Index

Note: Page numbers in *italics* refer to Figures; those in **bold** to Tables

Angelus MTA (AMTA)
antibacterial activity, 293
biocompatibility properties
cell culture studies, 293–4
intraosseous implantation, 294
subcutaneous implantation, 294
chemical composition, 291
clinical applications, 295
in *vivo* investigations, 294
physical properties, 292–3
apexification
calcium hydroxide, 130, 157
definition, 119
MTA obturation
cementogenesis and odontogenesis, 223
compaction, 224
length determination, 223
RMGI cement, 224
root-end closure, 222
tissues, 223
necrotic pulps and open apices
calcium hydroxide, 119–21
pulpal necrosis, 118
therapy, calcium hydroxide
apical barrier formation, 120, 120
apical closure, 120
drawback, 121
hard tissue bridge formation, 119
periapical lesions, 121
apical foramen pathway
dentin and cementum apposition, 2–3, 3
newly erupted teeth, large root canals, 2, 2
periapical tissue destruction, 3, 3
single-rooted and multi-rooted teeth, 3
apical root perforations
causes and indicators, 196, 196
cleaning and shaping, 8, 196, 196–7
prognosis, 197
treatment, 197
Auger technique, 232, 233
Aureoseal MTA, 320
autotransplantation, 144–5
Bioaggregate (BA)
antibacterial activity, 296–7
chemical composition, 295
physical properties, 296

Edited by Mahmoud Torabinejad.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
Biodentine (BD)
 biocompatibility and clinical applications, 297–8
 chemical composition, 297
 physical properties, 297
Biopure® MTAD® antibacterial root cleanser, 57

calcium enriched mixture (CEM)
 antibacterial activities, 301
 biocompatibility
 cell culture studies, 301–2
 intraosseous implantation, 302
 skin test and subcutaneous implantation, 302
 chemical composition, 299–300
 clinical investigations, 303–4
 in vivo investigations, 302
 physical properties, 300
 sealing ability, 301

calcium hydroxide (CH)
 apexification therapy, outcomes
 apical barrier formation, 120, 120
 apical closure, 120
 drawback, 121
 hard tissue bridge formation, 119
 MTA apical plug, 130
 periradicular inflammation, 121
 pulp revitalization
 procedures, 157
 apical closure procedure, 114–15
 direct pulp capping
 definition, 94
 drawbacks, 76
 hard tissue formation, 75
 mandibular second molar, 76, 77
 pH value, 75–6
 tissue response, 76, 76
 and MTA, comparison
 direct pulp capping, 85
 histological results, 84, 85

calcium silicate (CS)
 based cements
 Angelus MTA, 291–5
 Bioaggregate (BA), 295–7
 Biodentine (BD), 297–8
 Calcium Enriched Mixture, 299–304
 Capasio, 316–17
 Ceramicrete-D, 317–18
 chemical composition and physical properties, 319
 Cimento Endodontico Rapido (CER), 308–9
 Endocem, 320
 Endo-CPM, 306–8
 Endosequence, 309–11
 fluoride-doped MTA Cement, 315–16
 Generex A, 317
 iRoot, 298–9
 light-cured MTA, 318–19
 MTA Bio, 313–15
 MTA Fillapex, 304–6
 MTA Plus, 312
 MTA Sealer (MTAS), 315
 nano-modified MTA (NMTA), 318
 Ortho MTA, 313
 Portland cement (PC), 285–90
 Proroot Endo Sealer, 311–12
 based sealers, 237–8
 hydrate, apatite-like precipitates, 31, 31
 Capasio, 316–17
 CEM see calcium enriched mixture (CEM)
 CER see cimento endodontico rapido (CER)
 Ceramicrete-D, 317–18
 CH see calcium hydroxide (CH)
 chemical properties
 composition
 bismuth oxide and gypsum, 20–21
 Portland cement, 19–20
 powder morphology, 21, 22
 trace elements and compounds, 23
 description, 17–18
 gray and tooth-colored ProRoot MTA, 18, 18, 19
reaction zones
apatite-like precipitates, calcium silicate hydrate, 31, 31
bioactive nature, 28–29
MTA-dentin interface, 29, 29
storage, phosphate buffered saline solution, 30, 30
setting reactions see setting reactions
cimento endodontico rapido (CER)
biocompatibility, 308–9
chemical composition, 308
physical properties, 308
coronal root perforations
causes, indicators and prevention, 191–2, 192
cleaning and shaping, 9, 9, 191–2, 192
prognosis, 192
treatment, 192, 192
CS see calcium silicate (CS)
dental caries
bacteria, 5, 6
inflammatory response, carious exposure, 6, 6
microorganisms, role
bacterial infection, 6
pulpal and periapical lesions, 7, 7
dental operating microscope (DOM), 178, 219
dentinal tubules
diameters, 4
odontoblastic processes, 5, 5
DOM see dental operating microscope (DOM)

