INDEX

Page references in **bold** type indicate primary articles. References followed by **t** indicate material in tables.

Abrososide D, 2:462, 463t
Abscission agent, ascorbic acid as, 2:570
Absorption
 of mineral nutrients, 2:116, 119t
 of sodium and potassium ions, 2:130
 of sugar alcohols, 2:435–436
 of vitamin C, 2:580
Absorption spectra, of fats and oils, 1:448–449
ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-sulfonate), in tea antioxidant assay, 2:520
Acacia, waxes from, 2:620
Acacia gum, 1:204
Acceptable Daily Intake (ADI), 1:53, 713, 769, 771
Accutane, 2:598
Acer nigrum, maple syrup from, 2:494
Acer saccharum
 maple syrup from, 2:494
 sucrose in, 2:364
Acesulfame-K, 2:453–454
 as food additive, 1:717
 economic aspects of, 2:446
Acetalation, of hydroxyl groups, 1:190
Acetaldehyde, in wine, 2:681
Acetal formation, from sugar alcohols, 2:431
Acetates
 of starch, 2:342–343, 345
 in sugar alcohol analysis, 2:434
Acetic acid, 1:68
 as food additive, 1:720
 in making vinegar, 2:543
 in MSG production, 2:155
 in vinegar, 2:539
 vinegars with high concentrations of, 2:547
 in wine labeling, 2:709
 in wine tasting, 2:704
Acetobacter, in making vinegar, 2:539, 540, 543, 545, 546, 548
Acetobacter suboxidans
 in ascorbic acid manufacture, 2:566
 in sugar alcohol oxidation, 2:431–432
Acetobacter xylinium
 in sugar alcohol oxidation, 2:431–432
 in making vinegar, 2:544, 547
Acetobromoglucose, 1:183
Acetoin, in beer brewing, 2:733
Acetone, in sorbic acid production, 2:268
Acetonization, in ascorbic acid manufacture, 2:565, 566
Acetylcholine, calcium ion and, 2:120
O-Acetylated hemicelluloses, 1:194
Achiral columns, 1:23
Acid anhydrides, dextrose (D-glucose) reactions with, 2:475–476
Acid blue, 1:72
Acid-catalyzed hydrolysis, 1:457
Acid chloride, in microencapsulation, 2:28
Acid cleaning, in breweries, 1:125
Acid conversion, in corn syrup production, 2:490, 492
Acid converted syrup, composition of, 2:491
Acid detergent fiber (ADF), 1:342
method, 1:347
Acid–enzyme conversion, in corn syrup production, 2:490, 492
Acid foods, thermal preservation of, 1:755
Acid hydrolysis of protein, 1:44–45
of starch, 2:335
Acidic aluminum salts, as food additives, 1:733
Acidic phosphates, in bakery applications, 1:87
Acidimetric titration, in succinic acid/ anhydride analysis, 2:358
Acid insoluble ash, in spice quality measurement, 2:316
Acidity, in wine analysis, 2:703
Acid-modified starch, 1:197; 2:340
uses of, 2:343
Acid number, in wax analysis, 2:637
Acids
in coffee, 1:270
in fermentation, 1:540
in sorghum wax, 2:626
waxes from, 2:617
in wine, 2:681, 689
Acidulants, 1:720–722
in carbonated beverages, 1:212–213
measuring, 1:611
microencapsulation of, 2:36–37
in pet foods, 1:477
Acid value, 1:894
Acid yellow, 1:72
Acinetobacter, waxes from, 2:619
Acitretin, 2:598
Acne, drugs for treating, 2:598
Acorn flour, uses of, 2:231
Acrodermatitis enteropathica, zinc and, 2:138
Acrylamide, 1:775–776
Actilight, uses of, 2:409
Actin, calcium ion and, 2:120
Activated carbon, in making vinegar, 2:548
Active dry wine yeasts (WADY), 2:734
Active dry yeasts, 1:97; 2:726–727
Active methylene compounds, alkylation of, 1:19
Active oxygen method (AOM), 1:453
N-Acylamino acids, enzymatic hydrolysis of, 1:24
N-Acylation, 1:14
Acyl side-chain reactions, of lecithin, 1:886–887
Adapalene, 2:598
Additives. See also Feed additives; Food additive entries
generally recognized as safe, 1:472
in milk products, 2:98–99
S-Adenosylmethionine (SAM), 2:126–128
Adenosylcobalamin, 2:612
