INDEX

Abscesses, examined by IMS, 291
Absolute chemical structure, in-depth knowledge of, 246
Absolute metabolite quantitation kit, 393
Absolute quantitation, from tissue samples, 233–234
Absorption assays, 98
Absorption, distribution, metabolism, and excretion (ADME) assays. See also ADME entries; In vitro ADME entries frequently performed, 97–98
mass spectrometry for in vitro, 97–113
Absorption, distribution, metabolism, and excretion (ADME) parameters, therapeutic siRNAs and, 372
Absorption/distribution/metabolism/excretion (ADMET) assays, 304
Absorption, metabolism, and excretion (AME) studies, 131
Accelerator mass spectrometry (AMS), 2, 27–28
Acetonitrile
effect of, 69
in sample extraction, 133–134, 135
Acetonitrile methanol elution, 63–65
Acetonitrile precipitation, 81
Acid hydrolysis, MALDI-MS and, 369
Acidic matrices, 368
Active drug compounds, assessing homogeneity of, 324–325
Active pharmaceutical ingredients (APIs), 249
impurities in, 191
Acylglucuronides, 56, 73, 74, 133
Adduct ions, 3
Adenosine triphosphate (ATP), depletion of, 318
ADME program, for drug registration, 129. See also Absorption, distribution, metabolism, and excretion (ADME) entries
ADME properties, of siRNAs, 364
ADME studies, 117, 129, in animals, 132
ADME support, 102
Adverse drug reactions (ADRs), 339–340
AEE788 vascular endothelial growth factor receptor inhibitor, 318–320
Affinity selection–MS (ALIS) method, 261, 262
Agilent, 106
Albumin depletion method, 178–179
Alkali ion exchange, with ammonium ions, 368
Alternative fragmentation process, 28
Alternative ionization methods, 28
Alzheimer’s biomarkers, 42
Ambient desorption techniques, 7–11
Ambient ionization mass spectrometry, 7
Ambient sampling/ionization techniques, 109
Ambient surface profiling, LESA for, 221–238
Amine adducted ions, in PEGylated protein analysis, 167
Ammonium hydroxide (NH₄OH), 412
Ammonium ions, alkali ion exchange with, 368
AMS system, components of, 28. See also Accelerator mass spectrometry (AMS)
Amyloid peptides, HPLC-MS/MS quantification of, 413
β-Amyloid peptides, 408–410
Analog-to-digital converter (ADC), 344
Analyte expression, 60
Analyte extraction
LESA in, 231–232
organic solvents for, 67–68
using LLE, 66–67
Analytes
analysis of, 3–4, 8
annotation of, 395, 396
capturing quantitative information on, 394
chromatographically separating from phospholipids, 65
ionization efficiency of, 225
post-acquisition extraction of accurate masses of, 107
Analyte stabilization, chemical agents in, 57
Analytical approaches, fingerprinting techniques and, 391–392
Analytical data acquisition, in metabolomics, 390
Analytical fingerprints, 391
Analytical instrumentation, creation of, 49
Analytical/wet chemistry techniques, 142
Anatomy, intact protein analysis of, 284–288
Animals
ADME studies in, 132
metabolic profiles in, 130
Animal studies
AUC pooling method in, 136
incurred sample from, 81
Anion exchange, 367
Annotation of analytes, 395, 396
in nontargeted metabolomics, 395, 396
Antibacterial compounds, cannibalistic factors as, 291
Antibiotic-resistant bacteria strains, 291
Antibody fragmentation, 208
Anticoagulants, 57
Antidrug antibody purification method, 178–179
Antioxidants, 133
Antisense oligonucleotide therapeutic discovery, 372
APCI HPLC-MS applications, 6. See also Atmospheric pressure chemical ionization (APCI); High-performance liquid chromatography–mass spectrometry (HPLC-MS)
APCI ionization mechanism, 6
APCI-MS, 6. See also Mass spectrometry entries
API sources, introduction of samples into, 108. See also Atmospheric pressure ionization (API)
API techniques, 28
AQ4N prodrug, 318
Aqueous mobile phase, phase collapse and, 75–76
Area under the curve (AUC), 135, 136
Artificial deamidation, minimizing, 212
Artificial degradation, in peptide mapping, 211–213
Asn deamidation/isomerization scheme, 205. See also Asparagine (Asn) residues
Asparagine (Asn) residues, deamidation of, 167, 177, 204
Aspartate (Asp) isoAsp residues from, 206
isomerization of, 177
Aspartate products, isoaspartate vs., 177
Astemizole, MALDI imaging results for, 316, 317
Atmospheric pressure chemical ionization (APCI), 1, 5–6, 109, 240, 241, 245
Atmospheric pressure IEM, 5. See also Ion evaporation model (IEM)
Atmospheric pressure ionization (API), 1
sources of, 39
Atmospheric pressure ionization methods/techniques, 8, 240
Atmospheric pressure ion source geometries, 2
Atmospheric pressure MALDI (API-MALDI), 13. See also Matrix-assisted laser desorption/ionization (MALDI)
Atmospheric pressure photoionization (APPI), 1, 5, 6–7, 240, 241, 250
Atmospheric pressure solid probe analysis (ASAP), 9
AUC plasma pooling, volume calculation for, 135
AUC pooling method, in animal studies, 136
Automated anion-exchange purification/desalting HPLC system, 367
Automated component detection, 121
Automated compound purification systems, 243
Automated infusion, 108
Automated optimization workflows, 404
Automated tryptic digestion, 156
Automatic analyte extraction, LESA in, 231–232
Automatic gain control (AGC) procedure, 17
Automaton™, 100
 Autoradiography, 221–222. See also Whole body autoradiography (WBA)
 MALDI imaging as a complement to, 323
 Autoradiography imaging, 304, 305. See also Quantitative whole-body autoradiography entries
 Autosampling, fraction-collecting, 367–368
 Avion TriVersa-NanoMate robotic ion source, 222, 223
 Axial ejection, radial ejection vs., 19
 Background subtraction (BgS), 48, 47, 48 with noise reduction algorithm, 348–350 real-time dynamic, 123
 Bacteria, antibiotic-resistant strains of, 291
 Bacterial colonies, study of, 290–291
 Bacterial infection, IMS applied to, 290–292
 Best quantification strategy, 408
 β-amyloid peptides, 408–410
 β-RAM flow scintillation analyzer (FSA), 136, 137
 BgS-NoRA, 348–350. See also Background subtraction (BgS)
 Bile metabolic profiling, 49
 Bioactivation, 352
 Bioactivation potential, of drug candidates, 340
 Bioanalysis, with full scan acquisition, 105–106
 Bioanalytical (BA) applications, 240
 Bioanalytical mass spectrometry (MS), 99–100
 Bioanalytical methods, 55
 for target quantitation, 78
 Biochemical changes, 41–42
 Biological drugs defined, 149
 MS analysis of, 149–190
 qualitative/quantitative analysis of, xii
 Biological fluids, tracking siRNAs in, 360
 Biological matrices. See also Biomatrices
 analysis of siRNA from, 372–376
 endogenous components in, 127
 extracting siRNAs from, 365–366
 Biological properties, assessment of, 248–259
 Biological sample analysis, HRMS for, 414–415
 Biological samples
 collection, storage, and preparation of, 56–59
 drug-derived material in, 133
 ensuring stability of, 133
 pooling of, 135–136
 Biologic pharmaceuticals, characteristics of, 201. See also Biologics drugs
 Biologics
 characterization of, 191
 chemical degradations in, 210
 degradation characterization in, 201–211
 future developments in imaging, 326
 impurities and degradation products in small-molecule, 191–220
 MALDI-MS technique and, 192
 Biologics drugs, U.S. market for, 201–202
 Biomarker concentration measurements, 42
 Biomarker measurement assays, targeted metabolomic analyses vs., 393–394
 Biomarker research, 42
 Biomarkers, 41–42
 in disease assessment, 403
 interest in, 289
 Biomatrices, isolation of siRNAs from, 364. See also Biological matrices
 Biomedical field, AMS in, 28
 Biotransformation analysis, of radioactive samples, 136, 137
Biotransformation studies, samples for, 132–133
Blood samples, 118–119
Boronphenylalanine (BPA)-mediated boron neutron capture therapy, 307
Bottom-up methods, 192
Brain regions, IMS in redefining, 286–287
Breast cancer, IMS and, 289
Breast cancer tissues, imaging, 290
Bromine, in trapping agents, 341
n-Butyl chloride, 67, 68
C16:0 lyso-PC, extraction of, 68
Cancer biology, IMS studies of, 288–290. See also Breast cancer entries; Oncology drugs; Tumor entries
Cancer tissue microarrays, analyzing after in situ digestion, 293. See also Pancreatic cancer tissue microarray
Cancilla, Mark T., ix, 357
Cannibalistic factors, as antibacterial compounds, 291
Capillary columns, monolithic, 367
Capillary electrophoresis (CE), 391, 394
Caprioli, Richard M., ix, 277, 327, 328
CaptiveSpray™ ion source, 48–49
Carboxylic acid metabolite, 74
Cassette analysis, 104
Cassette incubation, 104
Cassette incubation/HRAM analysis approach, 106. See also High-resolution accurate mass (HRAM) systems
Cation exchange (CEX), in desalting samples, 365. See also CEX fractionation
Cation exchange chromatography, 155
Cations, effects of small, 60
Centroid data, 79
Centroiding methodology, 419
Centroid mode, MEWS applied in, 420
Cetrorelix, 410
CEX fractionation, 169. See also Cation exchange (CEX)
Chalcone synthetase gene, suppression of, 357
“Charge residue,” 5
Charge residue model (CRM), 4, 5
Charge state reduction methods, in PEGYLATED protein analysis, 167
Charge states, CID behavior of, 369–370, 371
Chelating agents, 365
Chemical agents, in analyte stabilization, 57
Chemical biomarkers, 42
Chemical degradants, detection of, 210
Chemical degradation, 204–210
Chemical derivatization applications of, 140–141 for structural elucidation, 140–141
Chemical derivatization experiments, 192
Chemically modified oligonucleotides fragmentation of, 370
sequencing program for, 378
Chemically reactive metabolites, 339
Chemical modifications. See also Chemically modified oligonucleotides applied to siRNAs, 358–360
influence on LC-MS response, 362–364
Chemical stability, assessing, 251
Chemical structure(s)
in-depth knowledge of, 246
Growing variety of, 241
Chemical testing, 251–253
Chemistry, in drug discovery process, 239
Chemometrics, in metabolomics, 390
Chen, Guodong, ix, 191
Chick heart, visualizing molecular morphology of, 285–286
Chinese hamster ovary (CHO) cells, 207, 208
Chip-based infusion nano-ESI system, 9, 10
Chip-based nESI emitter array, 222–223. See also Nanoelectrospray (nESI) entries; nESI chip
Chowdhury, Swapan K., ix, 339
Chromatographic elution behavior, of phospholipids, 62–65
Chromatographic retention time, 60
Chromatographic separation, 55, 73, 372, 396–397
direct MS analysis without, 108–109 between drugs and metabolites, 70–71, 72
Chromatographic surface, 13
Chromatography enhancing, 74–77
mass spectrometry metabolomics and, 396–397
reversed-phase, 62–65
Chromatography-interfaced techniques, 392
CID behavior, of charge states, 369–370, 371. See also Collision-induced dissociation (CID)
CID experiments, 26
CID fragmentation, 207
CID MALDI TOF/TOF, 23. See also Matrix-assisted laser desorption/ionization (MALDI); Tandem TOF combinations (TOF/TOF); Time-of-flight (TOF) entries
CID MS/MS, 24. See also Tandem mass spectrometry (MS/MS)
Circulating human metabolites, characterization of, 132, 136
Clot formation, minimization of, 57
Clozapine
distribution of, 323, 324, 325
in zebrafish, 324, 325
Clozapine measurement, 309, 310
Cluster-assisted desorption, 9
Cluster ion sources, 307
Coefficients of variation (CVs), 410
Collision cells, 15, 16, 22, 23, 24
Orbitrap, 26
Collision energy (CE), 16, 404
predicting, 407
Collision gases, 17, 18, 27
Collision-induced dissociation (CID), 15–16, 19–20, 38. See also CID entries; MS\(^2\) trap CID
GSH and, 340, 342, 343
of phospholipids, 61–62
do of siRNA duplexes, 364
Collision-induced fragmentation (CID), 176, 177
in determining PEGylation site, 166
Colon cancer biomarkers, 43
Column/mobile phase combinations, testing, 83
Column mobile phase screening, 74–75
Columns, monolithic, 59
Column selection, 75
Column stationary phase screening, 74–75
Column washing, via increasing organic component, 65
Commercial libraries, 395, 396
Comparability studies, 150
Compensation voltage (CV), 80
Complex mixtures, analytical techniques for, 192
Compound-specific analysis, 99
Compound-specific in vitro ADME experiments, 100. See also Absorption, distribution, metabolism, and excretion (ADME) entries; In vitro ADME entries
Concentration–time plasma profiles, 131, 132
Consortium projects, human metabolome, 395
Constant neutral loss scan (CNLS), 341, 342
Continuous beams, 22
Controlled gas-phase synthesis, 248
Control sample background subtraction routines, 46
Conventional imaging technologies, 304–305
Co-solvent method, 250
COSY spectrum, 264
Covalent binding, 258–259
adverse drug reactions and, 339–340
Cross-ring cleavage, 159–160
Cryo-sectioning, 313–314
Crystallin proteins, 287–288
CTC autosampler valve configurations, 100, 101
C-terminal lysine variation, 208
C-trap, 26, 345
Cuyckens, Filip, ix, 405
Cyanide, 258–259
Cyanide-trapped reactive iminium ions, 350
Cyclotron frequency (f), 25
Cyclotronic motion, 24–25
CYP phenotyping, 130. See also Cytochrome P450 (CYP) entries
Cys disulfide bonds, 207
Cysteine (Cys), 208
Cysteine connectivities analysis of, 164
characterization of, 160
MS for determining, 161
Cysteine residues, degradants/impurities related to, 207
Cytochrome P450 (CYP) enzyme activities, 99
Cytochrome P450 (CYP) isoforms, identifying, 130
Data acquisition/analysis, 315
Data analysis, 376–378
Data analysis/interpretation, in metabolomics, 390
“Data independent” MS/MS strategy, 156
Data interrogation software, 107
Data interrogation routines, automating, 46
Data mining, post-run, 123
Data mining tools
for metabolite detection/identification, 256–258
for reactive metabolite screening, 345–351
use of, 256–258
Data processing, in metabolomics, 390
Data processing software tools, 121
DBS-LESA-MS approach, 232. See also
Dried blood spots (DBS) cards; LESA entries; Liquid extraction surface analysis (LESA); Mass spectrometry entries
DC voltages, 15. See also RF/DC potentials
“Dead time,” minimizing, 103
Dealkylation tool, 256
Deamidated peptides, detection of, 204–206
Deamidation
of asparagine residues, 167, 177, 204
minimizing, 212
of therapeutic proteins, 168–170
Deconvoluted ESI mass spectra, 374
Deconvoluted ESI-TOF mass spectra, 152, 154. See also Time-of-flight (TOF) entries
Deconvoluted mass spectra, 209
Deconvolution software, 406, 419
“Decoy” oligodeoxynucleotides, 326, 327
Defensins, 289
Deglycosylated heavy chain (HC) mAb fragments, intact mass analysis of, 154. See also mAb entries; Monoclonal antibodies (mAbs)
Degradant molecular weights, 198–199
Degradants, cysteine-related, 207
Degradant structures, 198, 200
Degradation, in peptide mapping, 211–213
Degradation pathways, 198, 199–201
Degradation products
characterization of, xii, 191
in small-molecule pharmaceuticals/biologics, 191–220
Dempster, J. J., 1
De novo sequencing, 369
Derivatization, 326–327
Derivatization techniques, 140–141
for distinguishing oxidation and glucuronidation sites, 141
Desalting, 365
Desaturation, 124
DESI imaging, 309–311. See also Desorption electrospray ionization (DESI)
MALDI imaging vs., 311
DESI technology, in many research areas, 308–309
Desorption electrospray ionization (DESI), 7, 8, 109, 306, 307–311, 329, 391. See also Electrospray ionization (ESI)
application to tissue distribution studies, 309
direct tissue analysis by, 309
in drug imaging studies, 309
image resolution of, 311
ionization efficiency of, 311
Desorption/ionization on porous silicon (DIOS), 11–12
Deuterium exchange information, 171
Development, intact protein analysis of, 284–288
Diclofenac glucuronide detection, 229, 230
Differential ion mobility (DMS), 27
Differential mass spectrometry (DMS), 42
Digested peptides, 292–294
Dillen, Lieve, ix, 403
“Dilute-and-shoot” technique, 58
Diluted solutions, electrospray analysis of, 4–5
Dimethyl sulfoxide (DMSO), in sample extraction, 134, 135
Direct analysis in real time (DART), 7, 8–9, 109
LESA vs., 229–231
Direct ESI technologies, 260. See also Electrospray ionization (ESI)
Direct injection/infusion (DI), 396
Direct MS analysis, without chromatographic separation, 108–109. See also Mass spectrometry entries
Direct online solid phase extraction (SPE), 103–104
Direct tissue analysis, 314
Discovery metabolite identification, 116
DiscoveryQuant™ Optimize software, 100–102
Discriminant analysis. See Principal component analysis (PCA) followed by discriminant analysis (DA) (PCA-DA)
Disease protein aggregation and, 210
RNAi and, 357
Disease assessment, peptide biomarkers in, 403
INDEX 433

