Index

AC electricity, 107–16
AC generator, 117
Active stall control, 93
Air density, 32
Airfoil section, 74–6, 87–90
 lift and drag coefficients of, 91
 noise produced by, 211
Airy waves, 160
Altamont Pass, 54, 143, 212
Anemometer, 16, 61 (Fig.), 67, 72
Angle of attack, 75, 90, 92
Annular generator, 125
Apparent power, of a generator, 113
Array losses, 147
Asynchronous generator, 119, 121, 128–38
Attached flow, 90
Axial force, on a turbine rotor, 78
Axial induction factor, 71
Backup generation, 194–6
Balancing reserves, 195
Base load, 195
Beaufort scale, 32
Betz Limit, 69, 87
Blade element method, 90
Blade passing frequency, 103, 107, 186
Blade root, 84, 89
Blades, of a turbine, 64, 87–90
 forces acting on, 84, 99, 106
 pitching of, 94, 138, 140
 tapering of, 88
 twisting of, 78–80
Boundary layer, 90
Brush wind turbine, 13, 14 (Fig.)

Cables
 capacitance of, 175
 for offshore wind farm, 167, 172, 173, 175
 HVDC, 175–7
California, 53, 143, 212
Canada, 97 (Fig.), 144, 145 (Fig.)
Capacity credit, 194, 196–8
Capacity factor, 18
 of wind turbines, 20–2, 60
Capacitor, 111
Capacitor bank, 131
Carbon dioxide emissions, 1, 23, 194, 207
Carbon fibre, 94
Chinook, 7
Chord, of an airfoil, 75
Control, of a wind turbine, 138–43
 by feedback, 141–2
Coriolis effect, 6

© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
Critical damping, 102
Cumulative distribution function, 45
Cumulative yield, 60
Cut-in and cut-out speeds, 32, 34, 45, 58, 167
in offshore turbines, 161, 172
Cycloturbine, 69

Damping, 100–105
critical, 104
Darrieus turbine, 67
DC power, 107–8
Denmark, 9 (Fig.), 13–15, 25, 153
offshore wind farms in, 166–9
Discount rate, 203
Dispatchable reserves, 195
Doldrums, 5
Don Quixote, 10
Doubly-fed induction generator, 133–8
Drag coefficient, 91
Drag force, 72–3
on a turbine blade, 77, 84

Economics, 199–204
cost of energy, 202
discount rate, 203
life-cycle analysis, 202–3
operation and maintenance, 203
payback period, 202
turbine prices, 200–201
value of electricity, 204
Electrical energy and power, 20
Electromagnetic induction, 116
Environmental issues, 28, 204–18
bats, 215
birds, 211–6
energy diversity, 207
energy payback, 207
environmental impact assessment, 217
farming, 215
fishing, 217
landscape, 207–10
life-cycle analysis, 206
marine conservation, 217
European Wind Atlas, 50–52, 55, 57
Extreme gust, 48, 107
Extreme value theory, 46–7

Faraday, Michael, 116
Fatigue, 106–7
Fault level, of a grid, 185
Feathering, 94
Feedback control, 141–2
Ferrel, William, 6
Ferrel cell, 6
Fetch, of ocean waves, 159
Fixed-speed wind turbine, 131, 133, 138
Flicker, 186–7, 211
Floating turbines, 164–6
Forecasting, 56–7, 194
Fossil fuels, 1, 2
Foundations, 161–6
gravity, 162
jacket, 164
monopile, 162, 167
transition piece, 163 (Fig.)
Fourier analysis, 188
France, 155

Gaussian distribution, 45–6
Gearbox, 94–7
Gearless wind turbine, 125–7
Gedser turbine, 13, 15 (Fig.), 92
Germany, 24, 25, 145 (Fig.), 155, 190, 209–10
Gigawatt, 20
Giromill turbine, 69
Gore, Al, 2
Grid electricity, 179, 191, 193
distribution of, 183
harmonic distortion in, 188–90
Grid integration, 28, 56, 179–98
Grid strength, 184–6
Gumbel distribution, 47–8, 161