Adequate Intake (AI), of vitamins, 2:593
Adipic acid, 1:213; 2:357
as food additive, 1:720
Adipic acid process, succinic acid in, 2:352
Adjunct mash, 1:128
Adjuncts, in brewing, 1:125
Adulteration of fruit juices, 1:828
of spices, 2:317–321
Adverse Reaction Monitoring System (ARMS), 1:710
Advisory Committee on Hypersensitivity to Food Constituents (FDA), on MSG, 2:159
Aegilops tauschii, 2:643
Aerobacter, in MSG production, 2:155
Affination, in molasses manufacture, 2:496
Affination station, in sugar refining, 2:380
Aflatoxicosis, 1:792
Aflatoxin B₁, 1:792
Aflatoxin contamination
in peanut storage, 2:301
in soybean storage, 2:290
Aflatoxins, 1:791–792, 794
in cottonseed, 2:291, 301
in nuts, 2:219–220
in peanut storage, 2:291
Africa
Brazil nut production in, 2:230
molasses from, 2:496
tea in, 2:502, 510
Aftertastes, sugar alcohols as reducing, 2:437
Agaricus bisporus, mannitol in, 2:427
Agaritine, 1:783
Agar plate method, in testing milk for microbes, 2:94
Agars, 1:202–203, 872, 873
as food additives, 1:728
Age-related macular degeneration (AMD), 2:176–178
carotenoids and, 2:177–178
epidemiological studies of, 2:177
etiology of, 2:176–177
lutein and zeaxanthin and, 2:177–178
macular pigment optical density and, 2:177, 178
prevalence of, 2:177
risk factors for, 2:177
zeaxanthin versus, 2:174
Age-thickening effects, in sweetened condensed milk, 2:99
Age-thinning effects, in sweetened condensed milk, 2:99
Agglomeration, in making dry milk, 2:102
Aging in brewhouse operations, 1:135
of wines, 2:697–699
Agitator design, in fermentation, 1:545
Agitators
fermentor, 1:536
in milk pasteurization, 2:76
Aglucose, in tea, 2:505
Agricola, Georgius, 2:144
Agricultural by-products, as ruminant feed, 1:492
Agricultural imports, 1:109–110
Agriculture. See also Cultivation; Dairies; Dairy industry; Farms; Harvesting; U.S. Department of Agriculture (USDA)
ascorbic acid in, 2:570
microwave technology in, 2:61
pesticide use in, 1:771–772
of cereal grains, 2:648e
of corn, 2:664–665
of winemaking, 2:675–679, 699, 700t
spices in, 2:312–313
vinegar used in, 2:551
Agrochemicals, vanillin in, 2:536–537
“A-HB” theory, in tasting sweetness, 2:467
AH–B–X Theory of sweetness, sugar and, 2:367
Air, in ice cream, 2:107
Air classification, of wheat flour, 2:660–661
Air supply, in fermentation, 1:546–547
d-Alanine, enzymatic production of, 1:42
d,L-Alanine, 1:25
fermentative production of, 1:32t
l-Alanine
enzymatic production of, 1:42
production from l-aspartic acid, 1:35
Alcohol. See also Alcohols; Ethanol (ethyl alcohol)
consumption of, 1:137–140
in dessert wines, 2:694–695
in making vinegar, 2:539–540
Alcohol content, in wine classification, 2:679–680
Alcohol dehydrogenase, in tea, 2:507
Alcoholic beverages, 1:508. See also Distilled beverage spirits
flavoring, 1:171–172
packaging for, 2:243
Alcoholic fermentation, in making vinegar, 2:541–543
Alcoholic solutions/extracts, in carbonated beverages, 1:215
Alcoholism, folic acid deficiency and, 2:610
Alcohol reduction pervaporation system, 1:162
Alcohols. See also Alcohol; Ethylene–vinyl alcohol (EVOH); Poly(vinyl alcohol)
in beeswax, 2:621
in carnauba wax, 2:624
in rice bran oil, 2:625
in sorghum wax, 2:626
sugar, 2:421–444
in sugar cane wax, 2:626
waxes from, 2:617, 618, 619, 620
in wine, 2:681–682, 683
Alcohol Tax Unit, 1:144
Alcohol yield, 1:144–145
Alcoholysis, of organic phosphates, 2:431
Aldaric acid, 1:187
Aldehyde group, oxidation to sugar acids, 1:186
Aldehydes
carboxylation of, 1:20
in sorghum wax, 2:626