Disulfide bonds
formation of, 160
mapping of, 207
Disulfide-containing peptides, identification of, 160
Disulfide-linked hinge dipeptide, mass spectra of, 163
Disulfide-linked peptide ions, 207
Disulfide-linked structures, 161
Disulfides, of IgG2, 161–162
Dithiothreitol (DTT), 211–212
Dopant radical cations, 7
Dose administration, in in vivo AME study, 131
“Dosed” samples, 119
Dried blood spots (DBS) cards, 231–232
Droplet pick-up mechanism, 8
Drug analysis, matrices for, 314
Drug candidate metabolites, rapid characterization of, 46
Drug candidates
bioactivation potential of, 340
concentrations of, 42
incubation of, 130
optimal pharmaceutical formulation of, 249
safety of, 116
therapeutic protein, 179
Drug compounds
first-pass metabolism of, 321, 322
metabolic stability of, 253
Drug concentration(s), 56
understanding, 60
Drug-derived material(s)
in biological samples, 133
maximum recovery of, 134
profiling of, 137, 138
Drug detection, from tissue surfaces, 312
Drug development. See also Drug
discovery/development
discovery stage of, 244
mass spectrometers in, 1–35
metabolite identification in, 115–147
therapeutic mAbs in, 177
Drug development programs,
immunological assays and, 403–404
Drug development studies, 117
Drug discovery, xi, 191, 244. See also Drug
metabolism discovery assays
ADME assays in, 97
mass spectrometers in, 1–35
metabolomics in, 388–390
MSI technologies for, 305–312
pace of, 258
Drug discovery/development
LESA applications in, 224–229
QWBA and, 221–222
role of drug distribution studies in, 304
Drug discovery process(es), 239
aspects of, 248–249
improving, 240
Drug distribution
LESA and whole-body, 225–227
whole-body images of, 309–311
Drug distribution studies, role in drug
discovery/development, 304
Drug–drug interaction (DDI) assays, 98
Drug–drug interactions (DDIs), 130
reducing, 39
Drug extraction, LLE for, 66–69
Drug imaging, sample preparation for, 313–315
Drug measurement, accuracy and precision of, 80
Drug metabolism, 27
qualitative/quantitative workflows in, 38–41
Drug metabolism and pharmacokinetic (DMPK) processes, 239
Drug metabolism discovery assays, 40
Drug metabolism studies, 14
mass spectrometric approaches/instruments in, 126
techniques in, 1
Drug metabolite identification, using mass defect filters, 45–48
Drug/metabolite imaging applications, imaging mass spectrometry for, 315–326
Drug metabolites
detection/identification of, 120–121
extraction of, 348–349
Drug physicochemical/biological properties, assessment of, 248–259
Drug potency, 40
Drug product degradation profiles, 191
Drug products/substances, purity of, 243
Drug purity, 243
upgrading, 245
Drug quantitation, 28, 74
interference with, 69–70
Drug retention, MALDI imaging and, 323
Drugs. See also Pharmaceutical entries; Therapeutic entries

- bringing to market, 37
- chromatographic separation of, 81–82
generated from metabolites, 82
- imaging in whole-body sections, 321–322
- imaging mass spectrometry for, 303–337
- instability of, 56, 133
- ionization efficiencies of, 127
- PEGylated, 164
- poor penetration of, 291
- qualitative analysis of, 414
- quantitative performance measures for, 40
- radiolabeled, 116
- sample denaturing for dissociating, 178

Drug safety, 191

Drug/metabolites

- application of MS to tissue distributions of, 329
- extraction of, 224–225

Drug SRM channel, 82. See also Selected reaction monitoring (SRM) entries

Drug stability, evaluating, 133

Drug targets, 259

- characterization of, 259
- Du, Yi, ix, 149
- Dual-column system, 59
- Dual ion sources, 250
- Dual spray source, 22
- Dummy transitions, 410

Duplex intensities, measured by MALDI-MS, 368

Duplex siRNA, 361–362. See also Small interfering RNAs (siRNAs)

- collision-induced dissociation of, 364, 369–370
- Duplex siRNA metabolites, characterizing, 373–375
- Duty cycles, 420–421
- enhanced, 421
- Dwell times, 17, 410, 411

Dynamic protein affinity selection mass spectrometry, 261

ECD experiments, 206. See also Electron capture dissociation (ECD)

EC oxidation, 5

Eicosanoid metabolites, 393

Eikel, Daniel, ix, 221

Electrochemical (EC) oxidation reaction, 5

Electron capture dissociation (ECD), 48, 176–177, 180, 206

Electron capture ionization, 6

Electron ionization dissociation (EID), 206

Electron transfer dissociation (ETD), 48, 176–177, 180, 206. See also ETD fragmentation on an ion trap, 177

Electron volts (eVs), 16

Electrophile-associated idiosyncratic drug reactions, 46

Electrophiles, 340

reacting GSH with, 340–343

Electrospray (ESI) selected reaction monitoring (SRM), 61–62

Electrospray analysis, 4

of diluted solutions, 4–5

Electrospray-assisted laser desorption/ionization (ELDI), 10

Electrospray HPLC-MS, MALDI-MS vs., 12–13. See also High-performance liquid chromatography-mass spectrometry (HPLC-MS)

Electrospray ionization (ESI), 1, 2–5, 240, 245. See also Desorption electrospray ionization (DESI); ESI entries

- introduction of, 277
- MALDI vs., 13
- matrix effects in, 59–60
- in positive and negative ion modes, 406–407
- siRNA chemistries and, 361

Electrospray ionization (ESI)-quadrupole (Q) mass spectrometry (MS), 151

Electrospray process, 3

Electrosprays

- flow rates for, 4
- pneumatically assisted, 2

Electrospray spectrum, for Enfuvirtide, 406

Electrostatically trapped ions, 38

Electrostatic mirror, 21

Elemental compositions, 246

Elements

- masses of, 347
- quantitation of, 13–14

ELISA hybridization technique, 367. See also Enzyme-linked immunosorbent assay (ELISA)

ELISA methods, 177

Elution, isocratic, 65

Elution behavior, of phospholipids, 62–65

Emary, William Bart, ix, 37
Embryo implantation, protein changes during, 284–285
Endogenous biomarker measurement assays, targeted metabolomic analyses vs., 393–394
Endogenous components, 133 effects of, 60
Endogenous peptides, intact, 294–296
Endonuclease degradation, 374–375
Enfuvirtide, 406, 412–413, 417
Enhanced duty cycle, 421
Enhanced product ion (EPI) scans, 20
Enzymatic digestion, 169, 412
Enzyme-linked immunosorbent assay (ELISA), 42, 43. See also ELISA entries
siRNAs and, 360
Epidermal growth factor receptor (EGFR), 318
Epimerization, 57, 73
ESCi sources, 245
ESI analysis, siRNAs and, 362. See also ESI entries
ESI efficiency effect on mobile phase, 75 siRNA hydrophobicity and, 364
ESI-ion trap, 151
ESI-ISF-CID method, in determining PEGylation site, 166–167. See also Collision-induced dissociation (CID); In-source fragmentation (ISF)
ESI mass spectra, deconvoluted, 374
ESI-MS, 210, 211. See also Mass spectrometry entries in PEGylated protein analysis, 167
ESI-MS isotopic distribution, 169
ESI-Orbitrap™ mass spectrometry (MS), 151
ESI-QTOF-MS, 151. See also Fast scanning Q-TOF MS/MS systems; Q-TOF MS; Quadrupole time-of-flight (Q-TOF); Time-of-flight (TOF) entries
ESI response derivatization, 407
ESI-TOF, 179. See also Time-of-flight (TOF) entries coupling with HPLC separation, 151 RP-HPLC combined with, 153
ESI-TOF mass spectra, 168
ESI-TOF MS, 151, 152
Ester groups, metabolites containing, 74
ETD fragmentation, 207. See also Electron transfer dissociation (ETD)

