CONTENTS

GUEST INTRODUCTIONS xv

EDITOR AND CONTRIBUTOR BIOGRAPHIES xix

CHAPTER 1 CHANGES, OPPORTUNITIES, AND CHALLENGES 1

Veli Sahin and Thomas Plevyak
1.1 Introduction 1
1.2 Scope 2
1.3 Changes, Opportunities, and Challenges 2
1.3.1 Major Life Style Changes: Desktops, Laptops, and Now Handtops 2
1.3.2 Major Network Infrastructure Changes 3
1.3.3 Major Home Network (HN) Changes 4
1.3.4 Major FCAPS Changes 4
1.3.5 Major Regulatory Changes 5
1.3.6 Service Aware Networks to Manage Expectations and Experiences 5
1.4 Major Management Challenges for a Value-Added Service: Triple Shift Service 7
1.5 The Grand Challenge: System Integration and Interoperability of Disjoined Islands 8
1.6 Some Examples of Management System Applications 10
1.6.1 Event Correlation 10
1.6.2 Hot Spot Identification and SMS Actions 11
1.6.3 SLAs, Contracts, and Policy Management 12
1.6.3.1 Service Assessment 12
1.6.3.2 Contract Assessment 12
1.6.3.3 Service and Contract Assurance 12
1.6.4 SMS Integration with Planning and Engineering Systems 13
1.7 Overview of Book Organization and Chapters 13
1.8 References 14

CHAPTER 2 MANAGEMENT OF TRIPLE/QUADRUPLE PLAY SERVICES FROM A TELECOM PERSPECTIVE 15

Jean Craveur
2.1 Introduction 15
2.2 Context of Triple/Quadruple Play for Telecom Operators 15
2.3 The Economic, Service, and Commercial Challenges 18
2.3.1 General Conditions 18
2.3.2 Service Offer Requirements 19
2.4 The Technical Challenge 20
2.4.1 The Technical Tool Box 21
 2.4.1.1 Customer Equipment 21
 2.4.1.2 Access Line and Aggregation/Backhaul Networks 21
 2.4.1.3 Backbone Networks 22
 2.4.1.4 Control Platform 22
 2.4.1.5 Service Platform 22
 2.4.1.6 IS Equipment 22

2.4.2 The Global Vision 23
 2.4.2.1 Vision for an Overall Architecture Supporting Triple and Quadruple Play 23

2.4.3 Key Issues to Consider When Designing Network and IS Infrastructures for Triple and Quadruple Play 24
 2.4.3.1 Convergence and Mutualization 25
 2.4.3.2 Quality of Service (QoS) 25

2.4.4 Customer Premises Equipment (CPE) and Home Network 26
 2.4.4.1 The Home Network Complexity 26
 2.4.4.2 Distribution of Functions between Network and IS Platforms and Residential Gateways 27
 2.4.4.3 The Home Network Paradox 27
 2.4.4.4 The Home Device and Applications 28

2.4.5 Access Lines 28

2.4.6 Access Networks, Aggregation, and Backhauling 29

2.4.7 An Illustration of the Fixed Access Network Transformation from Internet Access Support to Triple Play Support 30

2.4.8 Backbone Networks 31
 2.4.8.1 Content Delivery 32

2.4.9 Service and Resource Control 33
 2.4.9.1 Core Control and Application Servers 33
 2.4.9.2 Service Platforms 33

2.4.10 Information System 33
 2.4.10.1 A Renovated IS Architecture for Triple/Quadruple/Multiple Play Business 35
 2.4.10.2 The Customer Front-End 36
 2.4.10.3 The Aggregation Layer 37
 2.4.10.4 The Back-End 37
 2.4.10.5 Order Management and Delivery 39
 2.4.10.6 A Crucial Cooperation between IS, Network, and Service Platform 39

2.5 The Operational Challenge 40
 2.5.1 Focus on the Service Management Center Function (SMC) 42
 2.5.2 IS Tools for the SMCs 43
 2.5.3 Operating IT and Service Platforms in Triple and Quadruple Play Contexts 44
 2.5.4 Roles and Responsibilities of the Different Functions 45
 2.5.5 New Skills in Operations 47

2.6 The Customer Experience in Broadband Triple Play 47
 2.6.1 Definition of the Offerings 48
 2.6.2 Distribution Channels 49
 2.6.3 Relationship with the Local Operator 49
2.6.4 The Customer Journey 49
2.7 The Organizational Challenge 51
2.8 Conclusions 51
2.9 Acknowledgments 52
2.10 References 52
2.11 Suggested Further Reading 52