succinic acid/anhydride condensation
with, 2:353–354
vanillin as, 2:533
waxes from, 2:617
Alditols, 1:187; 2:422
anhydridation of, 2:429
physical properties of, 2:422, 423–424t
Aldohexose, 1:175
Aldonic acids, 1:186
Aldoses, 1:174
in isomerization, 1:190
ring forms of, 1:177
D-Aldoses, 1:176
Alembic still, 1:141–142
Aleurone layer, 1:119
Ale yeast, 1:131
Alfalfa, 1:80
Alfalfa meal, for animal feed, 1:815
Algae. See also Seaweed
dulcitol in, 2:428
mannitol from, 2:433
mass cultivation of, 1:799
photosynthetically grown, 1:803t
protein quality and digestibility for, 1:804t
Algae meal, as a food colorant, 1:316
Alginates, 1:872
as food additives, 1:728
Algic acid, 1:346
Algins, 1:201–202, 872
Alicyclobacillus, 1:839
Alitame, 1:212; 2:452
as food additive, 1:717
Alitretinoin, 2:598
Alkali fat refining, 1:433
Alkaline degradation, of sucrose, 2:370
Alkaline hypochlorite, in starch oxidation, 2:340–341
Alkaline water, 1:100
Alkalinity, in sugar juice purification, 2:388, 389, 390, 391
Alkalis
explosive reaction with succinic acid, 2:351
in food, 1:737
Alkaloids
in chocolate and cocoa, 1:240–241
in coffee, 1:270
molecular structure of, 2:213
in nuts, 2:212–213
toxicity of, 1:786
vasoactive and psychoactive, 1:785–787
Alkyl halide reaction, 1:19
Alkyl halides, sugar polyols and, 2:431
N-Alkyl succinimides, 2:354, 355
Allergic reactions, of vanillin, 2:538
Allergies
egg-related, 1:373
to wines, 2:706
spice adulteration and, 2:317–321
spice color test by, 2:317
spice labeling by, 2:317
spices defined by, 2:311, 317
Standard Method Manual, 2:315
American Viticultural Areas (AVA), 2:680, 708
Amidated pectins, 1:873–874
Amidation, 1:15
synthetic waxes from, 2:635
Amines
in microencapsulation, 2:28, 29
sorbic acid reactions with, 2:264
vasoactive and psychoactive, 1:785–787
vitamins as, 2:590
Amino-acid-bacteria mutants, 1:34–35
Amino acid biosynthesis
pathway for, 1:28–34
Amino acid imbalance, 1:48
d-Amino acid oxidase, 1:22
Amino acid polymers, 1:8
Amino acid producers, breeding by gene
technology, 1:36–37t
Amino acid profiles, of fish protein
concentrates, 1:817
Amino acids, 1:1–65
analytical methods for, 1:44–47
from aspartame, 2:448
biosynthetic pathways for, 1:26
chemical properties of, 1:14–18
in chocolate, 1:242t
as components of nutrients, 1:2
discovery of, 1:2
economic aspects of, 1:44
as fermentation products, 1:503–504
fermentative production of, 1:28, 29–33t
in gelatin, 1:856–857
health and safety aspects of, 1:47–51
induction of asymmetry by, 1:18
in insulin, 2:127
manufacture and processing of, 1:25–44
metabolism of, 1:50
in milk, 2:109, 110t
modification in protein molecules, 1:50–51
as neurotransmitters, 1:50
in nonphotosynthetic microorganisms, 1:810t
in nuts, 2:206, 208, 209t
in oilseeds, 2:287t, 300–301
optical resolution of, 1:21
physical constants of, 1:9–11t
physical properties of, 1:8–14
pK, pI, and solubility of, 1:13t
production from hydrocarbons, 1:34t
protected, 1:55
reactions depending on amino and
carboxyl groups, 1:16
sulfur in, 2:125
in tea, 2:507
in thamatin I/II, 2:461
toxic, 1:782
toxicity of, 1:49t
U.S. demand for, 1:44t
use in medicine, 1:7–8
use in the food industries, 1:7
uses for, 1:51–55
\(\alpha \)-Amino acids, 1:1–2, 3–6t
synthesis of, 1:18–21
toxicity of, 1:49–50
l-Amino acids, 1:22
manufacture of, 1:7
taste profiles of, 1:52t
Amino acid scores, 1:48
Amino acid sugar reactions, 1:670t
Amino alcohols, reduction to, 1:15
p-Aminobenzoic acid (PABA), as
pseudovitamin, 2:615
\(\gamma \)-Aminobutyric acid (GABA), 1:50