Ethyl acetate, 67, 68
E to Z isomerization, 73
Exonuclease degradation, 374–375
Experiments, resolving power of, 396
Extracted ion chromatograms (EICs), 40, 45, 79, 107, 122, 405 obtained with MEWs, 418
Extracted ion chromatogram (EIC) search, 160
Extraction columns, 58, 59
Extraction methodologies, 134
Extraction of dissolved ions under atmospheric pressure (EDIAP), 2
Extraction solvent, optimizing, 224
Ex vivo imaging technologies, 304
Fab region, 208. See also Fragment-antibody binding (Fab) mAb fragments
FAIMS devices, 80, 174. See also Field asymmetric waveform ion mobility entries
False positives, eliminating, 346
Fast-atom bombardment (FAB), 11
Fast-atom bombardment (FAB)-MS, 164
Fast flow injection analysis (FIA), 241. See also Flow injection analysis (FIA)
Fast-flow online extraction technique, 58
Fast Fourier transform (FT), 345
Fast scanning Q-TOF MS/MS systems, 253. See also Q-TOF MS; Time-of-flight (TOF) entries
Fast-scanning triple quadrupole instruments, 410
FDA MIST guidance, 116. See also Food and Drug Administration (FDA)
Fenn, John, 2
Fexofenadine, 225–227, 321–322
FIA-based method development approaches, 100
Fibrinogen clots, 57
FIEHNLIB library, 395
Field asymmetric waveform ion mobility (FAIMS), 27. See also FAIMS devices; High-field asymmetric waveform ion mobility spectrometry (FAIMS); Ion mobility spectrometry (IMS)
Field asymmetric waveform ion mobility mass spectrometry (FAIMS), 404
Fingerprinting profiling, 390, 391–392
Fingerprinting techniques, analytical approaches and, 391–392
First-in-human (FIH) studies, 81, 116, 120
use of samples from, 117–119
First-pass metabolism, of drug compounds, 321, 322
Fixatives, alternative, 280
Fixed mode, 16
Fixed tissue samples, 279–280
Flanagan, W. Michael, ix, 357
Flight time, of ions, 343
Flow injection analysis (FIA), 100, 102, 396.
See also Fast flow injection analysis (FIA)
Flow-injection RP-HPLC-MS technique, 170. See also Reversed-phase entries
Flow scintillation analyzer (FSA), 136, 137
Fluorescence enhancement/detection, 262, 263, 264
Fluticasone MS/MS fragmentation, 226. See also Tandem mass spectrometry (MS/MS)
Fluticasone study, 225
Food and Drug Administration (FDA), on PEGylated drugs, 164
Food and Drug Administration (FDA) guidance, 116
Forced degradation studies, 252
Formalin-fixed paraffin embedded (FFPE) samples, 293–294, 296
Formalin-fixed tissue, 280
Formic acid, analyte response and, 75
Fourier transform (FT), 345
Fourier transform–ion cyclotron resonance (FT-ICR), 24–25, 115, 344–345. See also FT-ICR entries
Fourier transform–ion cyclotron resonance (FTICR)-MS, 19. See also Mass spectrometry entries
Fourier transform–ion cyclotron resonance (FT-ICR)-MS mass spectrometers, 245, 295
Fourier transform mass spectrometry (FT-MS), 24–27. See also Mass spectrometry entries
ion detection and, 25
Fraction-collecting autosampling, 367–368
Fragment-antibody binding (Fab) mAb fragments, 152, 153. See also Fab region
Fragmentation of chemically modified oligonucleotides, 370
ion trap mass spectrometry and, 414 of peptides, 406–407
Fragmentation pathways, 193–194, 247
mapping, 248
Fragmentation patterns, 196
Fragmentation process, alternative, 28
Fragmentation spectra, 175
Fragment-crystallizable (Fc) mAb fragments, 152, 153. See also Monoclonal antibodies (mAbs)
Fragmented ions, intact protein ions and, 175
Fragmented peptides, 156
Fragmented protein ions, 156
Fragment identification, 208
Fragment ions, 193, 194, 206
of GSH conjugates, 340, 342
mass data on, 199
Free radicals, 340
Free thiol content, reducing, 207
Free thiols investigating, 179
mass spectrometric analysis of, 161
Frequency-sweep signal, 344–345
Fresh frozen tissue samples, 279
Frontal affinity chromatography, 261
FT-ICR instruments, ECD and, 176–177
FT-ICR mass analyzer, 344
FT-Orbitrap, 115
Full issue image analysis, 278
Full scan acquisition, bioanalysis with, 105–106
Full scan HRAM-based bioanalysis, advantages of, 106. See also High-resolution accurate mass (HRAM) systems
Full scan HRMS, 415. See also High-resolution mass spectrometry (HRMS)
Full scan MS analysis, 120. See also Mass spectrometry
Full scan MS data, 43
Full scan MS/MS experiments, 223
Full scan tandem mass spectrometry, with triple quadrupole instruments, 22
Full width at half maximum (FWHM), 38–39, 79, 416
Full width at half maximum units, 15
Gas chromatography (GC), 397
Gas chromatography–mass spectrometry (GC-MS), 391, 392, 394
Gas phase chemistry, 28
Gas-phase ionization process, 6, 7
Gas phase ions, 5
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas-phase synthesis, controlled</td>
<td>248</td>
</tr>
<tr>
<td>Gene expression, post-transcriptional control</td>
<td>357</td>
</tr>
<tr>
<td>Generic data acquisition modes</td>
<td>108</td>
</tr>
<tr>
<td>Genomics</td>
<td>388</td>
</tr>
<tr>
<td>Global precursor scan</td>
<td>28</td>
</tr>
<tr>
<td>GLP preclinical multi-day toxicity testing</td>
<td>42</td>
</tr>
<tr>
<td>GLP-toxicology studies</td>
<td>120</td>
</tr>
<tr>
<td>Glucocorticoid receptor (GR) agonists</td>
<td>225</td>
</tr>
<tr>
<td>skin penetration for</td>
<td>316–317</td>
</tr>
<tr>
<td>Glucuronidation sites, derivatization techniques for distinguishing</td>
<td>141</td>
</tr>
<tr>
<td>Glutamate (Glu), isoGlu residues from</td>
<td>206</td>
</tr>
<tr>
<td>Glutamine (Gln) residues</td>
<td>204</td>
</tr>
<tr>
<td>Glutathione (GSH), 258–259</td>
<td></td>
</tr>
<tr>
<td>reacting with electrophiles, 340–343</td>
<td></td>
</tr>
<tr>
<td>for trapping/quantitation of reactive metabolites</td>
<td>351</td>
</tr>
<tr>
<td>Glutathione (GSH) conjugates, 123</td>
<td></td>
</tr>
<tr>
<td>Glutathione (GSH) drug conjugates, 46–48</td>
<td></td>
</tr>
<tr>
<td>Glycan composition, correlation to attachment site</td>
<td>160</td>
</tr>
<tr>
<td>Glycans</td>
<td></td>
</tr>
<tr>
<td>biosynthesis of, 158</td>
<td></td>
</tr>
<tr>
<td>mass spectrometric fragmentation of, 159–160</td>
<td></td>
</tr>
<tr>
<td>released from glycoproteins/ glycopeptides, 158</td>
<td></td>
</tr>
<tr>
<td>Glycerophospholipids, 60, 61</td>
<td></td>
</tr>
<tr>
<td>classes of, 61</td>
<td></td>
</tr>
<tr>
<td>Glycoforms, quantitation of, 158–159</td>
<td></td>
</tr>
<tr>
<td>Glycopeptides, analysis of, 158</td>
<td></td>
</tr>
<tr>
<td>Glycoproteins, analysis of, 158</td>
<td></td>
</tr>
<tr>
<td>Glycosidic cleavage, 159–160</td>
<td></td>
</tr>
<tr>
<td>Glycosylation, 179</td>
<td></td>
</tr>
<tr>
<td>of immunoglobulin G, 172</td>
<td></td>
</tr>
<tr>
<td>Glycosylation analysis, 158–160</td>
<td></td>
</tr>
<tr>
<td>Gradient effect, removing, 127</td>
<td></td>
</tr>
<tr>
<td>Gradient methods, 250</td>
<td></td>
</tr>
<tr>
<td>GSH adducts, 347, 349, 350</td>
<td></td>
</tr>
<tr>
<td>Glutathione (GSH) entries detecting, 350</td>
<td></td>
</tr>
<tr>
<td>MS/MS survey scan for, 343</td>
<td></td>
</tr>
<tr>
<td>GSH conjugate detection, 340–343</td>
<td></td>
</tr>
<tr>
<td>GSH conjugates, 346–347</td>
<td></td>
</tr>
<tr>
<td>classes of, 343</td>
<td></td>
</tr>
<tr>
<td>fragment ions of, 340, 342</td>
<td></td>
</tr>
<tr>
<td>screening, 341, 346–347</td>
<td></td>
</tr>
<tr>
<td>GSH-metabolite detection, 229</td>
<td></td>
</tr>
<tr>
<td>GSH-related species, detecting, 258</td>
<td></td>
</tr>
<tr>
<td>Guanidine hydrochloride (GdnHCl), 211</td>
<td></td>
</tr>
<tr>
<td>“Hard” electrophiles, 340</td>
<td></td>
</tr>
<tr>
<td>Hard ionization techniques, 306</td>
<td></td>
</tr>
<tr>
<td>“Hard” nucleophiles, 340</td>
<td></td>
</tr>
<tr>
<td>Hardware ruggedness, 39–40</td>
<td></td>
</tr>
<tr>
<td>HC subunits, analyzing, 153</td>
<td></td>
</tr>
<tr>
<td>Heavy chain (HC) mAb fragments</td>
<td></td>
</tr>
<tr>
<td>H/D HPLC-MS exchange experiments, 195–196</td>
<td></td>
</tr>
<tr>
<td>“Hard” nucleophiles, 340</td>
<td></td>
</tr>
<tr>
<td>Heart, visualizing molecular morphology of chick</td>
<td>285–286</td>
</tr>
<tr>
<td>Heat-stabilized tissue, 279, 280</td>
<td></td>
</tr>
<tr>
<td>Heavy chain (HC) mAb fragments, 152, 153, 154, 155</td>
<td></td>
</tr>
<tr>
<td>Helion, Jack D., ix, 221</td>
<td></td>
</tr>
<tr>
<td>Henion, Jack D.</td>
<td></td>
</tr>
<tr>
<td>Hepatocyte incubations, 130</td>
<td></td>
</tr>
<tr>
<td>Hepatocytes, covalent binding in, 340</td>
<td></td>
</tr>
<tr>
<td>Hepatotoxicity, 339</td>
<td></td>
</tr>
<tr>
<td>Heterogeneous charge-transfer mechanism, 8</td>
<td></td>
</tr>
<tr>
<td>Hexane, 67</td>
<td></td>
</tr>
<tr>
<td>HFIP (1,1,1,3,3,3-hexafluoro-2-propanol), 366–367</td>
<td></td>
</tr>
<tr>
<td>HFIP/TEA ion-pairing system, 366–367</td>
<td></td>
</tr>
<tr>
<td>High-aqueous reversed-phase chromatography, phase collapse and, 75–76</td>
<td></td>
</tr>
<tr>
<td>High-energy CID, 24. “High-energy collision dissociation (CID)”</td>
<td></td>
</tr>
<tr>
<td>High energy collision (HCD) cell, 26</td>
<td></td>
</tr>
</tbody>
</table>
High-field asymmetric waveform ion mobility spectrometry (FAIMS), 80. See also Field asymmetric waveform ion mobility entries; Ion mobility spectrometry (IMS)

High mass ions, 21

High MW therapies, 43–44. See also Molecular weights (MWs)

High organic mobile phase, 77

High-performance liquid chromatography (HPLC), 102–103. See also HPLC entries

chromatographic separations and, 396–397

hyphenation of, 262

High-performance liquid chromatography–high-resolution mass spectrometry (HPLC-HRMS), xi, 44

High-performance liquid chromatography–mass spectrometry (HPLC-MS), 1, 2, 7, 115, 120, 150, 249, 404. See also APCI HPLC-MS applications; HPLC-MS entries

applications of, 39–41

coupled with in-line radioactive detector, 136

with high-resolution mass spectrometers, 105–108

in impurity/degradation product analysis, 213

in PEGylated protein analysis, 167

sensitivity and specificity of, 251

High-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS), xi, 55, 77, 109–110, 150, 404. See also HPLC-MS/MS entries

in determining PEGylation site, 166

importance of, 240

in impurity/degradation product analysis, 213

peptide mapping using, 211

with triple quadrupole mass spectrometers, 100–105

High-performance liquid chromatography (HPLC) with high-resolution accurate mass spectrometry (HPLC-HRAMS), 78–79. See also HPLC-HRAMS entries

ability to detect ions, 78

for drug quantitation, 79

HPLC-SRM vs., 78–79

platforms for, 78

High resolution (HR), product ion selection at, 420

High-resolution accurate mass spectrometers, 77–78

High-resolution accurate mass spectrometry (HRAMS), 56, 77–79

High-resolution accurate mass (HRAM) systems, for metabolomics, 397. See also LC-HRAM

High-resolution instruments, improvements in, 405

High-resolution mass spectrometry (HRMS), xi, 40, 41, 43, 106, 343–345, 405. See also HRMS entries

for biological sample analysis, 414–415

for biomarker discovery and compound assessment, 42

future trends in, 28

implementation of, 40

for new drug discovery applications, 37–54

for peptide quantification, 414–420

for regulated analysis, 41

role in quantitative bioanalysis, 421
technological advancements in, 37

High-resolution mass spectrometers (HRMSs), 49, 115

future trends in, 142

for metabolite detection, 121–123

for structural elucidation, 123–124

use of, 121–124

High-resolution MS experiments, 192. See also Mass spectrometry

High-resolution MS hardware, 106

High spatial/mass resolution system, 43

High-throughput assay methods, rapid implementation of, 249

High-throughput indirect mass spectrometric screening assays, 261

High-throughput screening (HTS) libraries, 239. See also HTS compound libraries

HILIC column technologies, 241. See also Hydrophilic interaction liquid chromatography (HILIC)