Endocem
biocompatibility, 320
chemical composition and physical properties, 320

Endo-CPM
antibacterial activity, 307
biocompatibility
cell culture studies, 307
subcutaneous implantation, 307

chemical composition, 307
in vivo investigations, 308
physical properties, 307
sealing ability, 307

Endosequence
antibacterial activities, 310
BC Sealer
biocompatibility, 311
chemical composition, 311
physical properties, 311
biocompatibility, 310
chemical composition, 309
physical properties, 309
sealing ability, 310

fluoride-doped MTA (FMTA)
chemical composition, 315–16
physical properties, 316

Generex A
biocompatibility, 317
chemical composition and physical properties, 317

hardness, MTA, 59–60
HERS see Hertwig’s epithelial root sheath (HERS)
Hertwig’s epithelial root sheath (HERS), 116, 117

immature permanent teeth pulpotomy
AAPD guidelines, 89
crown fractures/cariously exposed teeth, 88
hemostasis, 90
MTA full pulpotomy, 90, 91
partial, 89, 89, 90
round diamond bur, 90

immature teeth
diagnosis
blood flow measurement, 113, 113
buccal-lingual dimension, root canal, 113–14
immature teeth (cont’d)
 permanent teeth, incomplete root
development, 112, 112
 pulp testing, children, 112
 pulp vitality disruption, 111
 reversible pulpitis, 113
infection control
 antibiotics, 118
 debridement, 116
 HERS, 116, 117
 long-term CH therapy, 117–18
 open apex and thin dentin walls,
 116, 116
 root length determination, 116, 117
 treatment
 apex formation categories, 115
 apical diameter, canal, 114
 CH, 114–15
internal repair, techniques
 follow-up evaluation, 201–2, 202
 follow-up therapy, 200–201
 MTA delivery, 200, 200
 prognosis, 202
 site preparation, 199–200, 200
iRoot
 biocompatibility, 299
 chemical composition, 298
 physical properties, 298–9
lateral/accessory canal, 4, 4
lateral root perforations
 causes and indicators, 194, 194
 cleaning and shaping, 9, 9, 194–5
 mid-root perforation, treatment,
 194–5
 prognosis, 195
Lawaty technique
 apex locator, 230
 canals preparation, 229
 coronal portion, 231
 K-files, 229–230
 mixed MTA, 229
 MTA canal filled orifices, 230, 231, 231
 particle size, WMTA, 229
Lee MTA pellet forming block
 apicoectomy procedure, 268, 270, 271, 272
 delivery devices, 268, 269
 intentional replantation, 268, 270
 mixing procedure, 267, 268
light-cured MTA
 biocompatibility, 319
 chemical composition and physical
 properties, 318–19
microhardness, 59–61
mineral trioxide aggregate (MTA)
 see also non-vital pulp therapy
 vs. calcium hydroxide
 direct pulp capping, 85
 histological results, 84, 85
 cytotoxicity, 13
 drawbacks, 14
 properties
 chemical see chemical properties
 physical see physical properties
 physiochemical see physiochemical
 properties
 pulp capping and pulpotomy
 gene products, 83
 in vitro, 80
 in vivo, 82, 82
 interleukin-1 beta, 83
 MDPC-23-cells, 80
 progenitor cells, 80
 tenascin and fibronectin, 83
 up-regulated cytokines, 83
 setting time, 13–14
 versions, 38
MTA see mineral trioxide aggregate
 (MTA)
MTA Bio
 biocompatibility
 cell culture studies, 314
 subcutaneous implantation, 315
 chemical composition, 313–14
 physical properties, 314
MTA Fillapex
antibacterial activities, 305
biocompatibility
 cell culture studies, 306
 subcutaneous implantation, 306
chemical composition, 304
physical properties, 304–5
MTA plus
chemical composition, 312
physical properties, 312
MTA Sealer (MTAS), 315
nano-modified MTA (NMTA), 318
necrotic pulps and open apices
 apexification
 calcium hydroxide, 119–21
 pulpal necrosis, 118
immature teeth
 diagnosis, 111–14
 infection control, 116–18
 treatment, 114–15
non-vital pulp therapy see non-vital pulp therapy
nonvital-infected teeth, revitalization
animals
 apical periodontitis, 145, 150
 biomechanical instrumentation, 146, 147
 cementoblasts, 148
 cementum-and bone-like tissue, 148
 debridement and disinfection
effect, 145
dentin-like tissue, root canal end, 145, 146
dog teeth, 148–50, 149
ingrowth of bone, 151, 151
in-growth, tissue, 148
periapical inflammation, 146
radiographic and histological
evaluation, 148
reparative dentin, 147
root development and periapical
 healing, 149
humans
 apical abscess, 152, 156
 avulsed central incisor, 157–8
 broken dental tubercles, 153
 calcium hydroxide apexification, 157
 continued hard tissue deposition, 158
 continued maturation, immature
 mandibular premolar, 152
 infected pulps and periapical
 radiolucencies, premolars, 157
 irreversible pulpitis and apical
 periodontitis, 152, 153
 mandibular premolar, chronic apical
 abscess, 156
 necrotic immature lower premolar, 153, 155
 necrotic permanent maxillary
 incisor, sinus tract, 154
 necrotic pulps and apical
 periodontitis, 154–5
 nonvital pulp and chronic
 periodontitis, 156
 periapical periodontitis, 154
 pulp tissue regeneration, PRP, 158, 159
 root development and dentinal wall
 thickening, 155
 traumatized immature central
 incisors, 158
non-vital pulp therapy
MTA apical plug
 and CH apexification, 130
 components, 122
 follow-up, 127–8
 hard tissue formation, 123
 non-vital permanent maxillary
 incisors, 126
 outcome studies, 129
 periradicular healing, 123
 periradicular radiolucencies, 126
 pulpal necrosis, 128, 128
technical placement, 124, 125
non-vital pulp therapy (cont’d)
root-end closure, apical barriers
calcified tissue matrix formation, 122
dentin apical plugs, 122
repeated visits, 121–2
obturation, dental anomalies, 225, 226, 227