Hadley, George, 5
Hadley cell, 6
Halley, Edmond, 5
Harmattan, 7
Harmonic distortion, 188–90
High-voltage AC transmission, 107
Horizontal-axis wind turbine (HAWT), 15
Horns Rev 2 offshore wind farm, 166–9
Household electricity consumption, 17, 18–19, 20–23
related to offshore wind capacity, 168, 170
Hub height, 40, 54, 157–8, 172
HVDC transmission, 175–7
Impedance, 113
India, 190
Induction generator, 119, 128, 130
doubly-fed, 133–8
wound rotor, 132
Induction motor, 120, 128–30
Inductor, 110
Installed capacity, national and global, 24–6, 200
Intermittency, 17–18, 22, 34, 45, 191–4
Inverter, 124, 188
Italy, 166
Jackup barge, 169 (Fig.)
Jet stream, 6, 8
Juul, Johannes, 13
Knot (nautical mile per hour), 32
Laminar flow, 90
Learning curve, 200
Life-cycle analysis, 202–3
Lift coefficient, 91
Lift force, 72–3
on a turbine blade, 77
Lift-to-drag ratio, 76, 89
Load factor, 18
London Array, 170–3, 217
Loss-of-load probability, 196
Magnetic field, 117–18
Magnetic flux, 118
Megawatt, 20
Micrositing of turbines, 149
Mistral, 7, 52
Monopile foundation, 160, 162, 167, 217
Nacelle, 15, 94
Natural frequency, 100, 102
Noise, of turbines, 211
Normal distribution, 46
North Sea, 54–5, 153–7, 166–7, 197
supergrid, 176 (Fig.), 177
Norway, 166
NREL wind atlas, 53
Nuclear power, 2, 3, 180, 195
Orography, 57
Oscillation, 100–102
Overdamped system, 102
Passive stall control, 93, 133
Period, 102
Pitch control, 16, 80, 85
Planetary gear, 96
Planning issues, 28
Planning reserves, 196
Portugal, 5 (Fig.), 97 (Fig.)
Poul La Cour, 13, 40
Power, in the wind, 31, 34
Power coefficient, of a rotor, 71, 81–5
Power converter, 124, 136
distortion in, 187–90
for HVDC transmission, 175
full-scale, 125
partial-scale, 125, 134
Power curve, of a turbine, 33, 58, 60, 140
Power factor correction, 114
Power law exponent, 36, 52, 157
Power smoothing, 192
Prevailing winds, 6, 8
Probability density function (pdf), 41–5
Pulse code modulation, 188
Ramp rate, 195
Rated wind speed, 65, 85
Rayleigh distribution, 41, 42 (Fig.), 45, 58, 161
Reactance, 111–12
Reactive power, 111, 121
of a generator, 113, 136
in submarine cables, 175
Rectifier, 124
Reliability, of electricity supply, 196–8
Reluctance, 118
Renewable energy, 2, 56, 179–82
Resonance, 103–4
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resultant wind, on a turbine blade</td>
<td>77–8, 80, 92</td>
</tr>
<tr>
<td>Return time, of extreme events</td>
<td>47</td>
</tr>
<tr>
<td>Root mean square (rms) value</td>
<td>110</td>
</tr>
<tr>
<td>Rotating magnetic field</td>
<td>119–20, 128, 134</td>
</tr>
<tr>