Hillenkamp, F., 11

HIV-fusion inhibitor, 412

HMDB library, 395

Homogeneous/heterogeneous reaction environments, coupling of MS to, 261

Honing, Maarten, ix, 239

Hopfgartner, Gérard, ix, 1
HPLC-atmospheric pressure chemical ionization (APCI)-MS, 140
HPLC-electrospray ionization (ESI)-MS, 127
HPLC ESI-MS, 366. See also Electrospray ionization (ESI); High-performance liquid chromatography–mass spectrometry (HPLC-MS)
HPLC-ESI-MS/MS, 140. See also High-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS)
HPLC-HRAMS bioanalytical methods, mass resolving power for, 78–79. See also High-performance liquid chromatography (HPLC) with high-resolution accurate mass spectrometry (HPLC-HRAMS)
HPLC-HRAMS parameters, evaluation of, 79
HPLC-MS analysis, 128. See also High-performance liquid chromatography–mass spectrometry (HPLC-MS)
HPLC-MS assays, 44
HPLC-MS\(^a\), 156. See also MS\(^b\) entries
HPLC-MS injections, 120
HPLC-MS methods, performance of, 59
HPLC-MS-based assay methods, 251. See also High-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) improved sensitivity of, 249
HPLC-MS/MS bioanalysis, 55–56, 75 lysophospholipids in, 68–69 quantitative, 85
HPLC-MS/MS bioanalytical methods, development of, 82
HPLC-MS/MS method development, 100
HPLC/MS/MS peptide mapping analysis, 204–206
HPLC-MS/MS quantification, of amyloid peptides, 413
HPLC-MS/radiometry, sample analysis using, 136–139
HPLC-MS response, 127
HPLC-MS techniques advances in, 142 in structural elucidation, 140
HPLC-NSI-MS, 127
HPLC separation, coupling ESI-TOF with, 151
HPLC separation methods, 116
HPLC-SRM bioanalytical methods, 77. See also Selected reaction monitoring (SRM) entries
HPLC-HRAMS vs., 78–79
HPLC systems, to remove gradient effect, 127
HPLC-UV–based purity assays, 252. See also Ultraviolet (UV) entries
HPLC-UV-MS, 245
HPLC-UV quantitative analysis, 251
HRAM mass spectrometers, for metabolomics, 397
HRAMS resolving power, 78–79. See also High-resolution accurate mass spectrometry (HRAMS)
HR-HPLC/MS/MS experiments, 196, 213. See also High-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS); High resolution entries
HR-LC/MS/MS experiments, 196. See also Liquid chromatography–tandem mass spectrometry (LC-MS/MS)
HRMS instruments, 121, 420, 421. See also High-resolution mass spectrometry (HRMS) for quantitative bioanalysis, 414
HRMS research, future trends in, 48–49
HRMS spectral data, transformation of raw, 419–420
HRMS SRM strategy, 420. See also Selected reaction monitoring (SRM) entries
HRMS systems, 38–39
HRMS technologies, 345–346, 405 advances in, 343, 351
HSH trapped adducts, rapid detection of, 349
HSQC NMR spectrum, 264. See also Nuclear magnetic resonance (NMR)
HTS compound libraries, 251–252. See also High-throughput screening (HTS) libraries
Human ADME studies, 132. See also Absorption, distribution, metabolism, and excretion (ADME) entries
Human cancer tissue, investigations of, 288
Human circulating metabolites, 128 profile of, 118
Human metabolism data, 117–118
Human metabolite testing, qualifications regarding, 116
Human metabolome consortium projects, 395
Human Metabolome Project, 395
Human Plasma Metabolome (HuPMet), 395
Human plasma phospholipids, techniques for monitoring, 63
Hybrid FT-ICR instruments, 345. See also Fourier transform–ion cyclotron resonance (FT-ICR)
Hybrid ion activation techniques, 370
Hybrid mass spectrometers, 19, 22, 27, 120
Hydrazine-based derivatives, 327
Hydrochlorothiazide, 232
Hydrodynamic instability, 4–5
Hydrogen deuterium (H/D) exchange (HDX), 140, 171–173, 180, 213 combined with MALDI-MS, 211, 260–261
Hydrogen/deuterium exchange experiments, 48
Hydrogen deuterium (H/D) exchange MS, 252. See also HDX MS entries
Hydrophilic interaction liquid chromatography (HILIC), 77, 241, 397
Hydropathy, ion-pairing reagents with increasing, 366–367. See also siRNA hydrophobicity
Hydroxy acid drugs, 70–71, 72 lactone metabolites of, 73
ICH: M3(R2) guidance, 116
ICR cell, 345. See also Fourier transform–ion cyclotron resonance (FT-ICR)
Idiosyncratic drug reactions, electrophile-associated, 46
IgG1 antibody, 208. See also Immunoglobulin entries
IgG2 disulfides, 161–162
IgG2 isoform composition, 162
IgG2 mAb, modified form of, 154–155. See also Monoclonal antibodies (mAbs)
Imaging, unconventional applications for, 323–326. See also Autoradiography imaging; DESI imaging; Drug/metabolite imaging application; Drug imaging; Magnetic resonance imaging (MRI); MALDI imaging entries; Mass spectrometry imaging entries; Semi-quantitative imaging technology; SIMS imaging; Tissue images
Imaging analysis, matrix applications for, 281
Imaging-capable MS platforms, 304
Imaging data, quantification of, 328–329
Imaging mass spectrometry (IMS). See also IMS entries; Ion mobility mass spectrometry (IMMS, IMS); Ion mobility spectrometry (IMS); Mass spectrometry imaging (MSI)
Immunoglobulin (Ig) molecules, 152 Immunological assays, drug development programs and, 403–404 Impurities characterization of, xii, 191 cysteine-related, 207 profiling and identification of, 251 in small-molecule pharmaceuticals/biologics, 191–220 Impurity ions, characterization of, 194–197 Impurity profiling, 243–245 of large biomolecules, 419 Impurity structures, 197 IMS instrumentation, 281–283. See also Imaging mass spectrometry (IMS); Ion mobility mass spectrometry (IMMS, IMS); Ion mobility spectrometry (IMS)
IMS technology, as a tool for in situ molecular assays, 296 IMS-TOF device, 48, 50. See also Time-of-flight (TOF) entries
Incubation/analysis, 107
Incubations, microsomal and hepatocyte, 130
Incurred sample applications, in method development, 80–82
Incurred sample extract, analysis of, 84
Incurred sample reanalysis (ISR), 56. See also ISR concept
Incurred samples, 56 for method testing, 83–84 pooled, 81
Induced degradation, 212
Inductively coupled plasma (ICP), 13–14
Inductively coupled plasma–atomic emission spectroscopy (ICP-AES), 325–326
Inductively coupled plasma mass spectrometry (ICP-MS), 1, 13–14
“Industrial validation,” 262
Information assembly, 82
Information-dependent analysis (IDA), 108
Information-dependent analysis (IDA) MS experiments, 223–224
Infrared (IR) lasers, 10
Infrared (IR) multiphoton dissociation (IRMPD), 176, 370
Ingelse, Benno, ix, 239
Inhaled tiotropium (ITP), spatial distribution of, 316
Initial metabolism assessment, strategy for, 130
Injection solvents, 85
In-line radioactive detector, HPLC-MS coupled with, 136
Inorganic ions, analysis of, 3
In situ digestion, 292
In-source decay (ISD), 284
in determining PEGylation site, 166
In-source fragmentation (ISF), 124
in determining PEGylation site, 166
In-source fragmentation spectra, 175
Instrumentation, 38–39, 115. See also Analytical instrumentation; FT-ICR instruments; High-resolution instruments; HRMS instruments; Hybrid FT-ICR instruments; Ion cyclotron resonance instrument; Ion mobility instruments; Ion trap instruments; LIT-FT-ICR instruments; MALDI-TOF instruments; Mass spectrometric approaches/instruments; MS instrumentation; NanoMate™ instruments; Orbital trapping instruments; Q-trap instrument; Quadrupole instruments; Quadrupole-time-of-flight (QqTOF) instruments; TOF instruments; TOF trapping instruments; Triple quadrupole (QqQ, QQQ) instruments
Instrumentation duty cycles, impact of, 420–421
Intact duplex detection, disadvantages of, 375
Intact endogenous peptides, 294–296
Intact glycoproteins, analysis of, 158
Intact lysozyme, bioanalysis of, 418–419
Intact mAb molecules, HPLC-MS analysis of, 153–154
Intact mass analysis, 151–155, 179
Intact protein analysis, applications of, 284–292
Intact protein ions, fragment ions and, 175
Intelligent data-dependent acquisition processes, 142
“Intelligent” data mining tools, in screening reactive metabolites, 339–355
Interference, 69–74
Intermediate formation, 258
Internal standards (IS, ISTD), 410 radiolabeled peptides as, 178
In vitro ADME assay automation, 109. See also Absorption, distribution, metabolism, and excretion (ADME) entries
In vitro ADME assays, mass spectrometry for, 97–113
In vitro ADME assay samples, analyses of, 99
In vitro ADME bioanalysis, 99–100, 102
In vitro ADME profiling, 110
In vitro ADME sample reduction, through cassette incubation/analysis, 104
In vitro ADME samples, analyses of, 103
In vitro ADME support, 100, 102–103, 106, 109
In vitro experiments, 97
In vitro incubations, 258
In vitro–in vivo correlations (IVIVCs), 97
In vitro metabolic stability assays, 107
In vitro metabolism profiles, comparing, 375–376
In vitro screening assays, 249
In vitro studies, with radiolabeled test article, 130
In vivo AME studies, dose administration and sample collection in, 131
In vivo cassette dosing, 40
In vivo DDI potentials, 99
In vivo fixed tissue, 279
In vivo imaging technologies, 304
In vivo MRI, 326. See also Magnetic resonance imaging (MRI)
In vivo studies, with radiolabeled test article, 130–136
Ion accumulation, 18
Ion chromatograms, 348
Ion cyclotron frequency (f), 344–345
Ion cyclotron resonance instrument, 25
Ion cyclotron resonance mass systems, 2
Ion detection, 14–15, 25
Ion/electron molecule reactions, 9
Ion evaporation, 5
Ion evaporation model (IEM), 4, 5
Ion exchange (IEX) chromatography, 162, 171
Ion filtering devices, 48
Ion-flight-time equation, 343
Ionic compounds, 11
Ion/ion reactions, 370
Ionization, of peptides, 406–407
Ionization efficiency, 241
of analytes, 225
of DESI, 311
enhancement of, 407
reduction in, 362
Ionization methods, alternative, 28
Ionization process, 7
Ionization suppression, 108–109
Ionization techniques, 1, 2–14, 21
improvements in, 245
variety in, 252
Ionization technologies, future trends in, 142
Ion mobility, 28
differences in, 80
Ion mobility instruments, 174, 282
Ion mobility mass spectrometry (IMMS, IMS), 27, 173–174, 180, 404. See also IMS entries; Ion mobility spectrometry (IMS)
advantages of, 174
HDX studies and, 173
Ion mobility separation (IMS), 48, 50. See also IMS entries
Ion mobility separation, 173–174, 283
Ion mobility spectrometry (IMS), 173–174, 180. See also IMS entries
coupled with MS instruments, 173–174
Ion motion, 14
in quadrupoles, 14
Ion-pairing (IP) reagents, 362
with increasing hydrophobicity, 366–367
Ion-pair reversed-phase HPLC (IP-RP-HPLC), 366
Ions, electrostatically trapped, 38
Ion separation, 27
Ion signal intensity, 170
Ionspray, 2. See also Electrospray entries
Ion suppression, 60
Ion trap instruments, 413–414. See also Orbitrap™ entries; Q-trap instrument
Ion trap mass spectrometers, 255. See also IT mass spectrometers
Ion trap mass spectrometry, 413–414
Ion traps (ITs), 17–20, 115. See also Linear ion traps (LITs); Quadrupole ion trap entries; Two-dimensional (2D) ion traps (LTOs)
linear quadrupole, 38
mass ranges of, 18
Ion trap technology, published reports on, 414
IS addition, 69
Isoaspartate (isoAsp, iso-Asp) amount in proteins, 167–168
Asp products vs., 177
Isoaspartate (isoAsp) residues, 206
Isobaric metabolites
identification of, 123–124
interference from, 71–73
Isobaric phase 2 metabolites, 124, 125
Isobaric phosphate prodrugs, 73
Isobaric structures, differentiating between, 159
Isocratic elution, 65
Isoelectric focusing (IEF), 204
Isoglutamate (isoGlu) residues, 206
Isomeric metabolites
interference from, 71, 72
Isopropyl alcohol elution, 63–65
Isotope envelopes, 375
Isotope pattern filter (IPF), 350–351
Isotopic metabolites, interference from, 70–71, 72, 73
Isotopic peaks, 416
Isotopic ratios, 27–28
ISR concept, 81. See also Incurred sample reanalysis (ISR)
ISTD peptides/proteins, 179
IT mass spectrometers, 120–121. See also Ion trap entries
IT-TOF hybrid mass spectrometer, 344. See also Time-of-flight (TOF) entries

Jemal, Mohammed, ix, 55
Jetstream™ spray device, 41

Karas, M., 11
Ketone metabolites, 73
Kidney abscesses, examined by IMS, 291
“Kinetic” assays, 250–251
Kinetic energy, in TOF analysis, 20–21
“Kinetic method,” 248
Kits, absolute metabolite quantitation, 393
Korfmacher, Walter A., ix, xii
Kretschmer algorithm, 378

Label/tracer requirements, 305
Lactone group, 56–57
Lactone metabolites, of hydroxy acid drugs, 73
Lactones, chromatographic separation interference due to, 70–71, 72
Ladder sequence ions, 407
Large biomolecules, impurity profiling of, 419
Large peptides, direct analysis of, 158
Larger molecule therapies, analysis of, 326
Larger proteins, quantitative workflows for, 404
Laser ablation electrospray ionization (LAESI), 10–11, 109
Laser beams, to probe tissue, 43
Laser desorption, 10
Laser diode array thermal desorption (LDTD), 109
Laser-induced dissociation (LID) MS/MS, 24
Laser ionization, 11
Lasers, 282–283
LC-ARC system, 139. See also Liquid chromatography entries
LC column effect, 66
LC-ESI-MS, 279. See also Electrospray ionization (ESI); Mass spectrometry entries
LC-fluorescence, 263
LC-HRAM, 106. See also High-resolution accurate mass (HRAM) systems
LC mobile/stationary phases, screening of, 83
LC-MS chromatograms, 263. See also Liquid chromatography–mass spectrometry (LC-MS)
LC-MS data, 118
fingerprinting analysis of, 391, 392
LC-MS/MS bioanalysis, avoiding pitfalls in, 56–80. See also Liquid chromatography–tandem mass spectrometry (LC-MS/MS)
LC-MS/MS ion chromatogram, 346
LC-MS/MS methods, in analyses of small molecules from biological matrices, 372
LC-MS/MS platforms, 303
LC-MS/MS quantitation data, discrepancies in, 329
LC-MS/MS screening, development of, 248
LC-MS peptide maps, mirror plots of, 157
LC-MS platforms, 243
LC-MS response, influence of oligonucleotide sequence/chemical modifications on, 362–364
LC-MS spectra, 124
LC-MS (FT) spectra, 125. See also Fourier transform mass spectrometry (FT-MS)
LC-MS techniques, siRNA-related, 366–368
LC-MS total ion chromatogram, 193
LC platforms, 243
LC-Q-TOF MS/MS, 242. See also Fast scanning Q-TOF MS/MS systems; Time-of-flight (TOF) entries
LC-SRM, 106. See also Selected reaction monitoring (SRM) entries
LC-SRM technique, 77
LC subunits, analyzing, 153
LC/UV chromatograms, 199. See also Ultraviolet (UV) entries
Lead compound, discovery of, 239–240
Lead optimization (LO) compounds, 243
Lean thinking initiative, 240
Lens protein distribution, 287–288
LESA applications. See also Liquid extraction surface analysis (LESA) additional, 229–233
in drug discovery/development, 224–229
LESA-LC approach, 233. See also Liquid chromatography entries
LESA-LC-MS approach, 233. See also Liquid chromatography–mass spectrometry (LC-MS)

LESA-MS profiling, 225. See also Mass spectrometry entries

LESA-MS-SRM, 227, 228. See also Selected reaction monitoring (SRM) entries

LESA sampling process, 227–229

LESA schematic, 223

LESA system operation, 233

Libraries, web-based, 395, 396

Light chain (LC) mAb fragments, 152, 153, 155. See also Monoclonal antibodies (mAbs)

“Limited” throughput issue, solutions to, 245

Limit of quantification (LOQ), 178. See also Lower limit of quantitation (LLOQ) of siRNAs, 362

Linear ion traps (LITs), 1–2, 18–19, 120, 344, 405. See also LIT entries

Linear quadrupole ion trap, 38, 120

Lipid analysis, 229

Lipid nanoparticles (LNPs), 44–45

Lipinski “rule of five,” 246

Lipophilicity, assessment of, 249–250

Liquid chromatography (LC), coupled with triple quadrupole mass spectrometer, 100. See also LC entries

Liquid chromatography–high-resolution mass spectrometry (LC-HRMS), in screening reactive metabolites, 339–355