Amino group reactions, 1:14–15
Aminomimidazole carboxamide ribotide
(AICAR), 2:610
Aminopropyl-bonded silica, in sugar
chromatography, 2:405
Ammonia, from sugar beets, 2:391
Ammonium bicarbonate, 1:84–86
Ammonium salts, of citric acid, 1:263
Ammonium starches, 2:344
Amorphous structure, of cane sugar, 2:367
Amphoteric character, of gelatin, 1:858–859
Amygdalin, 1:789
in nuts, 2:213
\(\alpha \)-Amylase(s), 2:334
in dextrose manufacture, 2:476–477
in starch hydrolysis, 2:335
\(\beta \)-Amylase, 2:334
in starch hydrolysis, 2:335–336
Amylase enzymes, 1:127, 128
Amylases
in dextrose manufacture, 2:478
distilled beverages and, 2:736
Amylolytic enzymes, I:100
Amylopectin, I:196
chemical properties of, 2:333–334
degradation of, 2:336
in corn starch, 2:666
molecular structure of, 2:334
molecular weight of, 2:335
oxidation of, 2:341
Amylose, I:182, 195–196
chemical properties of, 2:333–335
degradation of, 2:336
in corn starch, 2:666
molecular structure of, 2:333
molecular weight of, 2:335
oxidation of, 2:341
structure of, 2:333
Amylose–butanol complex, 2:333
Anacardic acid, in nuts, 2:214
Anaerobic yeast metabolism, I:133
Analysis. See also Analytical test methods;
Aroma analysis; Assays; Chemical analyses; Descriptive analysis;
Headspace analysis; Physical analysis;
Sensory analysis; Sugar analysis
of aroma, I:607, 608, 609
of ascorbic acid, 2:568–569
of bitter substances, I:612
of brewed coffee, I:272t
of citric acid, I:260
of coca shell, I:232t
of corn syrups, 2:482t, 493
of dextrose, 2:481
of dietary fiber, I:346–349
of fats, I:451–454
of gelatin, I:861
of green coffee, I:269t
of high fructose corn syrups, 2:490
of instant coffee, I:272t
of lecithin, I:893–894
of milk, 2:93–96
of molasses, 2:497
of roasted coffee, I:272t
of sorbic acid, 2:658–659
of succinic acid and anhydride, 2:358
of sugar alcohols, 2:434–435
of sugars, 2:401–406
of taste substances, I:610–612
of vanillin, 2:537
of vinegar, 2:550
of vitamins, 2:615
of waxes, 2:635–639
of wines, 2:702–705
Analytical test methods, for gelatin, I:861.
See also Analysis
Anatase, I:315
Anemia
cyanocobalamin and, 2:612
folic acid deficiency and, 2:610
Anencephaly, folic acid deficiency and,
2:610
Anesthetics
as registered aquaculture chemicals, I:75
registration potential of, I:82
Anethum graveolens, 2:324
Anethum sowa, 2:324
Anguilla aceti, in making vinegar, 2:547
Anhydride
of sorbic acid, 2:266
formation of, I:15–16
Anhydridation, of sugar alcohols,
2:429–430
Anhydroglucopyranose units, in starch,
2:666
Anhydrous α-dextrose (α-D-glucose), 2:473–474
in dextrose refining, 2:480
Anhydrous β-dextrose (β-D-glucose),
2:473–474
in dextrose refining, 2:480
Anhydrous milk fat, 2:103, 104t
Anhydrous monocalcium phosphate
(AMCP), I:84, 90
Animal fats
processing, I:432
rendering, I:443
Animal feed(s)
corn as, 2:665
lecithin in, I:895
molasses in, 2:497
from oilseed proteins, 2:303–304
sorbates in, 2:275
vanillin in, 2:535
Animal feeding studies, I:289–290
Animal growth hormones, I:513
Animal products, derived, I:817–818
Animals
ascorbic acid biosynthesis in, 2:571–572,
573
ascorbic acid from, 2:554–555, 613
lactose from, 2:415–416
MSG in, 2:158
sorbitol in, 2:426
vitamin C metabolism in, 2:580
vitamin D from, 2:599–600
vitamins in, 2:590–591, 613
Animal tissues, enzymes produced from, 1:741
Animal waxes, 2:617, 620–623
Anion exchange resins, in sugar alcohol analysis, 2:434
Anionic polysaccharides, 1:346
Anise seeds, 2:321
Anisidine, 2:528
Annatto extract, as a food colorant, 1:305–306