CHAPTER 3 MANAGEMENT OF TRIPLE/QUAD PLAY SERVICES FROM A CABLE PERSPECTIVE 53

David Jacobs
3.1 Introduction 53
3.2 The HFC Network 55
 3.2.1 HFC Planning and Inventory 55
 3.2.2 HFC Network Maintenance 56
 3.2.3 HFC Network Upgrades 56
3.3 Digital TV 57
 3.3.1 Digital TV: Coding and Transmission of Analogue Information 58
 3.3.2 Network Information Table (NIT) 62
 3.3.3 DVB-SI Program Decoding 62
 3.3.4 ATSC-PSIP Program Decoding 62
 3.3.5 Conditional Access 63
 3.3.6 Out-of-Band Channels 64
 3.3.7 Digital Storage Media—Command and Control (DSM-CC) 64
 3.3.8 Switched Digital Video 65
 3.3.9 Enhanced TV/Interactive TV 67
 3.3.9.1 Enhanced TV Binary Interchange Format 69
 3.3.10 DOCSIS Set-Top Gateway 69
 3.3.11 Digital TV Head-End 70
 3.3.12 Integrated Receiver/Decoder or Set-Top Box 71
 3.3.13 Point of Deployment Module/CableCard 72
3.4 Data over Cable Service Interface Specification (DOCSIS) 73
 3.4.1 Physical Layer 74
 3.4.2 Data Link Layer 76
 3.4.2.1 Media Access Control (MAC) Sublayer 76
 3.4.2.2 Link Layer Security 78
 3.4.2.3 Logical Link Control (LLC) 79
 3.4.3 Network Layer 79
 3.4.4 Multicast Operation 80
 3.4.5 Cable Modem Start-up 80
 3.4.6 IP Detail Records 81
 3.4.7 DOCSIS Evolution 82
3.5 Cable Telephony 83
 3.5.1 Cable IP Telephony 84
 3.5.1.1 Network Control Signaling PacketCable 1.0 and 1.5 85
 3.5.1.2 Distributed Call Signaling 90
 3.5.1.3 Embedded MTA Start-up 90
 3.5.1.4 PacketCable 2.0 91
3.6 Wireless 96
CHAPTER 4 NEXT GENERATION TECHNOLOGIES, NETWORKS, AND SERVICES

Bhumip Khasnabish

4.1 Introduction 101
4.2 Next Generation (NG) Technologies 102
 4.2.1 Wireline NG Technologies 102
 4.2.1.1 Fiber to the Premises (FTTP) 103
 4.2.1.2 Long-Haul Managed Ethernet (over Optical Gears) 103
 4.2.2 Wireless NG Technologies 104
 4.2.2.1 Broadband Bluetooth and ZigBee 104
 4.2.2.2 Personalized and Extended Wi-Fi 104
 4.2.2.3 Mobile Worldwide Inter-operability for Microwave Access (M-WiMax) 105
 4.2.2.4 Long Term Evolution (LTE) 106
 4.2.2.5 Enhanced HSPA 106
 4.2.2.6 Evolution Data Optimized (EVDO) and Ultra Mobile Broadband (UMB) 106
 4.2.2.7 Mobile Ad Hoc Networking (MANET) and Wireless Mesh Networking (WMN) 106
 4.2.2.8 Cognitive (and Software Defined) Radios and Their Interworking 107
 4.2.3 Software and Server NG Technologies (Virtualization) 107
 4.2.3.1 Transport Stratum 108
 4.2.3.2 Service Stratum 110
 4.2.3.3 Management 110
 4.2.3.3.1 Fault Management 110
 4.2.3.3.2 Configuration Management 110
 4.2.3.3.3 Accounting Management 111
 4.2.3.3.4 Performance Management 111
 4.2.3.3.5 Security Management 111
 4.2.3.4 Application Functions 112
 4.2.5 Other Networks: Third-Party Domains 112
 4.2.6 End-User Functions: Customer Premises Devices and Home Networks 113
 4.2.7 Internet Protocol (IP): The NGN Glue 113
 4.2.7.1 Internet Protocol version 4 (IPv4) 113
 4.2.7.2 Internet Protocol version 6 (IPv6) 114
 4.2.7.3 Mobile Internet Protocol version 6 (MIPv6) 114
4.4 Next Generation Services 114
 4.4.1 Software-Based Business Services 114
 4.4.2 High-Definition (HD) Voices 115
 4.4.3 Mobile and Managed Peer-to-Peer (M2P2P) Service 115
 4.4.4 Wireless Charging of Hand-Held Device 115
 4.4.5 Three-Dimensional Television (3D-TV) 116
 4.4.6 Wearable, Body-Embedded Communications/Computing Including Personal and Body-Area Networks 116
 4.4.7 Converged/Personalized/Interactive Multimedia Services 116
4.4.8 Grand-Separation for Pay-per-Use Service 117
4.4.9 Mobile Internet for Automotive and Transportation 117
4.4.10 Consumer- and Business-Oriented Apps Storefront 117
4.4.11 Evolved Social Networking Service (E-SNS) 118
4.4.12 NG Services Architectures 118
4.4.13 Application Plane’s Requirements to Support NG Services 120
4.4.14 Transport Plane’s Requirements to Support NG Services 120