Liquid chromatography–mass spectrometry (LC-MS), 242, 305, 391, 392, 394. See also LC-MS entries

quadrupoles used for, 15

of siRNAs, 362

Liquid chromatography (LC) separation, 170

Liquid chromatography–tandem mass spectrometry (LC-MS/MS). See also LC-MS/MS entries

approaches for reactive metabolite screening, 340–343

for quantification of therapeutic mAbs, 178

Liquid extraction probe, 9

Liquid extraction surface analysis (LESA), xii, 221–238. See also LESA entries

in automatic analyte extraction, 231–232

DART vs., 229–231

glucocorticoid receptor agonists and, 225

for identifying pesticides, 229

interest in, 234

outlook and future development of, 233–234

shotgun lipidomic approaches and, 229

spatial resolution of, 224

whole-body drug distribution and, 225–227

Liquid extraction surface analysis mass spectrometry (LESA-MS), 222. See also LESA-MS entries

advantages and limitations of, 234–235

applications of, 234

applied to toxicological samples, 231

for screening reactive metabolites, 339–355

for identifying pesticides, 229

interest in, 234

outlook and future development of, 233–234

spatial resolution of, 224

whole-body drug distribution and, 225–227

Liquid junction, 224

Liquid–liquid extraction (LLE), 57, 58, 84, 134, 366. See also LLE entries

for drug and metabolite extraction, 66–69

for identifying pesticides, 229

interest in, 234

outlook and future development of, 233–234

spatial resolution of, 224

whole-body drug distribution and, 225–227

LILOQ chromatograms, for Enfuvirtide, 417. See also Lower limit of quantitation (LLOQ)

LILOQ peak areas, 410, 411

Locked nucleic acids (LNAs), 361

Lock masses, 22

LockSpray, 22

Loss of adduct, 159–160

Lower limit of quantitation (LLOQ), 38, 40, 41, 66, 78, 82, 99, 408–412. See also LLOQ chromatograms

Low mass ions, 21
Low molecular weight compounds (LMWCs), 1, 12. See also Molecular weights (MWs) analysis of, 13

LTO-FT, 44. See also Fourier transform mass spectrometry (FT-MS); Two-dimensional (2D) ion traps (LTQs)

LTO-Orbitrap, 26–27

LTO-Orbitrap mass spectrometers, 121, 347 advantages of, 193

Lung tumor tissue, protein profiles from, 288

LX-0722, 122

Lyso-PC, in LLE plasma extracts, 67–68

Lyso-PC phospholipid class, 61, 62. See also Phosphatidylcholine (PC) phospholipid class in HPLC-MS/MS bioanalysis, 68–69

Lyso-PC species, 68

Lysoosphingolipids, 61, 62, 65

Lysozyme, bioanalysis of, 418–419

M + 1/M + 2 isotopic contributions, 73

M10 metabolite, 124

Ma, Shuguang, x, 339

mAb fragments, 151–152. See also Monoclonal antibodies (mAbs)
mAb ISTD, 178

mAb quantification methods, improvements in, 178

mAb therapeutic proteins, structure of, 153

Macromolecule exclusion, 59

Magnetic resonance imaging (MRI), 304–305. See also In vivo MRI; MRI contrast agent

Magnetron motion, 25

MALDI analyses, 281, 282–283. See also Matrix-assisted laser desorption/ionization (MALDI)

MALDI images, 319, 320 as complementing autoradiography, 323 in whole-body sections, 321–322

MALDI imaging, 233, 310, 329 derivatization for, 327 DESI imaging vs., 311 development of, 326 future developments in, 326–329 unconventional applications for, 323–326

MALDI imaging analysis, 323

MALDI imaging experiment, 227, 229

MALDI ion production process, 23

MALDI lasers, 312

MALDI mass spectrometric imaging, 306

MALDI mass spectrometry, H/D exchange and, 260–261. See also MALDI MS entries; MALDI-TOF MS; Matrix-assisted laser desorption/ionization–mass spectrometry (MALDI-MS)

MALDI matrices, 11, 12, 280

MALDI-MS/MS imaging, of astemizole, 316, 317. See also MALDI mass spectrometry; Matrix-assisted laser desorption/ionization–mass spectrometry (MALDI-MS); Tandem mass spectrometry (MS/MS)

MALDI MS platform, 304

MALDI spectra, 159

MALDI/SRM, 109. See also Selected reaction monitoring (SRM) entries

MALDI-TOF instruments, 21, 283, 312–313. See also Time-of-flight (TOF) entries

MALDI-TOF MS in characterizing PEGylated proteins, 165 in detecting siRNA duplexes, 362

MALDI-TOF reISD MS, 166. See also Reflectron entries

Mammalian gene expression, altering, 357

Mammalian systems, investigating for neuropeptide distribution, 295

Mass accuracy data, 196–197

Mass analyzers, 14–28, 115, 240. See also FT-ICR mass analyzer choosing, 253 coupled to MALDI sources, 281 for MS analysis, 26 quadrupole, 14, 15, 16–17, 407–408 TOF, 11, 13, 22, 23, 344 variety in, 252

Mass-based data mining tools, for reactive metabolite screening, 345–351

Mass-based pattern isotope filter, 351

Mass chromatograms, 105

Mass data, on fragment ions, 199

Mass defect, 347

Mass defect filtering (MDF), 46, 121. See also MDF entries

Mass defect filters (MDFs), 256, 347–348 drug metabolite identification using, 45–48

Mass determination, effects on, 22

Mass extraction window (MEW), 416–419 centroid mode and, 420 effect of, 79

Mass ladders, 368–369

Mass measurements, metabolite differentiation and, 375, 376
Mass-MetaSite, 108
Mass reflectron, 21
Mass resolution, 25, 46
Mass resolving power
for HPLC-HRAMS bioanalytical methods, 78–79
influence on quantification, 416–419
Mass-selective axial instability mode, 17–18
Mass-selective ejection, 17
Mass spectral interference, 56
Mass spectrometers (MSs), 241
in drug discovery/development, 1–35
for metabolite profiling studies, 121
for metabolomics experiments, 397
miniaturization of, 28
Mass spectrometric approaches, to molecular structure elucidation, 246–247
Mass spectrometric approaches/instruments, in drug metabolism studies, 126
Mass spectrometric detection, enhancing, 77–80
Mass spectrometric imaging (MSI) applications, 13
Mass spectrometric interference, 69–73, 81
Mass spectrometric monitoring, of phospholipids, 61–62
Mass spectrometric (MS) techniques for biologics applications, 213
future development of, 170–179
success of, 124
Mass spectrometry (MS), 43. See also APCI-MS
ADME assays and, 99–100
advantages of, 303
analyzing siRNAs by, 364
application to drugs/metabolite distribution in tissues, 329
of biological drugs, proteins, and peptides, 149–190
broad application of, 142
capabilities of, 221–222
in characterizing PEGylated therapeutic proteins, 164–165
coupled to (semi)-preparative LC/SFC, 242–243
coupling of homogeneous/heterogeneous reaction environments to, 261
for cysteine connectivity determination, 161
future trends in, 28
as the generic platform for model compounds, 262
metabolite identification using, 115–147
for protein quantification, 177
in PTM characterization, 167
quantitative analysis of peptides using, 403–425
for quantitative in vitro ADME assays, 97–113
role in chemical structure elucidation, 245–248
role in pharmaceutical R&D, 303
role in protein structure investigation, 179
role of, 240
of siRNAs, 357–385
siRNA sequencing by, 368–372
in therapeutic protein discovery/development, 149–150
utility of, xi–xii
Mass spectrometry (MS) applications in biological drug discovery/development, 150
supporting medicinal chemistry sciences, 239–275
Mass spectrometry–based techniques, for ambient surface profiling, 221–238
Mass spectrometry imaging (MSI), xii, 1. See also Imaging mass spectrometry (IMS)
sample preparation for, 313–315
use of, 303–304
Mass spectrometry imaging (MSI) techniques, 221–222
Mass spectrometry imaging (MSI) technologies, for drug discovery, 305–312
Mass spectrometry metabolomics, 387–401
chromatographic/nonchromatographic solutions for, 396–397
Mass spectrometry sensitivity, lack of, 362
Mass spectrum (spectra), 15. See also MALDI spectra
deconvoluted, 209
generating, 18, 21
Matrix (matrices). See also Biological matrices; Biomatrices; MALDI matrices
applying to tissue surfaces, 314–315
deposited on tissues, 281
for drug analysis, 314
used for matrix-assisted laser desorption/ionization, 12
used in MALDI-MS analysis, 368
Matrix applications, 280–281
Matrix-assisted laser desorption/ionization (MALDI), 1, 11–13, 391, 394. See also MALDI entries
development of, 109, 312
ESI vs., 13
introduction of, 277
protein identification and, 22
sample preparation for, 365–366
SIMS vs., 312
siRNA chemistries and, 361
Matrix-assisted laser desorption/ionization ESI (MALDIESI), 10. See also Electrospray ionization (ESI)
Matrix-assisted laser desorption/ionization–mass spectrometry (MALDI-MS), 12–13, 192. See also MALDI mass spectrometry; MALDI-MS entries
acid hydrolysis and, 369
H/D exchange combined with, 211
of siRNA, 368
Matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF), 13, 151, 179. See also MALDI-TOF entries
in optimizing PEGylation reaction, 165–166
Matrix effects, 59–69
assessment of, 60
plasma phospholipid association with, 60–65
Matrix-free laser desorption/ionization, 11
Matrix interference peaks, 417
Matrix parameters, 280–281
Matrix/solvent system, analyte-appropriate, 314
Matthieu equations, 14, 17
MDF-based acquisition, 123. See also Mass defect filtering (MDF)
MDF templates, 347
Medicinal chemistry
in drug discovery process, 239
new methodologies in, 241
Medicinal chemistry support, 239
Medicinal chemistry sciences, MS applications supporting, 239–275
Mehl, John, x, 149
Metabolic activity samples, quantitation of, 106
Metabolic clearance, rapid, 258
Metabolic hotspot screening, 253–258
Metabolic pathways, 253
Metabolic profile data, 49
Metabolic profiles, in animals, 130
Metabolic stability assays, 97, 106, 253–254, 255
Metabolism
role in drug safety profile, 116
systematic evaluation of, 55
Metabolism assays, 98. See also Metabolic stability assays
Metabolite characterization, 115
Metabolite conversion, 74
Metabolite coverage, understanding, 129
Metabolite detection, 132, 139–140
HRMS for, 121–123
Metabolite detection approaches, 120–121
Metabolite detection/identification, data mining tools for, 256–258
Metabolite differentiation, mass measurements and, 375, 376
Metabolite exposure level, 45
Metabolite exposures, estimating, 119
Metabolite extraction, LLE for, 66–69
Metabolite formation, 124
Metabolite identification, xi–xii, 48, 106. See also Drug metabolite identification;
Metabolite profiling/identification
future trends in, 141–142
siRNA chemistries and, 361
using mass spectrometry, 115–147
Metabolite imaging applications, imaging mass spectrometry for, 315–326
Metabolite interference, 73, 80–81
due to conversion to parent drug, 73–74
Metabolite mass spectrometric interference, 69–73
MetabolitePilot™, 108
Metabolite/prodrug interference, 72
Metabolite profiles, 139
Metabolite profiling, 121
categories of, 116–117
outline of studies conducted during drug development, 117
radiolabeled test articles for, 139
in studies without radiolabeled test article, 117–129
in studies with radiolabeled test article, 130–141
Metabolite profiling/identification, 115–116
Metabolite quantitation, 73
from nonradiolabeled studies, 124–129
Metabolite quantitation kit, 393
Metabolites
 characterization of, 46
 chemically reactive, 339
 containing ester groups, 74
 drug generation from, 70, 80, 82
 imaging in whole-body sections, 321–322
 imaging mass spectrometry for, 303–337
 in silico prediction of, 256
 instability of, 56, 133
 ionization efficiencies of, 127
 MS in-source conversion of, 80
 qualitative analysis of, 414
 unstable, 133
Metabolite screening
 using scanning MS, 255–256
 using targeted MS, 254–255
Metabolite screening studies, design of, 254
Metabolite sequences, identified, 377
Metabolites in safety testing (MIST), 116
Metabolite SRM table, 84. See also Selected reaction monitoring (SRM) entries
Metabolite steady state, 119
Metabolome, defined, 387–388
Metabolome measurement, 388
 analytical approaches for, 390–395, 396
 main approaches to, 390
 MS techniques for, 390–391
Metabolome studies, procedure for, 389
Metabolomic biomarkers, 42
Metabolomic experiments, steps in, 389–390
Metabolomic libraries, 395, 396
Metabolomic profiling, 388
Metabolomics, xii, 388
 defined, 387
 in drug discovery, 388–390
 future trends in, 397–398
 mass spectrometry for, 387–401
 MS instrumentation for, 397
Metabolomic studies, success of, 390
MetaboLynx XS with MassFragment™, 108
Metabonomics, 387
Methanobenzylguanidine (MBG), intratumor biodistribution of, 307
Methanol, 74
 in sample extraction, 134, 135
Methionine (Met) oxidation, 206–207, 212
Methionine (Met) residues, oxidation of, 170
Method design, 74
Method development
 incurred sample applications in, 80–82
 steps in, 83–85
Method validation, 84–85
2-Methyl-1-butanol, 67
Methyl ether group, 73
Methyl-tert-butyl ether (MTBE), 67, 68, 69
METLIN library, 395
Met sulfoxide, 207. See also Methionine (Met) entries
Microchannel plate (MCP) electron multipliers, 21–22
Microplate scintillation counter, 137, 138
Microplate scintillation counting (MSC), 136
Microsomal incubations, 130
Microsomal metabolites, profiling of, 121–123
Microspotted arrays, for imaging, 281
Middle-down experiments, 176
Mid-infrared (mid-IR) lasers, 10
Minimally fixed tissue samples, 279
Minimal resolving power, 419
Mirror plots, 157
MIST-related risks, 116
MMCD library, 395
Mobile phase screening, 74–75
Modified chromatographic conditions, 81–82
Modified siRNAs, quantification of, 373.
 See also Small interfering RNAs (siRNAs)
Modulated RF voltage, 22. See also Radio frequency (RF)
Molecular constitution, 252–253
Molecular weights (MWs), 192. See also
 High MW therapies; MW information medicines with high, 43
 of peptide degradants, 205
Mometasone furoate, 193–194, 197
Monoclonal antibodies (mAbs), 151. See also mAb entries
 intact mass analysis of, 151–152
 quantitative analysis of, 177–179
 therapeutic, 149
 top-down MS for, 176
 trisulfide modifications in, 208
 truncation sites in, 208–210
Monolithic capillary columns, 367
Monolithic columns, 59
MRI contrast agent, distribution of, 325–326. See also Magnetic resonance imaging (MRI)