<td>Rotor, of a wind turbine</td>
<td>141</td>
</tr>
<tr>
<td>control of</td>
<td></td>
</tr>
<tr>
<td>diameter, 65–6, 167, 172</td>
<td></td>
</tr>
<tr>
<td>efficiency, 69–72, 87</td>
<td></td>
</tr>
<tr>
<td>forces on</td>
<td>99</td>
</tr>
<tr>
<td>speed, 80–86, 167, 172</td>
<td></td>
</tr>
<tr>
<td>torque, 81</td>
<td></td>
</tr>
<tr>
<td>weight, 94, 167, 172</td>
<td></td>
</tr>
<tr>
<td>Roughness, of a surface</td>
<td>36, 52, 57–8, 157</td>
</tr>
<tr>
<td>on a turbine blade</td>
<td>87</td>
</tr>
<tr>
<td>Royal Society for the Protection of Birds</td>
<td>211–17</td>
</tr>
<tr>
<td>San Gorgonio Pass</td>
<td>148</td>
</tr>
<tr>
<td>Savonius turbine</td>
<td>67, 72</td>
</tr>
<tr>
<td>SCADA system</td>
<td>151</td>
</tr>
<tr>
<td>Scheer, Herman</td>
<td>2</td>
</tr>
<tr>
<td>Schumacher, E.F.,</td>
<td>2</td>
</tr>
<tr>
<td>Scotland, 154, 164 (Fig.)</td>
<td></td>
</tr>
<tr>
<td>Second-order system</td>
<td>101</td>
</tr>
<tr>
<td>Separate excitation</td>
<td>118</td>
</tr>
<tr>
<td>Single-phase generator</td>
<td>118</td>
</tr>
<tr>
<td>Sinusoidal voltage</td>
<td>108</td>
</tr>
<tr>
<td>Siting of wind turbines</td>
<td></td>
</tr>
<tr>
<td>offshore, 170–1</td>
<td></td>
</tr>
<tr>
<td>onshore, 146–50</td>
<td></td>
</tr>
<tr>
<td>Slip, 121, 128–9, 132–3</td>
<td></td>
</tr>
<tr>
<td>Slip power recovery</td>
<td>133</td>
</tr>
<tr>
<td>Smith-Putnam turbine</td>
<td>13</td>
</tr>
<tr>
<td>Soft starter</td>
<td>130, 134</td>
</tr>
<tr>
<td>Soft tower</td>
<td>105</td>
</tr>
<tr>
<td>Spacing, of onshore turbines</td>
<td>147–8</td>
</tr>
<tr>
<td>Spain, 10 (Fig.)</td>
<td></td>
</tr>
<tr>
<td>Spar buoy</td>
<td>166</td>
</tr>
<tr>
<td>Spinning reserves</td>
<td>195</td>
</tr>
<tr>
<td>Squall, 39, 45</td>
<td></td>
</tr>
<tr>
<td>Squirrel-cage rotor</td>
<td>128</td>
</tr>
<tr>
<td>Stall, 76, 90–93</td>
<td></td>
</tr>
<tr>
<td>Stall control</td>
<td>13</td>
</tr>
<tr>
<td>active, 93</td>
<td></td>
</tr>
<tr>
<td>passive, 93, 133</td>
<td></td>
</tr>
<tr>
<td>Stator, 117, 127</td>
<td></td>
</tr>
<tr>
<td>Stiff tower</td>
<td>104</td>
</tr>
<tr>
<td>Stream tube</td>
<td>70–71</td>
</tr>
<tr>
<td>Substation, offshore</td>
<td>168, 172, 174 (Fig.)</td>
</tr>
<tr>
<td>Swell</td>
<td>159</td>
</tr>
<tr>
<td>Swept area, of a rotor</td>
<td>12, 31, 66</td>
</tr>
<tr>
<td>Synchronous generator</td>
<td>119, 121, 122–7</td>
</tr>
<tr>
<td>permanent magnet</td>
<td>119, 127</td>
</tr>
<tr>
<td>speed of, 119</td>
<td></td>
</tr>
<tr>
<td>wound rotor</td>
<td>119</td>
</tr>
<tr>
<td>Synchronous speed</td>
<td>119, 122, 130</td>
</tr>
<tr>