Anomeric effect, 1:183
Anosmias, 1:603
specific, 1:682
Anthesis, of cereal grains, 2:648, 649
Anthocyanidins, in wine, 2:683
Anthocyanin grape pigments, 1:311
Anthocyanins, in wine, 2:682–683
Antibacterials
as registered aquaculture chemicals, 1:67
registration potential of, 1:80–81
Antiberiberi factor, 2:590
Antibiotic market, 1:522
Antibiotics
beta-lactam, 1:512
demand for, 1:511, 512
FDA approval of, 1:472
as feed additives, 1:464
as fermentation products, 1:504
in meat, 2:18
in ruminant feeds, 1:498
Anticaking agents, as food additives, 1:739
Anticancer agent, wine as, 2:706
Anticariogenicity, of sugar alcohols, 2:436
Anticoagulants, 2:603, 604
Anticoccidial compounds, as feed additives, 1:468
Antifoaming (defoaming) agents, 1:541
as food additives, 1:739
in ruminant feeds, 1:498
vanillin as, 2:537
Antimicrobial effects
of sorbic acid, 2:263, 269–272
of vanillin, 2:536
Antimicrobials, as food additives, 1:733–735
Antimycin, 1:73, 76, 82
Antimycotics, in yeast-raised products, 1:101
Antinutrients, toxic, 1:787–788
Antinutritional factors, in oilseeds, 2:296–301
Antioxidant model systems, 2:520–522
Antioxidant nutrients, as food additives, 1:737
Antioxidants, 1:431, 464–468
ascorbic acid, 2:569–570, 578
effect on oils, 1:454
epigallocatechin gallate as, 2:185
as feed additives, 1:464–468
as food additives, 1:733, 735–737
lycopene as, 2:179
as nutraceuticals, 2:162
nut storage and, 2:218
in pet foods, 1:480
selenium and, 2:141
in tea, 2:519–522
vitamin E analogues as, 2:169–171
vitamin E as, 2:602
from wheat germ, 2:653
in wines, 2:706
Antisense compounds, 1:515
Antivitamins, 1:788
Anygdalin, in nut products, 2:223
AOAC Te Sa test, for milk fat, 2:96
Aperitif wines, 2:679
Apis mellifera, wax from, 2:621
Apium graviolens, 2:323
β-Apo-8’-carotenal, 1:297
as a food colorant, 1:307–308
Appearance, of food, 1:653
Apple juice
making vinegar from, 2:540e
manufacturing process for, 1:829
opalescent, 1:837
Apples, vinegar from, 2:539
Apple vinegar, 2:539
labeling standards for, 2:549
Apple whiskey, 1:143
Applicators, microwave, 2:51–56
“Aqua ardens,” 1:141–142
Aquacultural chemicals, 1:66–83
registered, 1:67–75
registration potential of, 1:80–82
regulation and registration outside the U.S., 1:76–80
Aquaculture Drug Approval Partnership, 1:80
Aquaculture production, 1:590, 593t
Arabica coffee, 1:282
d-Arabinitol, 2:422, 423t
occurrence and preparation of, 2:425
uses of, 2:437
D,L-Arabinitol, 2:423t
occurrence and preparation of, 2:425
L-Arabinitol, 2:422, 423t
esterification of, 2:431
L-Arabino-(4-O-methyl-D-glucurono)xylans, 1:194
Arabinogalactans, 1:194–195
Arabinoxylans, 1:195
D-Araboascorbic acid, 2:557–558
L-Araboascorbic acid, 2:557–558
Arachidonic acid (AA) as nutraceutical, 2:181
health factors related to, 2:183
molecular structure of, 2:181
Arachin
in nuts, 2:206, 208t
in peanuts, 2:287
Arachis hypogaea, classification, production area, and uses of, 2:283t
Archaeology, of winemaking, 2:675
Arden spirits, 1:141
Arecoline, in nuts, 2:213
Arginine
in cat foods, 1:481
in nuts, 2:209t
L-Arginine, 1:54
fermentative production of, 1:30t
Argyrin, in nuts, 2:212
Armagnac, 1:151
Aroma. See also Aroma perception
in beer brewing, 2:732–733
chemical characterization of, 1:604–610, 686–690
in green tea manufacture, 2:515
in instant tea manufacture, 2:515–516
of tea, 2:507
of vanillin, 2:531, 533
of wine, 2:682, 683, 690, 698–699, 703, 704–705
Aroma activity values (OAVs), 1:273
Aroma analysis, 1:690–693
a aroma compound characteristics in, 1:690–691