MS	extsuperscript{2} trap CID, 18, 19–20. See also Collision-induced dissociation (CID); Mass spectrometry entries

MS acquisition schemes, 28

MS analysis
 of free thiols, 161
 of IgG2 disulfides, 161–162
 of peptides, 406

MS-based quantification, of peptides, 404

MS-based quantitation, 109–110

MS-based technologies, potential of, 259

MS data, evaluating, 252

MS-directed purification, 242

MS	extsuperscript{b} experiments, 348

MS	extsuperscript{b} methodology, 371–372

MS	extsuperscript{b} mode, 108, 255–256

MS hardware, high-resolution, 106

MS (HRAM), bioanalysis using, 106. See also High-resolution accurate mass (HRAM) systems

MSI absolute quantitative data, 233–234. See also Mass spectrometry imaging (MSI) entries

MSI methods, advantages of, 234

MS instrumentation, 312–313
 advancement in, 180
 IMS coupled with, 173–174
 for metabolomics, 397

MS methodologies, potential of, 248

MS-MS (IT) spectra, 125. See also Tandem mass spectrometry (MS/MS)

MS/MS acquisition schemes, 28

MS/MS analysis, advantages of, 313

MS/MS data, 121–123

MS/MS fragmentation, 253

siRNAs and, 364

MS/MS fragmentation pattern, 315

MS/MS imaging, of astemizole, 316, 317

MS/MS in space, 16

MS/MS spectrum (spectra), 20, 123, 124, 247

MS/MS survey scans, for GSH adducts, 343

MS	extsuperscript{d} data, 121

MS	extsuperscript{d} experiments, 120

MS response, 127

MS techniques
 for metabolome measurement, 391
 recent developments in, 255

MS technology, xii

MTBE LLE extracts, 68. See also Liquid–liquid extraction (LLE); Methyl-tert-butyl ether (MTBE)

Multichannel electrospray inlets, 245

Multichannel plate detector (MCP), 21

Multiple chromatographic systems, non-target metabolomic approaches utilizing, 394

Multiple MDF templates, 347

Multiplexed HPLC-MS/MS system, 103. See also High-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS)

Multiplexed LC, 102. See also Liquid chromatography entries

MultiQuant	extsuperscript{TM} software, 107

Multistage MS systems, 246. See also Mass spectrometry entries

MW information, for degradants, 198–199. See also Molecular weights (MWs)

Mycobacterium tuberculosis study, 291–292

Nanoelectrospray (nESI), 4. See also Nano-ESI entries; Nanospray ionization (NSI) technique; nESI chip

Nanoelectrospray (nESI) emitters, 222–223

Nanoelectrospray LC-MS, 367. See also Liquid chromatography–mass spectrometry (LC-MS)

Nanoelectrospray normalization techniques, 124–127

Nano-ESI interfaces, 245. See also Nanoelectrospray (nESI) entries

Nano-ESI-QqTOF, 369. See also Time-of-flight (TOF) entries

NanoMate	extsuperscript{TM} instruments, 108, 118, 137

NanoMate	extsuperscript{TM} system, 9, 10

Nanospray ionization (NSI) technique, 127. See also Nanoelectrospray entries

Nd:YAG laser, 11

Nd:YVO	extsubscript{4} laser, 282–283

Nebulizer probe, 6

Negative ESI, 83. See also Electrospray ionization (ESI)

Negative ESI response, 75

Negative ion mode, 410, 412–413

Negative precursor ion scan technique, 62

nESI chip, 234. See also Nanoelectrospray (nESI) entries

Neuropeptides, analysis of, 295

Neutral loss (NL) scanning, 16, 17, 120, 346–347
Neutral matrices, 368
New biological entities (NBEs), 239
synthesis and identification of, 240–248
New chemical entities (NCEs), 239
synthesis and identification of, 240–248
New drug discovery applications, high-resolution mass spectrometry for, 37–54
New molecular entities (NMEs), 97, 99
New synthesis approaches, implementation of, 241
NIST (National Institute of Standards and Technology) library, 395
Nitrogen lasers, 11, 282
N-linked glycans, 158, 160
NMR technologies, 259–260. See also Nuclear magnetic resonance (NMR)
Noise reduction algorithm (NoRA), background subtraction with, 348–350
Nonchromatographic approaches, to mass spectrometry metabolomics, 396–397
Nonradiolabeled studies, metabolite quantitation from, 124–129
Nonsteroid glucocorticoid receptor (GR) agonists, skin penetration for, 316–317
Nontargeted metabolomic analytical techniques, 394–395, 396
Nontargeted metabolomic approaches, utilizing multiple chromatographic systems, 394
Nontargeted metabolomics, 390, 394–395, 396
annotation in, 395, 396
Normalization techniques, 124–127
“No sample wasted” approach, 136–137
N-terminal acetylation, 412
Nuclear magnetic resonance (NMR), 241–242, 391, 392, 394. See also NMR technologies
Nuclease cleavage, 375
Nuclease protection, 374
Nucleobase modifications, incorporating into siRNAs, 360
Nucleophiles, 340
Offline plasma extraction, 57–58
Olanzapine, 321
Oligonucleotide desalting technique, 365
Oligonucleotide extraction, 373
Oligonucleotide sequences, influence on LC-MS response, 362–364
Oligonucleotide sequencing, 368, 370 by MS/MS, 369, 378 rapid, 378
Oligonucleotide sequencing software, 376
O-linked glycans, 158, 160 “-omics” cascade, 387, 388
Oncology drugs, tumor penetration by, 318–319
One-column system, 59
Online extraction column, 58
Online extraction HPLC-MS systems, 59. See also High-performance liquid chromatography–mass spectrometry (HPLC-MS)
Online plasma extraction, 58–59
Open-access analysis, 240–242
Oppenheimer, Stacey R., x, 303
Optimal cutting temperature (OCT), 313–314
Optimized RP-HPLC, combined with ESI-TOF, 153. See also Reversed-phase (RP) entries; RP-HPLC-MS
Optimize software, 100–102
Orbital trapping instruments. See also Ion trap entries for quantitative bioanalysis, 414
TOF trapping instruments vs., 418
Orbitrap™, 48
Orbitrap™ instruments, 421
Orbitrap™ mass spectrometers, 38, 255, 345
Orbitrap™ mass systems, 2, 19, 26–27
Orbitrap™ resolution, 26
Orbitrap™ technology, 78, 106
Organic solvents effect of, 69 in sample extraction, 133–134 used in LLE, 67
Organisms, biochemical state of, 387 Organs/tissues, imaging drugs and metabolites in, 315–320
Orthogonal acceleration TOF (oaTOF), 421. See also Time-of-flight (TOF) entries
Orthogonal chromatography, 81
Orthogonal gas phase separation, 48
Orthogonal MALDI (o-MALDI) TOF, 23. See also MALDI entries; Matrix-assisted laser desorption/ionization (MALDI); Time-of-flight (TOF) entries
Orthogonal techniques, 403, 404
Oxidation
from analysis of mAb molecules, 153–154
of methionine residues, 170
as a modification in proteins, 206–207
in therapeutic proteins, 170
Oxidation sites, derivatization techniques
for distinguishing, 141
Oxidative deamination, 73
Oxidative defluorination, 124
Oxidative degradation pathway, 199–201
Pancreatic cancer tissue microarray, 293
IMS analysis of, 294
Parallel artificial membrane permeability
assay (PAMPA), 106, 107, 250
Parent drugs, metabolite interference due
to, 73–74
Parent/fragment information, 46
Parent/metabolite quantitation, 108
Parkinson brain biomarkers, 294
Paul’s trap, 26
PC species, 68. See also Phosphatidylcholine
(Phosphatidylcholine) (PC) phospholipid class
Peak areas, 410, 411
Peak picking algorithm, 351
PEG-SOD, 165. See also Poly(ethylene
glycol) (PEG)
PEGylated protein therapeutics, 179
PEGylated therapeutic proteins, 164
PEGylation analysis, 164–167
PEGylation site, determining, 166
Penner, Natalia, x, 115
Penning’s trap, 26
Peptide analysis, 13, 292–294, 294–296
mass-spectrometric, 149–190
quantitative, xii, 403
quantitative mass-spectrometric,
403–425
using full scan HRMS, 415
Peptide biomarkers, in disease assessment,
403
Peptide degradants, molecular weights of,
205
Peptide drug candidates, quantitative
methods for, 412
Peptide fragmentation, 412
Peptide fragments, 295–296
Peptide mapping, 155–158, 174
artificial degradation in, 211–213
drawbacks of, 155–156
improving, 156
steps in, 155
therapeutic protein characterization and,
155
using HPLC-MS/MS, 211
Peptide mapping approach, 210
Peptide mapping HPLC-MS/MS analysis,
207, 211. See also High-performance
liquid chromatography–tandem mass
spectrometry (HPLC-MS/MS)
Peptide mass mapping, 179
Peptide quantification
high-resolution mass spectrometry for,
414–420
selected reaction monitoring for,
407–414
Peptide quantification approaches, 405
Peptides
as degradation products, 212
disulfide-containing, 160
in drug development programs, 403–404
fragmented, 156
imaging mass spectrometry of, 277–302
ionization and fragmentation of,
406–407
lower ion intensities of, 408
MS-based quantification of, 404
Peptide separation, 406
Peptide SRM methods, 404. See also
Selected reaction monitoring (SRM)
entries
Peptidic HIV-fusion inhibitor, 412
Permeability assays, 97–99
pH, of plasma samples, 57
Pharmaceutical compounds, analysis of,
74–75
Pharmaceutical mapping, in tissues, 312
Pharmaceutical products, small molecule
impurities in, 193
Pharmaceutical relevant molecules,
fragmentation behavior of, 247
Pharmaceuticals. See also Drug entries;
Therapeutic entries
degradation profiling of, 198
derivatizing, 326–327
impurities and degradation products in
small-molecule, 191–220
MS role in R&D of, 303
Pharmacokinetic (PK) parameters,
therapeutic siRNAs and, 372
Pharmacokinetic (PK) predictions, 39
Pharmacokinetic (PK) profiles/profiling, 40,
132, 136
Pharmacokinetics (PK), 97
imaging data quantification for, 328–329
improving, 164
systematic evaluation of, 55
Pharmacokinetic (PK) studies, 44
Phase 2 metabolites, 48
Phase collapse, aqueous mobile phase and,
75–76
Phosphate prodrugs, 71–73
Phosphatidic acid (PA) phospholipid class,
61, 62
Phosphatidylecholine (PC) phospholipid
class, 61, 62
Phosphatidylethanolamine (PE)
phospholipid class, 61, 62
Phosphatidylglycerol (PG) phospholipid
class, 61, 62
Phosphatidylinositol (PI) phospholipid
class, 61, 62
Phosphatidylserine (PS) phospholipid class,
61, 62
Phospholipid avoidance strategies, 65–69
Phospholipid chromatographic elution
profiles, 64
Phospholipid detection, all-inclusive
technique in, 62
Phospholipid extraction, 68
Phospholipid removal, during sample
extraction, 66–69
Phospholipids
chromatographically separating analytes
from, 65
chromatographic elution behavior of,
62–65
chromatographic fate of, 67–68
collision-induced dissociation of, 61–62
mass spectrometric monitoring of, 61–62
rapid elution of, 65
Phospholipid structures, 61
Phosphorothionate-modified siRNAs, 360.
See also Small interfering RNAs
(siRNAs)
Photoionization probe, 7
Photostability testing, 251–253
Physical degradation, 210–211
Physicochemical properties, assessment of,
99, 248–259
PK/metabolite characterization, 48. See also
Pharmacokinetic (PK) entries
PK/pharmacodynamic (PD) correlations,
42
Placebo samples, 119