<td>System margin</td>
<td>196</td>
</tr>
<tr>
<td>Tehachapi mountains</td>
<td>143, 186</td>
</tr>
<tr>
<td>Tension-legged platform</td>
<td>165</td>
</tr>
<tr>
<td>Terawatt, 20</td>
<td></td>
</tr>
<tr>
<td>Tesla, Nikola, 107, 120</td>
<td></td>
</tr>
<tr>
<td>Three-phase AC</td>
<td>114–16</td>
</tr>
<tr>
<td>Three-phase generator</td>
<td>118–19, 126</td>
</tr>
<tr>
<td>Tip speed ratio</td>
<td>79, 81–5, 92</td>
</tr>
<tr>
<td>Torque</td>
<td>81</td>
</tr>
<tr>
<td>Torque-speed characteristic</td>
<td>130, 137</td>
</tr>
<tr>
<td>Tower, 97–8</td>
<td></td>
</tr>
<tr>
<td>as a cantilevered structure</td>
<td>101</td>
</tr>
<tr>
<td>natural frequencies of,</td>
<td>104</td>
</tr>
<tr>
<td>stiff and soft</td>
<td>104–5</td>
</tr>
<tr>
<td>Tower shadow</td>
<td>186, 211</td>
</tr>
<tr>
<td>Trade winds</td>
<td>5</td>
</tr>
<tr>
<td>Transformer</td>
<td>107</td>
</tr>
<tr>
<td>Transition piece</td>
<td>162, 163 (Fig.), 173 (Fig.)</td>
</tr>
<tr>
<td>Transformer</td>
<td>107</td>
</tr>
<tr>
<td>Transformer</td>
<td>107</td>
</tr>
<tr>
<td>Transition piece</td>
<td>162, 163 (Fig.), 173 (Fig.)</td>
</tr>
<tr>
<td>Turbulecence</td>
<td>39, 45, 86, 149</td>
</tr>
<tr>
<td>offshore</td>
<td>159</td>
</tr>
<tr>
<td>TV pickup</td>
<td>193</td>
</tr>
<tr>
<td>UK</td>
<td>156</td>
</tr>
<tr>
<td>national grid</td>
<td>179–82</td>
</tr>
<tr>
<td>offshore wind farm</td>
<td>156, 167, 170</td>
</tr>
<tr>
<td>USA</td>
<td>144</td>
</tr>
<tr>
<td>Variability</td>
<td></td>
</tr>
<tr>
<td>of electricity demand</td>
<td>193</td>
</tr>
<tr>
<td>of wind generation</td>
<td>192–4</td>
</tr>
<tr>
<td>Variable-speed wind turbine</td>
<td>85–6, 125, 136, 139</td>
</tr>
</tbody>
</table>
Vertical-axis wind turbine (VAWT), 15, 66–9
- offshore, 161
Vibrations, 98–106
- mechanical coupling of, 103
Voltage distortion, 187
Voltage flicker, 186–7, 211
- Wake, of a turbine, 71–2, 149
Walker circulation, 7
Waves, 159–61
- patterns of, 159
- statistics of, 161
Weibull distribution, 41–3, 58
Wind atlas, 50, 53, 57
Wind farm, 22, 23 (Fig.)
- control of, 142–3, 150–2
- grid connection of, 182–4
- installed capacity of, 22, 24, 156, 167, 170
- offshore, 21–3, 27–8, 153–7, 166–73
onshore, 143–52
- power curve of, 149
- power smoothing in, 192
- SCADA system for, 151
Wind power class, 52
Wind rose, 148
Wind shear, 36–7, 86
- offshore, 157–8
Wind speed, 31–3
- distribution, 40, 41–3, 58
- extreme, 46–8
- measurement, 34, 40, 57
- offshore, 157–8
Windmills, 9–13, 73, 97
- American, 12, 97
- Dutch, 9–11, 97
- English, 11, 97
Wright brothers, 75
Yaw motor, 15, 86