The Nature of Waves</td>
<td>422</td>
</tr>
<tr>
<td>16.2</td>
<td>Periodic Waves</td>
<td>424</td>
</tr>
<tr>
<td>16.3</td>
<td>The Speed of a Wave on a String</td>
<td>425</td>
</tr>
<tr>
<td>*16.4</td>
<td>The Mathematical Description of a Wave</td>
<td>428</td>
</tr>
<tr>
<td>16.5</td>
<td>The Nature of Sound</td>
<td>428</td>
</tr>
<tr>
<td>16.6</td>
<td>The Speed of Sound</td>
<td>431</td>
</tr>
<tr>
<td>16.7</td>
<td>Sound Intensity</td>
<td>435</td>
</tr>
<tr>
<td>16.8</td>
<td>Decibels</td>
<td>437</td>
</tr>
<tr>
<td>16.9</td>
<td>The Doppler Effect</td>
<td>439</td>
</tr>
<tr>
<td>16.10</td>
<td>Applications of Sound in Medicine</td>
<td>444</td>
</tr>
<tr>
<td>*16.11</td>
<td>The Sensitivity of the Human Ear</td>
<td>446</td>
</tr>
<tr>
<td>17.1</td>
<td>The Principle of Linear Superposition</td>
<td>456</td>
</tr>
<tr>
<td>17.2</td>
<td>Constructive and Destructive Interference of Sound Waves</td>
<td>457</td>
</tr>
<tr>
<td>17.3</td>
<td>Diffraction</td>
<td>461</td>
</tr>
<tr>
<td>17.4</td>
<td>Beats</td>
<td>463</td>
</tr>
<tr>
<td>17.5</td>
<td>Transverse Standing Waves</td>
<td>465</td>
</tr>
<tr>
<td>17.6</td>
<td>Longitudinal Standing Waves</td>
<td>469</td>
</tr>
<tr>
<td>*17.7</td>
<td>Complex Sound Waves</td>
<td>472</td>
</tr>
<tr>
<td>18.1</td>
<td>The Origin of Electricity</td>
<td>481</td>
</tr>
<tr>
<td>18.2</td>
<td>Charged Objects and the Electric Force</td>
<td>482</td>
</tr>
<tr>
<td>18.3</td>
<td>Conductors and Insulators</td>
<td>484</td>
</tr>
<tr>
<td>18.4</td>
<td>Charging by Contact and Induction</td>
<td>485</td>
</tr>
<tr>
<td>18.5</td>
<td>Coulomb’s Law</td>
<td>486</td>
</tr>
<tr>
<td>18.6</td>
<td>The Electric Field</td>
<td>491</td>
</tr>
<tr>
<td>18.7</td>
<td>Electric Field Lines</td>
<td>496</td>
</tr>
<tr>
<td>18.8</td>
<td>The Electric Field Inside a Conductor: Shielding</td>
<td>499</td>
</tr>
<tr>
<td>18.9</td>
<td>Gauss’ Law</td>
<td>501</td>
</tr>
<tr>
<td>*18.10</td>
<td>Copiers and Computer Printers</td>
<td>505</td>
</tr>
<tr>
<td>19.1</td>
<td>Potential Energy</td>
<td>514</td>
</tr>
<tr>
<td>19.2</td>
<td>The Electric Potential Difference</td>
<td>515</td>
</tr>
</tbody>
</table>
Contents

19.3 The Electric Potential Difference Created by Point Charges 521
19.4 Equipotential Surfaces and Their Relation to the Electric Field 525
19.5 Capacitors and Dielectrics 528
19.6 Biomedical Applications of Electric Potential Differences 532
CONCEPT SUMMARY 534

20 Electric Circuits 541

20.1 Electromotive Force and Current 541
20.2 Ohm's Law 543
20.3 Resistance and Resistivity 544
20.4 Electric Power 547
20.5 Alternating Current 549
20.6 Series Wiring 552
20.7 Parallel Wiring 555
20.8 Circuits Wired Partially in Series and Partially in Parallel 559
20.9 Internal Resistance 560
20.10 Kirchhoff's Rules 561
20.11 The Measurement of Current and Voltage 564
20.12 Capacitors in Series and in Parallel 566
20.13 RC Circuits 568
20.14 Safety and the Physiological Effects of Current 569
CONCEPT SUMMARY 570

21 Magnetic Forces and Magnetic Fields 580

21.1 Magnetic Fields 580
21.2 The Force That a Magnetic Field Exerts on a Moving Charge 582
21.3 The Motion of a Charged Particle in a Magnetic Field 585
21.4 The Mass Spectrometer 589
21.5 The Force on a Current in a Magnetic Field 590
21.6 The Torque on a Current-Carrying Coil 592
21.7 Magnetic Fields Produced by Currents 594
21.8 Ampère's Law 601
21.9 Magnetic Materials 602
CONCEPT SUMMARY 605

22 Electromagnetic Induction 615

22.1 Induced Emf and Induced Current 615
22.2 Motional Emf 616
22.3 Magnetic Flux 622
22.4 Faraday's Law of Electromagnetic Induction 624
22.5 Lenz's Law 627
22.6 Applications of Electromagnetic Induction to the Reproduction of Sound 630
22.7 The Electric Generator 631
22.8 Mutual Inductance and Self-Inductance 636
22.9 Transformers 639
CONCEPT SUMMARY 642

23 Alternating Current Circuits 651

23.1 Capacitors and Capacitive Reactance 651
23.2 Inductors and Inductive Reactance 653
23.3 Circuits Containing Resistance, Capacitance, and Inductance 655
23.4 Resonance in Electric Circuits 660
23.5 Semiconductor Devices 662
CONCEPT SUMMARY 667

24 Electromagnetic Waves 673

24.1 The Nature of Electromagnetic Waves 673
24.2 The Electromagnetic Spectrum 677
24.3 The Speed of Light 679
24.4 The Energy Carried by Electromagnetic Waves 681
24.5 The Doppler Effect and Electromagnetic Waves 685
24.6 Polarization 686
CONCEPT SUMMARY 692

25 The Reflection of Light: Mirrors 699

25.1 Wave Fronts and Rays 699
25.2 The Reflection of Light 700
25.3 The Formation of Images by a Plane Mirror 701
25.4 Spherical Mirrors 703
25.5 The Formation of Images by Spherical Mirrors 706
25.6 The Mirror Equation and the Magnification Equation 710
CONCEPT SUMMARY 715

26 The Refraction of Light: Lenses and Optical Instruments 721

26.1 The Index of Refraction 721
26.2 Snell's Law and the Refraction of Light 722
26.3 Total Internal Reflection 727
26.4 Polarization and the Reflection and Refraction of Light 733
26.5 The Dispersion of Light: Prisms and Rainbows 733
26.6 Lenses 735
26.7 The Formation of Images by Lenses 736
26.8 The Thin-Lens Equation and the Magnification Equation 739
26.9 Lenses in Combination 742
26.10 The Human Eye 744
26.11 Angular Magnification and the Magnifying Glass 748
26.12 The Compound Microscope 750
26.13 The Telescope 751
26.14 Lens Aberrations 753
CONCEPT SUMMARY 754

27 Interference and the Wave Nature of Light 766

27.1 The Principle of Linear Superposition 766
27.2 Young's Double-Slit Experiment 768
27.3 Thin-Film Interference 771
27.4 The Michelson Interferometer 775
27.5 Diffraction 776