PDL see periodontal ligament (PDL)
regeneration
periodontal ligament (PDL) regeneration, 261, 261
periradicular lesions, inflammatory
process, 11–12, 12
physical properties
color and aesthetics, 61–2
microhardness, 59–61
pH
alkalinity, calcium hydroxide, 40
cement-based materials, 40, 40
changes, Brazilian MTA product,
39, 39
GMTA and WMTA, 38, 38
immediate pH, WMTA, 39, 39
physicochemical properties, 62–6
radiopacity, 46–9
setting expansion
GMTA and WMTA, 45, 45
water-to-powder ratios, 45, 45
solubility see solubility
strength types
compressive, 49–54
flexural, 54–5
push-out, 56
shear, 55–6
shear bond, 56–7
physicochemical properties
heat transfer, rot surface, 64
MTA-dentin cross-section, tooth
furcation, 62, 63
push-out bond strength, 64, 65
self-sealing property, MTA, 63
semi-quantitative elemental
composition, 62, 62
temperature and humidity,
condensation obturation
technique, 66
physiochemical properties
advantages, direct pulp capping, 78
apatite formation, 79
bioactivity, 77
biocompatibility, 80
composition, 77
gray (GMTA) and white (WMTA),
78
interstitial layer formation, 80
pulp exposure, 78, 79
tertiary dentin formation, 78, 79
platelet-rich plasma (PRP)
description, 164
osteogenesis in bone grafts, 165
polymerization, 167
preparation, 164
pulp regeneration, 165
soft tissue healing, 165
treated mucosal wounds, 165
Portland cement (PC)
antibacterial activity, 287–8
biocompatibility
 cell culture studies, 288
 subcutaneous implantation, 288–9
chemical composition, 285–6
clinical applications, 289
component, MTA, 20
in vivo investigations, 289
limitations, 289–90
manufacture, 20
origin, 19
physical properties, 286–7
radiopacity, 46, 47
sealing ability, 288
solubility values, 43, 44
strength, 51, 52, 53, 56, 57
post space perforation
elapsed time, 199
prognosis, 199
root perforations, 10, 10
treatment, 197
primary teeth pulpotomy
hemorrhage control, 85–6
hemostasis, 86
MTA, 86–8
pharmacotherapeutic agents, 86
ProRoot Endo Sealer
chemical composition, 311–12
physical properties, 312
PRP see platelet-rich plasma (PRP)
pulp and periradicular pathways
apical foramen, 2–3
dentinal tubules, 4–5, 5
inflammatory process, lesions, 11–12
lateral canals, 4, 4
pathological and iatrogenic pathways
dental caries, 5–7
root perforations, 7–11
sealing materials, root canal system
and periodontium, 13–15
pulp capping
direct, calcium hydroxide
definition, 94
drawbacks, 76
hard tissue formation, 75
mandibular second molar, 76, 77
pH value, 75, 76
tissue response, 76, 76
reversible pulpitis
cold testing response, 94, 95
MTA, treatment recommendations, 94–6
one-visit capping procedure, 95, 96
pulp chamber perforations
etiologies, 189, 189
furcation repairs, 181, 190, 191
lateral surface repairs, 190
prevention, 189
recognition and treatment, 189, 189–90
pulpotomy
definition, 85
MTA
immature permanent teeth, 88–90
primary teeth, 86–8
symptomatic permanent teeth, 90–94
primary teeth
hemorrhage control, 85–6
hemostasis, 86
MTA, 86–8
pharmacotherapeutic agents, 86
radiopacity
AH Plus and MTA Fillapex, 46, 46
dental sealants, 46, 46
Portland cement, 46, 47
powder/liquid ratio, 48, 49
WMTA and GMTA, 46
resin modified glass ionomer (RMGI)
cements, 97–8
revitalization
after replantation and
autotransplantation, 143–5
apexitation procedures, 142
clinical and radiographic follow-up, 170
first appointment, 168
nonvital-infected teeth
animals, 145–52
humans, 152–60
pulpal necrosis, 142
second appointment, 168–70
stem cells, canal tissue generation
collagen scaffolds and growth factors, 164–8
BMMSCs, 160
DPSCs and SCAP, 160–163
traumatic luxation/avulsion injuries, 142
root canal obturation, MTA
apexitation see apexitation
characteristics/properties
action mechanisms, 210, 210
fracture resistance, 212–13
hydration products and pH, 211–12
interstitial layer formation, 212
particle size, 211
sealing ability and setting expansion, 213
root canal obturation, MTA (cont’d)