4.5 Management of NG Services 121
- **4.5.1** IP- and Ethernet-Based NG Services 121
- **4.5.2** Performance Management of NG Services 122
- **4.5.3** Security Management of NG Services 123
- **4.5.4** Device Configuration and Management of NG Services 123
- **4.5.5** Billing, Charging, and Settlement of NG Services 124
- **4.5.6** Faults, Overloads, and Disaster Management of NG Services 124

4.6 Next Generation Society 124
- **4.6.1** NG Technology-Based Humane Services 125
- **4.6.2** Ethical and Moral Issues in Technology Usage 125

4.7 Conclusions and Future Works/Trends 126

4.8 References 127

5.1 IMS Architecture 129
- **5.1.1** Serving CSCF (S-CSCF) 130
- **5.1.2** Proxy CSCF (P-CSCF) 131
- **5.1.3** Interrogating CSCF (I-CSCF) 132

5.2 IMS Services 133
- **5.2.1** Push to Talk over Cellular (PoC) Service 133
 - **5.2.1.1** Service Authentication 133
 - **5.2.1.2** Floor Information Management 133
 - **5.2.1.3** Message Duplication and Transmission in 1-to-n Communication 133
- **5.2.2** IMS-Based FMC Service 134
 - **5.2.2.1** CSCF 134
 - **5.2.2.2** PDG 134
- **5.2.3** IMS-Based IPTV Service 134

5.3 QoS Control and Authentication 135
- **5.3.1** QoS Control in NGN 135
- **5.3.2** RACS 136
 - **5.3.2.1** Functions Provided by RACS 136
 - **5.3.2.2** Function Blocks Comprising RACS 137
- **5.3.3** Authentication in NGN 138
- **5.3.4** NASS 138

5.4 Network and Service Management for NGN 139
- **5.4.1** Introduction 139
- **5.4.2** Network Management Operation Requirements 141
- **5.4.3** Service Management Operation Requirements 142
- **5.4.4** Service Enhancement Requirements 143
- **5.4.5** B2B Realization Requirements 143
CONTENTS

5.4.6 Compliance with Legal Restrictions Requirements 144
5.5 IMS Advantages 144
 5.5.1 Reduction of Maintenance and Operating Cost 144
 5.5.1.1 Reduction of Time Required for Introducing New Services (Time to Market) 145
 5.5.1.2 Cost Merits 145
 5.5.2 Roles of SDP and Development and Introduction of New Services 145
 5.5.2.1 Positioning of SDP in NGN 145
 5.5.2.2 Features of SDP 146
 5.5.2.3 Examples of Application Servers 146
 5.5.2.4 API 149
 5.5.3 Services Implemented on NGN 150
 5.5.3.1 Push to X 150
 5.5.3.2 IPTV 151
 5.5.3.3 IPTV Architectures 151
 5.5.3.4 Advantages of NGN (IMS-based) IPTV 152
5.6 References 153
5.7 Suggested Further Reading 153