Plasma. See also Serum entries
collection and storage of, 56–57
pooling approaches for, 135–136
Plasma concentration–time profiles, 131,
132
Plasma extraction
offline, 57–58
online, 58–59
Plasma phospholipids
association with matrix effects, 60–65
bioanalytical risks posed by, 67
Plasma pooling, volume calculation for, 135
Plasma sample collection, 132
Plasma sample extraction procedures,
evaluating, 84
Plasma samples, 118
pH of, 57
profiling, 129
“Plug and play” formats, 407
Pneumatically assisted electrosprays, 2
Pneumatic nebulization, 5
Polar analytes
retention and separation of, 75–77
reversed-phase columns for, 75–77
Polar metabolites, structural elucidation of,
140
Poly(ethylene glycol) (PEG), 164, 165. See
also PEG- entries
Polymerase chain reaction (PCR). See
qPCR techniques; Q-RT-PCR methods;
RT-qPCR entries; siRNA qPCR
concentrations
Polymeric sorbents, 58, 59
Pooled incurred samples, 81
Pooled placebo samples, 119
Pooling, of biological samples, 135–136. See
also Sample pooling
Porous graphitic carbon (PGC), 75–76
Posaconazole (SCH 56592), degradation
products of, 198–201
Positive electrospray (ESI) selected
reaction monitoring (SRM), 61–62
Positive ESI, 83
Positive ESI response, 75
Positive ion mode, 410, 412
Positive/negative mode electrospray
analyses, 394
Positive neutral loss scan technique, 62
Positive precursor ion scan technique, 62
Positron emission tomography (PET), 304
Post-acquisition data filtering, 121
Post-acquisition data processing software, 40
Post-acquisition data processing software tools, 121
Post-analysis processing software tools, 121, 142
Post-column analyte addition, 60
Post-column infusion system, 60
Post-ion/ion trap CID spectrum, 371. See also Collision-induced dissociation (CID)
Post-run data mining, 123
Postsoure decay (PSD), 284
Post-transcriptional gene regulation, 357–358
Post-translational modifications (PTMs), 150, 180. See also PTM analysis in proteins/peptides, 203
Potassium adducts, 3
Prakash, Chandra, x, 115
Pramanik, Birendra N., x, 239
Pravastatin, 74
Pravastatin lactone, 74
Preclinical ADME programs, investment in, 131. See also Absorption, distribution, metabolism, and excretion (ADME) entries
Precursor ion approach, 346–347
Precursor ion mode, 16–17, 23
Precursor ions (PIs), 20
isolation of, 22
isolation window of, 24
mass measurements of, 26
Precursor ion (PI) scans, 22, 23, 62, 120, 346–347
Primary sequence characterization, 151–158
Principal component analysis (PCA), 391, 392
Principal component analysis (PCA) followed by discriminant analysis (DA) (PCA-DA), 293
Pristatsky, Pavlo, x, 149
Probe-specific analysis, 99
Prodrugs, 133
instability of, 56, 57
Product ion mass spectra, 194, 195, 197, 201–203. See also Product ion spectra
Product ion mode, 16
Product ions, 16, 22
Product ion selection, at high resolution, 420
Product ion spectra, 205–206
Profile data, 419–420
ProMass software, 377–378
Proof-of-concept LESA-MS analysis, 232
Proof-of-concept (POC) studies, 129
Property assays, 98
Prostate tissue marker, 289
Protein affinity selection mass spectrometry, 261
Protein aggregation, 210
Protein A strategy, 178–179
Protein binding assays, 106
Protein characterization, 192
Protein degradation, 279
in tissues, 295–296
Protein denaturing, urea for, 211
Protein drug candidates, preclinical stage of, 150
Protein drug discovery/development, 149–150
Protein drugs
sample denaturing for dissociating, 178
therapeutic properties of, 171
Protein exclusion mechanism, 59
Protein folding defects, 210
Protein glycosylation, 158
Protein heterogeneity, analysis of, 151
Protein identification, 283–284
MALDI and, 22
Protein ions, fragmented, 156
Protein modification analysis, ECD/ETD in, 177
Protein oxidation, 206–207
Protein precipitation (PPT), 57, 58, 133, 134
Protein profiles, from lung tumor tissue, 288
Protein–protein interactions, 210
Protein quality, evaluating, 150
Protein quantification, mass spectrometry for, 177
Proteins. See also Peptide entries; Proteins/peptides
deamidation of, 168–170
detected in situ, 283
disulfide bonds in, 160
HDX in, 172
imaging and identifying, 285
imaging mass spectrometry of, 277–302
isoAsp in, 167–168
modifications/degradations of, 167, 202–204
MS analysis of, 149–190
Proteins (cont’d)
 quantitative workflows for larger, 404
 RISC core, 358
 therapeutic, 151
Protein signals, identifying, 284
Proteins/peptides
 affinity-based enrichment of, 210
 post-translational modifications in, 203
Protein structures, 210
Protein therapeutics, characterizing, 176
Protein therapies, 43–45
Proteolytic degradation, 279
Proteomic experiments, 283–284
Proteomics, 388
Proton exchange, 9
Proton transfer ion/ion reactions, 370
Pseudo–MS/MS data sets, 348. See also
 Tandem mass spectrometry (MS/MS)
“Pseudo’” neutral loss approach, 346–347
Pseudo-Rayleigh ion release (PRIR), 5
Pseudo-SRM, 404. See also Selected
 reaction monitoring (SRM) entries
PTM analysis, 155, 167–170. See also
 Post-translational modifications
 (PTMs)
Pulmonary granulomas, 291–292
Pure ion evaporation (PIE), 5
Purity analysis, 243–245
Q Exactive, 26
qPCR techniques, 361. See also Q-RT-PCR
 methods; RT-qPCR entries; siRNA
 qPCR concentrations
QqQ instruments. See Triple quadrupole
 (QqQ, QQQ) instruments
QQQ mass spectrometers, 115. See also
 Triple quadrupole (QqQ, QQQ)
 instruments
QqTOF instruments, 281, 283. See also
 Quadrupole-time-of-flight (QqTOF,
 Q-TOF) instruments; Time-of-flight
 (TOF) entries
Q-RT-PCR methods, 44. See also qPCR
 techniques; RT-qPCR entries; siRNA
 qPCR concentrations
Q-TOF MS, 46. See also Fast scanning
 Q-TOF MS/MS systems; Mass
 spectrometry entries; Quadrupole
 time-of-flight (Q-TOF)
Q-trap instrument, 120
QTRAP mode, 19–20
Quadrupole CID spectra, 19–20
Quadrupole fields, 14
Quadrupole instruments, operation of, 408
Quadrupole (3D) IT mass spectrometers, 120
Quadrupole ion trap (QIT) mass
 spectrometer, 17
Quadrupole ion traps (QITs, QITs), 16,
 17–20, 344. See also Linear quadrupole
 ion trap
 in qualitative analysis, 18
Quadrupole mass analyzer modes, 16–17
Quadrupole mass analyzers, 14, 15, 407–408
Quadrupole mass filters, 17
Quadrupole settings, 16
Quadrupole time-of-flight (Q-TOF), 40. See
 also Q-TOF MS
Quadrupole-time-of-flight (QqTOF,
 Q-TOF) instruments, 22, 23, 255, 344.
 See also QqTOF instruments
 schematic of, 23
Qualitative analysis
 of biological drugs, xii
 of drugs/metabolites, 414
Qualitative/quantitative (Qual/Quan)
 workflows, 40. See also QUAL/QUAN
 workflows
 in drug metabolism, 38–41
Quality control (QC) samples, 56, 80, 82, 85
Qual/Quan experiments, 41
QUAL/QUAN workflows, 28. See also
 Qualitative/quantitative (Qual/Quan)
 workflows
QuanOptimize™, 100
Quantification, mass resolving power as
 influencing, 416–419
Quantification strategy, best, 408
Quantitative analysis
 of biological drugs, xii
 of peptides, xii, 403
 of peptides using mass spectrometry,
 403–425
Quantitative bioanalysis
 HRMS instruments for, 414
 role of HRMS in, 421
Quantitative data, response factors for
 obtaining, 127–129
Quantitative HPLC-MS/MS bioanalysis,
 research activities in, 85. See also
 Tandem mass spectrometry (MS/MS)
Quantitative information
 capturing analyte, 394
 derived for imaging data, 329
Quantitative mass spectrometry, in a regulated environment, 55–95
Quantitative methods, for peptide drug candidates, 412
Quantitative whole-body autoradiography (QWBA), 221–222. See also QWBA analysis
Quantitative whole-body autoradiography imaging, 321
Quaternary ammonium glutathione analog (QA-GSH), 351
QuickQuan™, 100, 102
QWBA analysis, 323. See also Quantitative whole-body autoradiography entries
Radial ejection, axial ejection vs., 19
Radioactive detector, HPLC-MS coupled with, 136
Radioactive samples, biotransformation analysis of, 136, 137
Radiochromatograms, 138
Radiochromatographic profiles, 136
Radio frequency (RF), magnetic field produced via, 14. See also RF entries
Radiolabeled ADME studies, 130. See also Absorption, distribution, metabolism, and excretion (ADME) entries
Radiolabeled compounds, 130
Radiolabeled drug products, testing, 131
Radiolabeled drugs, 116
Radiolabeled drug studies, 136
Radiolabeled material studies, 117
Radiolabeled peptides, as internal standards, 178
Radiolabeled samples, for estimating metabolites, 128–129
Radiolabeled studies, uses for, 130
Radiolabeled test articles, metabolite profiling in studies with, 130–141
Radiolabeled trapping agents, 351
Radiometric detector technology, 139
Radioprofiles, 130
RAM-based online extractions, 59
RapidFire system, 103, 106
schematic of, 104
Rapid mass analysis, 18
Rapid metabolic clearance, 258
Rapid oligonucleotide sequencing, 378
Rapigest surfactant, 211
Raw HRMS spectral data, transformation of, 419–420. See also High-resolution mass spectrometry (HRMS)
Rayleigh limit, 4
Reaction monitoring mode, 20
Reactive iminium ions, cyanide-trapped, 350
Reactive intermediate formation, 258
Reactive metabolite formation, 352
quantitation of, 351
Reactive metabolites
classification of, 340, 343
detection and characterization of, 341
detection and identification of, 352
in vitro trapping of, 340
Reactive metabolite screening, xii, 339–355
challenges of and future perspectives on, 351–352
LC-MS/MS approaches for, 340–343
mass-based data mining tools for, 345–351
Reactive metabolite screening workflow, 123
Reactive species, 339
Real time (RT). See Direct analysis in real time (DART); Q-RT-PCR methods; RT-qPCR entries
Real-time dynamic background subtraction, 123
Reconstitution solvents, 85
Reduced mAbs, mass analysis of, 153, 154.
See also Monoclonal antibodies (mAbs)
Reducing agents, 212
Reference standards, 128
Reflectron, 21
trajectories in, 21
Reflectron mode ISD (reISD), 166. See also In-source decay (ISD)
Reflectron technology, 344
Regulated environment, quantitative mass spectrometry in, 55–95
Regulatory authorities, 116
Reily, Michael D., x, 387
Relative standard deviation (RSD), 85
Renal elimination studies, 119
Research and development (R&D), 239
DESI role in, 308–309
MS role in pharmaceutical, 303
Resolution (R), 27. See also Mass resolution; Resolving power in DESI imaging, 311
increasing, 21
in MALDI imaging, 311
Orbitrap, 26
transient time and, 25
Resolving power, 416–419. See also Resolution (R)
Resolution (R) defined, 416
effect of, 44
of experiments, 396
minimal, 419
Resonant mass ejection, 18
Response–concentration relation, 59–60
Response factors calculating, 128
for obtaining quantitative data, 127–129
Response normalization techniques, 124–127
Restricted access media (RAM), 59
Reversed-phase (RP) chromatography, 62–65, 74–75. See also Flow-injection
RP-HPLC-MS technique; RP entries
Reversed-phase (RP) columns, for polar analytes, 75–77
Reversed phase (RP)-HPLC separation, 151–152, 396–397
Reyzer, Michelle L., x, 277
RF/DC potentials, 15, 17, 19. See also Radio frequency (RF)
RF mode, 16
RF-only mode, 22
RF voltage, 15
modulated, 22
Ricin A-chain (RTA), 165–166
RISC core proteins, 358. See also RNA-induced silencing complex (RISC)
Rising-multiple-dose (RMD) studies, 117–119
Rising-single-dose (RSD) studies, 117–119
RNAi biology, advances in, 378
RNA-induced silencing complex (RISC), 357–358
RNA interference (RNAi) mechanism, 357–358
RNAi therapies, complete sequence coverage of, 370–371
RNA oligonucleotides, sequence coverage of, 370
RP-HPLC-MS, 152, 153. See also High-performance liquid chromatography–mass spectrometry (HPLC-MS);
Reversed-phase (RP) entries
RP phase modifications, 75
RT-qPCR–based assays, 361. See also qPCR techniques; Q-RT-PCR methods;
siRNA qPCR concentrations
RT-qPCR hybridization technique, 367
“Rule of five,” 246, 249
Run-to-run assay, 66
Safety, of drug candidates, 116. See also Drug safety
Safety risks, 45
Sample analysis, using HPLC-MS/
radiometry, 136–139
Sample collection, 131–132
based on a stability profile, 119
in in vivo AME study, 131
Sample denaturing, for dissociating protein drugs, 178
Sample extraction, phospholipid removal during, 66–69
Sample extraction methods/techniques, 66, 133–135
Sample instability, 56–57
Sample pooling, 104. See also Pooled entries; Pooling
Sample preparation, 56, 132–135
for imaging mass spectrometry, 278–280
for MALDI, 365–366
for mass spectrometry imaging, 313–315
in metabolomic experiments, 390
refinements in, 178
Sample pretreatment, for imaging mass spectrometry, 278–279
Samples, reanalysis of, 129. See also Biological samples; Blood samples;
“Dosed” samples; Fixed tissue samples;
Formalin-fixed paraffin embedded (FFPE) samples; Fresh frozen tissue samples; Incurred samples; In vitro
ADME assay samples; In vitro ADME samples; Metabolic activity samples;
Minimally fixed tissue samples; Placebo samples; Plasma sample entries; Pooled incurred samples; Pooled placebo samples; Quality control (QC) samples;
Radioactive samples; Radiolabeled samples; Spiked QC samples; Steady-state plasma samples; Tissue samples; Toxicological samples; Untreated water-rich biological samples; Urine samples
Sample stabilization, common approaches for, 133, 134
Scanning MS, metabolite screening using, 255–256. See also Mass spectrometry entries
Scan numbers, comparison of, 102
Scan/scanning modes, 16, 255
Scan types, 115
SCH 56592. See Posaconazole (SCH 56592)
Screening assays
 for reactive metabolites, 339–355
target–ligand, 259–262, 263, 264
“Sealing” surface sampling probe (SSSP), 9
Secondary ion mass spectrometry (SIMS), 306–307
application to tissue imaging, 307
for drug and metabolite, 307
imaging via, 277
MALDI vs., 312
Secondary ions, 306
Secondary metabolites, 291
Segmented post-column analyte addition, 60
Selected ion monitoring (SIM), 404
Selected reaction monitoring (SRM). See also SRM entries
 for peptide quantification, 407–414
TOF-based approaches vs., 420–421
Selected reaction monitoring (SRM) mode, 13, 16, 17, 77
Selected reaction monitoring (SRM) technique, xi, 37, 40–41, 43, 223, 342, 404
Selective sample extraction, 55
Selectivity, in HRMS experiments, 405
(Semi)-preparative LC/SFC, 242–243. See also Liquid chromatography (LC); Supercritical fluid chromatography (SFC)-MS
Semi-quantitative imaging technology, 304
Separation techniques, 161
Sequence mass ladders, 368–369
Sequencing. See De novo sequencing;
 Metabolite sequences; Oligonucleotide sequencing entries; Primary sequence characterization; siRNA sequencing
Sequential window acquisition of all theoretical fragment-ion spectra (SWATH), 28, 41
Serum, siRNA degradation in, 374–375
Serum sample enrichment strategies, 178–179
SFC-MS system, 243. See also Supercritical fluid chromatography (SFC)-MS
SFC-UV chromatogram, 244. See also Ultraviolet (UV) entries
SFC-UV system, 243, 244
Shipkova, Petia, x, 387
Shotgun lipidomic approaches, liquid extraction surface analysis and, 229
Shou, Wilson Z., x, 97
 “Signature peptides,” 404
Silica-based RP columns, characterizing, 74–75. See also Reversed-phase (RP) entries
Silica-based sorbents, 58–59
Simple Oligonucleotide Sequencer (SOS), 378
SIMS imaging, 306–307, 329. See also Secondary ion mass spectrometry (SIMS)
SIMS isotope images, 308
Single ion monitoring (SIM), 16
Single MS mode, 22. See also Mass spectrometry entries
siRNA analysis, future trends for, 378–379. See also Small interfering RNAs (siRNAs)
siRNA applications, mass spectrometry for, xii
siRNA degradation, in serum, 374–375
siRNA duplexes, 361–362, 373–375
 collision-induced dissociation of, 364, 369–370
siRNA duplex intensities, measured by MALDI-MS, 368
siRNA hydrophobicity, ESI efficiency and, 364
siRNA metabolites, 44, 376
 characterizing duplex, 373–375
siRNA molecules, characterizing, 44
siRNA qPCR concentrations, 44. See also qPCR techniques; Q-RT-PCR methods; RT-qPCR entries
siRNA quantitation methods, 360
siRNA-related LC-MS techniques, 366–368
siRNA sequencing, by mass spectrometry, 368–372
siRNA stability, 360
siRNA strands, elucidating, 378
siRNA therapeutic formulations, accumulation of, 373
siRNA-type oligonucleotides, desalting, 365
Six sigma initiative, 240
Size-exclusion chromatography (SEC), 208, 210–211, 261
Skin penetration, for nonsteroid glucocorticoid receptor agonists, 316–317
Small cations, effects of, 60
Small interfering RNAs (siRNAs). See also siRNA entries
ADME properties of, 364
analytical methodologies for, 360–361
chemical modifications of, 358–360
de novo sequencing of, 369
double-stranded characteristic of, 361–362
extracting from biological matrices, 365–366
isolation from biomatrices, 364
MALDI-MS of, 368
mass spectrometry of, 357–385
qualitative and quantitative analyses of, 372–376
quantification of modified and unmodified, 373
tandem mass spectrometry fragmentation and, 364
of UPLC-MS/MS, 370–371
Small interfering RNA (siRNA) therapies, 43–45
Small molecule degradation products, characterization of, 198–201
Small molecule impurities, characterization of, 193–198
Small molecule metabolites, 387–388
Small-molecule pharmaceuticals/biologics, impurities and degradation products in, 191–220
Small molecule quantification, HRMS and, 405
Small molecules, LC-MS/MS analyses of, 372
Sodium adducts, 3
“Soft” electrophiles, 340
“Soft” nucleophiles, 340
Software
advancement of, 376–378
for metabolomic studies, 390
Software development, 108
Software ease of use, 39–40
Software tools. See also Statistical tools
development of, 106–107
for post-acquisition data processing, 121
for post-analysis processing, 142
Solid-phase extraction (SPE), 57, 58, 66, 68, 103–104, 134, 229, 366. See also SPE entries
Solid-phase extraction (SPE)-NMR, 262, 263, 264
Solid-state lasers, 282
Solid-supported LLE, 58
Solubility, defined, 250
Solubility assay methods, 250
Solution phase hybridization, 361
Solvents
in drug extraction, 224–225
reconstitution, 85
Sonic spray, 4
Sorbents, 58–59
Spatial resolution, 305
of LESA, 224
Special-isotope-requirement technologies, 304–305
Specialized phases, 75–76
Spectrometers, for intact mass analysis, 151
SPE method, 412. See also Solid-phase extraction (SPE) entries
SPE systems, 103
Sphingomyelin (SM) phospholipid class, 61
Sphingomyelins (SMs), 60, 61
Spiked QC samples, 80. See also Quality control (QC) samples
Sporulation delaying protein (SDP), 291
Sporulation killing protein (SKP), 291
Spotted arrays, for imaging, 281, 282
SRM analysis, 100. See also Selected reaction monitoring (SRM) entries
SRM assays, 37
SRM-based method development, for peptides, 408
SRM chromatograms, 408–409
in negative ion mode, 413
SRM conditions, optimized, 102
SRM development, solutions for, 100–102
SRM LLOQ chromatograms, 409. See also Lower limit of quantitation (LLOQ)
SRM methods, 177
for metabolomics, 397
SRM mode, 372
SRM systems, 46
SRM transitions, 80, 83, 84, 104–105, 254, 409, 410
SRM workflow, 405
“Stability indicating,” development of, 252
Stability profile, sample collection based on, 119
Stability testing regimen, 85
Stabilizing reagents, 57
“Staggered parallel” approach, 102–103
Standalone linear ion trap, 19
“Standard assays,” 260
Standard-free quantitative techniques, 129
STAT3 compound, 326, 327
Static extraction process, 234–235
Stationary phase screening, 74–75
Statistical tools, 391
Steady-state plasma samples, analyzing, 118
Stress-testing methods, 198
Structural elucidation, 139–140
chemical derivatization for, 140–141
Structure–activity relationships (SARs), 46, 246
Structure–liability relationship (SLR), 97
Structure–property relationships (SPRs), 246
Subtraction routines, 46
Sulfate metabolites, 71–73
Supercritical fluid chromatography (SFC)-MS, 242, 243
Supernatants, 134
Super oxide dismutase (SOD), 164, 165
SUPREX (stability and unpurified proteins from H/D exchange) method, 260–261
Surface analysis, 13
application of MS to, xii
Surface enhanced laser desorption/ionization (SELDI), 13
Surface sampling ionization MS platforms, 305
Synapt G2™ ion mobility–TOF mass spectrometer, 39. See also Time-of-flight (TOF) entries
Synthesized compounds, screening, 253
Systematic method development, protocol for, 82–85
Tandem mass spectrometry (MS/MS), 15, 18, 19–20, 44. See also MS/MS entries; Trap MS/MS
in chemical structure elucidation, 245–246 oligonucleotide sequencing by, 369, 378
Tandem mass spectrometry (MS/MS) experiments, 192
Tandem mass spectrometry (MS/MS) techniques, to monitor phospholipids, 62
Tandem MS mode, 22. See also Mass spectrometry entries
Tandem TOF combinations (TOF/TOF), 23. See also Time-of-flight (TOF) entries; TOF/TOF analyzers
Tandem TOF/TOF geometries, 24
Target characterization, 259
Targeted enhanced multiple charge scanning (tEMC), 405
“Targeted” high-throughput screening (HTS) libraries, 239
Targeted ion parking (TIP), 405
Targeted metabolomic analyses, endogenous biomarker measurement assays vs., 393–394
Targeted metabolomics, 390, 392–394
Targeted MS, metabolite screening using, 254–255. See also Mass spectrometry entries
Targeted profiling, 278
Target–ligand interactions, 259–262, 263, 264 kinetics/energies involved in, 260
Target–ligand screening assays, 259–262, 263, 264
Target quantitation, bioanalytical methods for, 78
Taylor cone, 2
TEA/HFIP buffer system, 367. See also HFIP/TEA ion-pairing system; Triethylammonium (TEA)
Terfenadine, 225–227, 321
LESA-MS-SRM analysis of, 228
Test compounds, purity of, 244–245
Therapeutic discovery, antisense oligonucleotide, 372
Therapeutic mAbs, in drug development, 177. See also Monoclonal antibodies (mAbs)
Therapeutic protein characterization, peptide mapping and, 155
Therapeutic protein drug candidates, 179
Therapeutic proteins, 151, 164 deamidation of, 168–170 modifications/degradations of, 202–204 oxidation in, 170
Therapeutic proteins/peptides, in drug portfolios, 403
Therapeutic siRNAs, ADME and PK parameters and, 372
“Thermodynamic” assays, 250–251
Thermogravimetric analysis (TGA), 249
Thiol content, reducing, 207
Thiols investigating, 179 mass spectrometric analysis of, 161
Three-dimensional (3D) ion traps (ITs), 120
Timed ion selector (TIS), 23–24
Time-of-flight (TOF) analysis, 20–24, 343–344. See also TOF entries
Time-of-flight (TOF) design, 39
Time-of-flight (TOF) mass systems, 2, 13
Time-of-flight (TOF) mass spectrometer, 21
Time-of-flight (TOF) technology, 78
Time-point pooling method, 136
Time-to-digital converter (TDC), 344
Tiotropium, \textit{in vivo} transport of, 315. \textit{See also} Inhaled tiotropium (ITP)
Tissue, as pharmacological target, 43. \textit{See also} Tissues
Tissue distribution studies, application of DESI to, 309
Tissue images, 8, 303
Tissue microarrays (TMAs), 293
Tissue preservation, 278–279
Tissues
pharmaceutical mapping in, 312
protein degradation in, 295–296
Tissue samples
absolute quantitation from, 233–234
fresh frozen or minimally fixed, 279
Tissue sections
applying enzymes to, 284
identifying protein signals from, 284
matrix added to, 280
protein identification in, 292–293
Tissues/organs, imaging drugs and metabolites in, 315–320
Tissue surfaces
applying matrix to, 314–315
drug detection from, 312
T-L complex, 261
TOF-based approaches, SRM vs., 420–421. \textit{See also} Time-of-flight (TOF) entries
TOF-based HPLC-HRAMS methods, 78. \textit{See also} High-performance liquid chromatography (HPLC) with high-resolution accurate mass spectrometry (HPLC-HRAMS)
TOF-based MS systems, quantitative output of, 421. \textit{See also} Mass spectrometry entries
TOF instruments, 21–22, 105–106, 115, 344 for quantitative bioanalysis, 414
TOF mass analyzer(s), 11, 13, 22, 23 advantages of, 344
TOF systems, resolving power of, 27
TOF technology, 255
TOF/TOF analyzers, 281. \textit{See also} Tandem TOF entries
TOF trapping instruments, 414–415 orbital trapping instruments vs., 418
Top-down mass spectrometry (MS), 174–176, 180, 192
Total adduct burden, 352
Total ion chromatograms (TICs), 79, 349, 363
Total ion current (TIC) chromatograms, 415
Toxicity, assessing and preventing, 99
Toxicity prediction, 45
Toxicological samples, LESA-MS applied to, 231
Toxicology studies, 116–117
use of samples from, 117–119
Trajectory stability, in Orbitrap, 26
Transcriptomics, 388
Transient time (T), resolution and, 25
Transmission mode, 16
Transporter assays, 98
Transporter-related liabilities, 99
Trap CID spectra, 19–20. \textit{See also} Collision-induced dissociation (CID)
Trap MS/MS, 18. \textit{See also} Tandem mass spectrometry (MS/MS)
Trapped ions, detecting, 344–345
Trapping agents, 258
bromine in, 341
radionabeled, 351
Trapping assays, 258–259
Traveling-wave ion mobility mass spectrometry (TWIMS), 27
Traveling waves (T waves), 174
Triethylammonium (TEA), 366–367
Triethylammonium bicarbonate (TEAB), 366
Trifluoroacetic acid (TFA), 410
Triple quadrupole (QqQ, QQQ) instruments, 13, 15–16, 22, 77, 115, 407–413
fast scanning, 410
full scan tandem mass spectrometry with, 22
QiTs vs., 18
schematic of, 16
Triple quadrupole linear ion trap (QqQ\textsubscript{LIT}), 19–20
operation modes of, 20
Triple quadrupole mass spectrometers (TQMSs), 37, 40, 110, 120
HPLC-MS/MS with, 100–105
Triple quadrupole MS systems, 1, 13, 14–17
Triple quadrupoles, for metabolomics, 397
Tris(2-carboxyethyl) phosphine (TCEP), 161, 212
Trisulfide bonds, detection of, 162
INDEX