conventional obturation
- apical root resorption, 215, 216
dog models, 215, 215
- inter-radicular biofilms, 215
- periradicular pathosis, 214, 214
- uncontrolled hemorrhage, 215
dental anomalies, 225, 226, 227
drawbacks, 234, 234–5
gutta-percha (GP), 208–9

perforation repair
- description, 219
- DOM, 219
- entire canal obturation, 220–221, 223
Portland cement, 209
prior to surgery, 219, 220–222
restorative considerations, 233–4
retreatment
- bacteria, refractory/contaminated cases, 216
- CH intracanal medication, 216
- healing, 218, 218
- long-standing colonization, 217
sealers see sealers, MTA root canal obturation

techniques
- Auger technique, 232, 233
- Lawaty technique, 229–31
- standard compaction technique, 226–9

root canal system and periodontium
sealing materials, 13–15

root-end filling materials, MTA
advantages, 258–9, 259
amalgam, 254, 255
antibacterial effect, 265
bioactivity
- cell proliferation, 264
- hard tissue formation, 263
clinical outcomes, 268, 273, 274
cytotoxicity and biocompatibility
- in vitro cell culture studies, 260
- PDL regeneration, 261, 261
- regenerated cementum, 262, 263

Super EBA and amalgam groups, 261, 262
disadvantages, 259, 259
gray vs. white MTA, 257
MTA-like cements, types, 257
purpose, 252–3, 253
requirements, 258, 258
resin-based materials
- disadvantages, 256
- Retroplast and Geristore, 256
and retroreparation
- carrier-and syringe-type devices, 266
cavity preparation, 265–6
Lee MTA pellet forming block, 266–8
mixing procedure, 266
MTA, placement, 266
sealability
- hydroxyapatite layer, formation, 265
- SuperEBA, 264–5
ZOE-based materials
- IRM, 255
physical properties, 254–5
- SuperEBA, 255–6, 256
root perforation repair
access preparation
- depth, bur penetration, 8, 8
- lateral surface/furcation perforations, 7–8, 8
amalgam, 179, 179, 180
biologic repair, 180
cementum formation, 180–181, 181
cleaning and shaping
- apical perforations, 8, 196, 196–7
coronal root perforations, 9, 9, 191–2, 192
lateral perforations, 9, 9, 194–5
defects, types
- access preparation, 182, 183, 184
- resorption (internal/external), 184–6, 186
strip perforations, 184, 184, 185
furcation perforations, 180–181, 181
hydroxyapatite crystals, 179–80, 182
internal repair, techniques, 199–202, 200
multi-rooted teeth, location, 187, 188
post space perforation, 10, 10, 197–9
pulp chamber perforations, 189, 189–90
single-rooted teeth, location, 187, 188
size, 187
vertical fracture
etiologic factor, 10
frank root fracture, 10, 11