example of, 1:692–693
instrumental, 1:607, 608, 609
Aroma chemicals. See also Aroma compounds
extraction of, 1:691
as food additives, 1:722
Aroma compounds, 1:616. See also Aroma chemicals
in coffee, 1:272–273
concentration of, 1:689–690
in food, 1:605
Aroma Extract Concentration Analysis (AECA), 1:608
Aroma extraction dilution analysis (AEDA), 1:273, 608, 685
Aroma impact components, 1:691–693
Aroma isolation methods, 1:605, 606–610
Aroma perception, 1:679–686
anatomy and physiology of, 1:679–681
interactions with other senses, 1:682–683
orthonasal route to, 1:681
psychology of, 1:682–683
psychophysics of, 1:683–684
stimuli that impart, 1:680
taste and, 1:610
Aromatic aldehydes, 1:159–160
Aromatic rum, 1:152
Aroma volatility, 1:686–689
mouth conditions and, 1:688
Arrowroot, 2:667
Arsenic (As), 1:789
toxicity of, 2:146
as trace nutrient, 2:146
Art, winemaking and, 2:675
Artemisia dracunculus, 2:328–328
Arthritis, zinc and, 2:138
Arthrobacter luteus, 2:718
defined, 1:698
Artificial food colors, commonly used, 1:216t
Artificial fruit flavors, 1:664
Artificial intelligence, in fermentation, 1:543
Artificial leather, amino acids in, 1:55
Artificially colored food products, 1:288
Artificial pineapple flavor, 1:667t
N-Aryl succinimides, 2:354
Ascomycetes, 2:711
reproduction in, 2:718
Ascorbic acid (vitamin C), 1:745, 790; 2:554–589, 612–613
analysis of, 2:568–569
biochemistry of, 2:575–582
biosynthesis of, 2:554–555, 571–573, 574, 575
in body pool, 2:580
in carbonated beverages, 1:213
chemical properties of, 2:555, 560–561, 612–613
common cold and, 2:556–557
crystalline, 2:558
degradation in food, 2:574
derivatives of, 2:554–555, 570–571
economic aspects of, 2:568
environmental issues related to,
2:567–568
as food additive, 1:736
history of, 2:555–556
isolation of, 2:555, 556
isomers of, 2:557–558
major suppliers of, 2:564
metabolism of, 2:580
in milk, 2:68t
molecular structure of, 2:554, 556,
557–558, 612
nomenclatural synonyms of, 2:554
in nut products, 2:223
in nuts, 2:212, 217
packaging of, 2:567
physiological effects of, 2:557, 575–582
production/manufacture of, 2:564–567,
614t
properties of, 2:558–561
RDAs of, 2:594t
requirements, 2:581
scurvy and, 2:163, 554, 555–556, 557,
579–580
sources of, 2:573–574, 576t
specifications for, 2:568
stability of, 2:561
synthesis of, 2:556, 561–564
toxicity of, 1:789; 2:581–582
uses of, 2:569–570
D-Ascorbic acid, 2:557–558
synthesis of, 2:556
L-Ascorbic acid, 2:554–555, 557–558
physical properties of, 2:559t
L-Ascorbic acid cycloimine, in ascorbic acid
synthesis, 2:561
Ascorbic acid deficiency, 2:554, 555–556,
557, 579–580, 613. See also Scurvy
Ascorbic acid oxidase, inactivating, 2:574
L-Ascorbic acid oxidase, 2:561
Ascorbyl palmitate, 2:555
Aseptic filling systems
for dairy products, 2:241
for fruit juices, 1:839
for milk, 2:93
Ash
determination in sugar analysis, 2:406
in nuts, 2:207t
in spice quality measurement, 2:316
in sugar quality control, 2:401
in tea, 2:507
Asia
cinnamon from, 2:323
eyear sugar production in, 2:364
fructose production in, 2:488
genistein consumption in, 2:186–187
green tea in, 2:185
instant tea manufacture in, 2:515
molasses use in, 2:412, 496
nutmeg from, 2:325–326
rice in, 2:663
soybean and oilseed use in, 2:282, 297t,
298t, 299t
spice industry in, 2:312
sugarcane in, 2:375, 379
tea from, 2:502, 503–504, 510
vinegars in, 2:541
D-Aspartic acid, 1:54
L-Aspartic acid
enzymatic production of, 1:42
fermentative production of, 1:31–32t
L-Aspartyl-L-phenylalanine methyl ester,