CHAPTER 6 NEXT GENERATION OSS ARCHITECTURE 155

Steve Orobec
6.1 Introduction 155
6.2 Why Are Standards Important to OSS Architecture? 156
6.3 The TeleManagement Forum (TM Forum) for OSS Architecture 158
6.4 Other Standards Bodies 159
6.5 TM Forum’s Enhanced Telecommunications Operations Map (eTOM) 159
 6.5.1 Relationship to ITIL (Infrastructure Technology Information Library) 162
6.6 Information Framework 163
6.7 DMTF CIM (Distributed Task Force Management) 165
6.8 TIP (TM Forum’s Interface Program) 166
6.9 NGOSS Contracts (aka Business Services) 167
6.10 MTOSI Case Study 170
 6.10.1 Will Web Services and MTOSI Scale? 170
6.11 Representational State Transfer (REST)—A Silver Bullet? 176
6.12 Real Network Implementation of a Standard 177
6.13 Business Benefit 179
6.14 OSS Transition Strategies 181
6.15 ETSI TISPAN and 3GPP IMS 182
6.16 OSS Interaction with IMS and Subscriber Management (SuM) 183
6.17 NGN OSS Function/Information View Reference Model 187
6.18 Designing Technology-Neutral Architectures 189
6.19 UML and Domain Specific Languages (DSLs) 189
6.20 An Emerging Solution: The Domain Specific Language 192
6.21 From Model-Driven Architecture to Model-Driven Software Design 193
6.22 Other Standards Models (DMTF CIM, 3GPP, and TISPAN) 194
6.23 Putting Things Together: Business Services in Depth 195
6.24 Building a DSL-Based Solution 200
 6.24.1 Problem Context 200
 6.24.2 Proposed Initial Feature Content 200
6.24.2.1 Desired Inputs 200
6.24.2.2 Desired Outputs 201
6.24.3 Open-source Tool Environments 201
6.25 Final Thought 205
6.26 Bibliography 205

CHAPTER 7 MANAGEMENT OF WIRELESS AD HOC AND SENSOR NETWORKS 207

Mehmet Ulema
7.1 Introduction 207
7.2 Overview 208
 7.2.1 Wireless Ad Hoc Networks 209
 7.2.2 Wireless Sensor Networks 210
 7.2.3 Wireless Ad Hoc Networks vs. Sensor Networks 211
 7.2.4 Network Management Aspects and Framework 212
7.3 Functional and Physical Architectures 213
7.4 Logical Architectures 214
7.5 Information Architectures 216
 7.5.1 Manager-Agent Communication Models 217
 7.5.2 Management Interfaces and Protocols 223
 7.5.3 Structure of Management Information and Models 223
 7.5.4 Others 228
7.6 Summary and Conclusions 228
7.7 References 229

CHAPTER 8 STRATEGIC STANDARDS DEVELOPMENT AND NEXT GENERATION MANAGEMENT STANDARDS 231

Michael Fargano
8.1 Introduction 231
 8.1.1 General Drivers for Standards 232
 8.1.2 Management Standards History 232
8.2 General Standards Development Process 233
 8.2.1 Key Attributes of Standards Development Process 234
 8.2.2 General SDO/Forum Types and Interactions 235
 8.2.3 General Standards Development and Coordination Framework 235
 8.2.3.1 Project Execution and Cross-Organization Interactions and Handoff Points 238
8.3 Management SDO/Forum Categories 239
 8.3.1 General Network/Service SDO/Forum 239
 8.3.2 Specific Network/Service SDO/Forum 239
 8.3.3 Information Technology SDO/Forum 239
 8.3.4 Management-Standards Focused SDO/Forum 240
8.4 Principles, Frameworks, and Architecture in Management Standards 240
 8.4.1 Principles and Concepts in Management Standards Development 240
 8.4.2 Frameworks and Architecture 241
8.5 Strategic Framework for Management Standards Development 244
 8.5.1 Strategic Questions for Standards Engagement Determination 244
 8.5.2 Strategic Progression of Standards Work 245
 8.5.3 Strategic Human Side of Standards Development 245
CONTENTS

8.6 Sampling of NGN Management Standards Areas and SDO/Forums 245
8.7 Summary and Conclusions 248
 8.7.1 Chapter Summary 248
 8.7.2 General Standards Development Process 248
 8.7.3 Management SDO/Forum Categories 248
 8.7.4 Principles, Frameworks, and Architecture in Management Standards 248
 8.7.4.1 Principles 248
 8.7.4.2 Frameworks and Architecture 249
 8.7.5 Strategic Framework for Management Standards Development 249
 8.7.5.1 Strategic Progression of Standards Work 249
 8.7.5.2 Strategic Human Side of Standards Development 249
 8.7.6 Key Lessons Learned for Strategic NGN Management Standards Development 250
 8.7.7 Challenges and Trends 250
8.8 References 250

CHAPTER 9 FORECAST OF TELECOMMUNICATIONS NETWORKS AND SERVICES AND THEIR MANAGEMENT (WELL) INTO THE 21ST CENTURY 253

Roberto Saracco
9.1 Have We Reached the End of the Road? 254
9.2 “Glocal” Innovation 257
9.3 Digital Storage 259
9.4 Processing 261
9.5 Sensors 262
9.6 Displays 263
9.7 Statistical Data Analyses 265
9.8 Autonomic Systems 267
9.9 New Networking Paradigms 268
9.10 Business Ecosystems 270
9.11 Internet in 2020 274
9.12 Communication in 2020 (or Quite Sooner) 276
9.13 References 280

INDEX 281