sealers, MTA root canal obturation
calcium hydroxides, 236
calcium silicate-based sealers, 237–8
divisions, 236
epoxy resin-based, 236
glass ionomers, 236
ideal sealer requirements, 235
monoblock sealer systems, 237
silicone-based sealers, 237
zinc oxide–eugenols, 236

setting reactions
additives and accelerants, 26–7
cubic and needle-like particles, 25, 25
environmental interaction, 27–8
ettringite, 24
hydration reactions, 23–4
maturation, 26
time, 26
tricalcium silicate and diicalcium silicate, 23
water/moisture, effect of, 27

solubility
0.2% and 2.0% sodium zeolite

MTA, 45
calcium ions release, MTA, 40–41, 45
description, 40
partial solubility, 40
water-to-powder ratio, 40, 42
weight loss, root sealant materials, 42, 43
white Portland cement, 43, 44
WMTA

composition of modifications, 43, 44
daily and cumulative percent
solubility, 42, 43
percent solubility and porosity, 42, 42

standard compaction technique, MTA
root canal obturation
endodontic pluggers, 228
excess moisture/blood, 229
hand pluggers, 228
master apical file (MAF), 227–8
smear layer, 226, 227

stem cells, canal tissue generation
collagen scaffolds and growth factors
bilateral/equilateral junctions, 167
blood, 164
growth factors, 164
periodontal-like and bone tissues, 165, 166
PRF, 165, 167
PRP, 164–5
slow polymerization, PRF, 167

DPSCs and SCAP
healthy pulp, apical region, 162
hypothetical pulp regeneration, 162, 163
in-growth, periodontal tissue, 162, 163
markers, 162
self-renewal, 161

strength types
BioAggregate cements, 58
Biopure® MTAD® antibacterial root
cleanser, 57

compressive
additives to WMTA, 50, 51
calculation, 49
commercial and experimental
products, 49, 50
experimental Portland cement and
MTA, 51, 52
GMTA and WMTA, 50, 51, 52
mixing and placement techniques, 53, 53
strength types (cont’d)
modified MTA formulations, 53, 53
ProRoot MTA and MTA Angelus, 54, 54
sodium fluorosilicate on Portland cement, 52, 53
flexural
porosity of materials, 55, 55
three-point, 54–5, 55
ProRoot WMTA, 58
push-out
bond strength measurement, ProRoot MTA, 57
function of pH, 58, 59
Glyde File Prep values, 56
MTA and BioAggregate products, 59
values, SuperEBA, 56
WMTA, 58, 59
shear, 55–6
shear bond
bonding agents and resin-based composite, 56, 56
unmodified Portland cement, 56–7
symptomatic permanent teeth pulpotomy
hemostasis, profuse hemorrhaging, 92
MTA
full pulpotomy, 93, 93
partial pulpotomy, 91, 92
partial MTA pulpotomy, 91, 92
sodium hypochlorite (SH), 91
temporary seal, 93
vital pulp therapy
advantages, 74
asymptomatic human tooth, carious lesion, 72, 72
bacterial contamination, exposed pulp tissue, 73
dentin bridging, 73
description, 72
disadvantages, 98–9
MTA
vs. calcium hydroxide, 83–5
mode of action, 80–83
physiochemical properties, 77–80
odontoblasts, 73
pulp capping see pulp capping
pulpotomy see pulpotomy
responses, capping materials, 74–5
symptomatic human tooth, penetration of bacteria, 72, 72
treatment
caries removal, 96–7
hemorrhaging control, 97
MTA placement, 97
RMGI cements, 97–8
sodium hypochlorite (SH)
disinfection, 97