Trisulfide linkages, 207–208
Trisulfides, 162–164
TriVersa-NanoMate robotic ion source, 222, 223
Troglitazone metabolites, 46, 47
Trypsin digestion, 212–213
Tryptic digestion, 156
Tumor blood vessel destruction, 319–320
Tumor margins, IMS studies of, 289–290
Tumor penetration, by oncology drugs, 318–319
T-wave IMMS, 174. See also Ion mobility mass spectrometry (IMMS, IMS); Traveling wave entries
Two-dimensional (2D) ion traps (LTQs), 120
Two-dimensional (2D) quadrupole field, 14
Two-dimensional (2D) trap, 19
Tymiak, Adrienne A., x, 191

Ultrafast ADME sample analysis, 106. See also Absorption, distribution, metabolism, and excretion (ADME) entries
Ultrafiltration-ESI-MS, 261. See also Electrospray ionization (ESI); Mass spectrometry entries
Ultra-high pressure liquid chromatography (UHPLC), 102–103, 397
Ultra-high vacuum, 345
Ultra-performance liquid chromatography (UPLC), 121, 241. See also UPLC entries
Ultra-performance liquid chromatography (UPLC)-HRMS systems, 40, 42. See also High-resolution mass spectrometry (HRMS)
Ultraviolet (UV)-based techniques, 129
Ultraviolet (UV) detectors, 46
Ultraviolet (UV) lasers, 10
Unlocked nucleic acids (UNAs), 361
Unmodified siRNAs, quantification of, 373
Unstable drugs/metabolites, 56
Unstable metabolites, 133
effect of, 73–74
Untreated water-rich biological samples, analysis of, 10
UPLC-MS/MS, 405. See also Tandem mass spectrometry (MS/MS); Ultra-performance liquid chromatography (UPLC)
of siRNA, 370–371
UPLC technology, 178
UPLC-UV assay, 251
Urea, for protein denaturing, 211
Urine samples, 118–119
value of, 119

Vacuum-MALDI, 13. See also Matrix-assisted laser desorption/ionization (MALDI)
“Vaporization problem,” 4
Veterinary drugs, 40
Vinblastine, 321

Wash step, 66, 67
Water washes, 278
WBA experiments, 321. See also Whole body autoradiography (WBA)
WBA imaging, 311
Web-based libraries, 395, 396
Wei, Hui, x, 191
Wet chemistry techniques, 142
Whole body autoradiography (WBA), 309–311. See also Quantitative whole-body autoradiography entries; WBA entries
Whole-body sections, imaging drugs and metabolites in, 321–322
Wide band excitation, 18
Xenobiotics, metabolism of, 339
Xia, Yuan-Qing, x, 55
X-ray therapy (XRT), 318, 320

Zebrafish, pharmaceutical distribution in, 323–324, 325
Zgoda-Pols, Joanna, x, 115
Zhang, Jun, x, 97
Zhang, Nanyan Rena, x, 37