1:7, 53. See also Aspartyl-
phenylalanine
Aspartame, 1:53, 212; 2:446–451
in aqueous solution, 2:447–448
caloric content of, 2:447
decomposition of, 2:448–449
deesterification of, 2:447, 448
economic aspects of, 2:446, 447
as food additive, 1:717
in fruit spreads, 1:850
isomers of, 2:449, 450
molecular structure of, 2:447
physical properties of, 2:447–448
production/manufacture of, 2:446–447,
449–451
safety factors related to, 2:451z
synthesis of, 2:449–450
Aspartyl-phenylalanine, from aspartame,
2:448, 449. See also L-Aspartyl-L-
phenylalanine methyl ester
Aspergillus, 2:737
in soy sauce production, 2:738
Aspergillus candidus, mannitol in,
2:427
Aspergillus flavus
in cottonseed storage, 2:291
nut toxins and, 2:219
in peanut storage, 2:291
in soybean storage, 2:290
Aspergillus niger, 1:255; 2:409
in dextrose manufacture, 2:478
in fermentation, 1:509, 510
mannitol in, 2:427
Aspergillus oryzae, 2:465
in corn syrup manufacture, 2:492
soy sauce and, 2:305
vaccine made by, 2:541
Aspergillus sojae, soy sauce and, 2:305
Assays. See also Analysis; Microbial assay
ascorbic acid, 2:556, 568–569
for sorbic acid and potassium sorbate, 2:268–269
for tea antioxidants, 2:615
in vitamin analysis, 2:615
Assilicic acid, 2:138–139
Association of American Feed Control
Officials (AAFCO), Nutrient Profiles of, 1:482–485
Association of Official Analytical Chemists
(AOAC), 1:451
on sugar standards, 2:400
Associations, as flavor information sources, 1:700–701
Asymmetric amino acid synthesis, 1:24–25
Asymmetric hydrogenation, 1:24t
Atherogenesis, tea antioxidants versus, 2:520
Atherosclerosis, vitamin C versus, 2:576–577
Atmospheric pressure ionization mass
spectrometers (APIMS), 1:688
Atomic absorption spectroscopy, in succinic
acid/anhydride analysis, 2:358
Atomizers, for spray drying, 1:627
ATP (adenosine triphosphate)
phosphorus in, 2:123, 124
sodium and potassium ions and, 2:128–130
ATPase (adenosine triphosphatase)
calcium ion and, 2:120
sodium and potassium ions and, 2:128–130
Attenuated viruses, 1:507
Australia
aquacultural chemical regulation/
registration in, 1:77–79, 80t
macadamia nut production in, 2:230
sugarcane harvesting in, 2:374, 375
tea in, 2:502, 503
Automation, in fermentation, 1:542–543
Autoxidation (autooxidation)
of lecithin, 1:887
of stored peanut butter, 2:219
of vanillin, 2:533
Auxotrophic mutant bacteria strains, 1:34–35
Avicel, 1:403
Avicel cellulosics, 1:349
Avidin, 2:608
Azo colors, 1:299
Azodicarbonamide (ADA), 1:105, 106
Azodyes, 1:726
Babassu nuts, processing of, 2:220–221
Babcock test, for milk fat, 2:95–96
Bacillus, in soy sauce production, 2:738
Bacillus amyloliquefaciens, in dextrose
manufacture, 2:476
Bacillus licheniformis, in dextrose
manufacture, 2:476, 477
Bacillus macerans, in starch cyclization, 2:336
Bacillus megaterium amylase, in dextrose
manufacture, 2:478
Bacillus stearothermophilus
in dextrose manufacture, 2:476, 477
in milk analysis, 2:95
in starch cyclization, 2:336
Bacillus subtilis, in dextrose manufacture, 2:476–477
Bacillus thuringensis (BT), cell mass from, 1:505
Backset, 1:145
Bacteria
in bakers’ yeast fermentation, 2:725
buttermilk cultured with, 2:103
in canned foods, 2:241
colonic, 1:345
distilled beverages and, 2:736
food packaging and, 2:240
glutamic acid, 1:34
in high fructose corn syrup manufacture, 2:487
in making cheese, 2:103–105
in making vinegar, 2:545–546
in microbial biomass, 2:737–740
milk pasteurization and, 2:74
in MSG production, 2:154–155, 156
nut toxins and, 2:219
optimum growth temperature range for, 1:576t
removing from spices, 2:314–315
sorbic acid versus, 2:263, 269–272
in sourdoughs, 2:730
in soy sauce production, 2:738
spore-forming, 1:751
in starch cyclization, 2:336
in stored nut decontamination, 2:220
in sugar alcohol oxidation, 2:431–432
sugar and, 2:445
as sugarcane pests, 2:373–374
testing milk for, 2:94–95
vanillin versus, 2:536
vinegar made by, 2:539, 541, 543
waxes from, 2:619
in wet-milling of corn, 2:338
winemaking and, 2:678
Bacterial alpha-amylase
in dextrose manufacture, 2:476
Bacterial cellulose, 1:350
in making vinegar, 2:544
Bacterial single-cell protein production, 1:805–806
Bacteriophages, 1:514
in fermentation, 1:549
Bacteriosins, 1:751
Bactofugation, in milk processing, 2:72
Baculovirus expression vector system, 1:525
Bagasse
from sugarcane processing, 2:377, 378
uses of, 2:411–412
Bagels, 1:107–108
Bags
flexible plastic, 2:254
for tea, 2:517–518, 519
Baiyunoside, 2:462, 463t
Baked goods. See also Bakery foods; Bread entries
packaging for, 2:242–243
sorbates in, 2:274
from wheat, 2:657
yeast in, 2:727
Bakers’ caramels, 1:309
Bakers’ yeast, 1:95, 799; 2:723–725
in biomass production, 2:738, 739
Bakery foods, standards of identity for, 1:110–111. See also Baked goods
Bakery processes
chemical leavening agents, 1:84–95
yeast-raised products, 1:95–113
Bakery products
expenditures in, 1:110t
U.S. trade balance in, 1:110t
Baking
of bread, 1:104–105
corn syrups in, 2:493
dextrose in, 2:481
molasses in, 2:497
sucrose in, 2:407–408
vanillin in, 2:530–531, 534
Baking acids, 1:85t
Baking chocolate, 1:230
Baking industry, 1:109
Baking powders
compositions of, 1:93t
manufacture of, 1:92–94
nutritional aspects of, 1:92
Baking products, lecithin in, 1:895
Baking shortenings, 1:98
Baking soda, 1:87. See also Bicarbonates; Sodium bicarbonate
Balling, 1:145
Balsamic vinegar, 2:540–541
labeling standards for, 2:550
manufacture of, 2:5441
Banana puree, 1:842
Banana starch, 2:343
Bancroft’s rule, 1:388
Bar codes, for distilled beverage spirits, 1:169–170
Barium (Ba), in nuts, 2:211
Barley, 2:647
cleaning and storing, 1:117
dried malted, 1:148
malting of, 1:116
morphology of, 2:650
origins of, 2:644
starch in, 2:651, 652
trade in, 2:648
Barley germination chamber, 1:118
Barlow’s disease, 2:613
Basidiomycetes, reproduction in, 2:718
Basidiomycetes, 2:711, 713t
Basil leaf, 2:321
Batch holding, in milk pasteurization, 2:76
Batch pasteurization, in milk processing, 2:75, 76t
Batch process equipment, for thermal preservation, 1:756
Batch sterilization, 1:537
Batchwise conversion, in corn syrup manufacture, 2:492
Batchwise saccharification, in dextrose manufacture, 2:478
Batchwise saccharification, in dextrose manufacture, 2:478
Batter, microwavable, 1:575
Bauer mill, in wet-milling of corn, 2:339
Baume measurement, for corn syrups, 2:493
Bayberry wax, 2:625
Bay leaves, 2:647
Bayluscide, 1:82
Beans, 2:647
Beech wood, in making vinegar, 2:545
Beef
U.S. household expenditures for, 2:15
U. S. imports and exports of, 2:13
Beer
chemical compounds found in, 1:134
defined, 1:145
dextrose in, 2:481
economic aspects of, 1:137
filtration of, 1:135–136
glass packaging for, 2:247, 248
health value of, 1:137–140
history of, 1:114–115
low-calorie, 1:127–128
manufacturing stages of, 1:113–114
packaging, 1:136–137; 2:243
pasteurized, 1:137
production statistics for, 1:138–139t
“skunky,” 1:124
winemaking versus, 2:676
yeasts in brewing, 2:730–733
Bee wax
Beet extract, 1:311
Beet sugar, molasses from, 2:496, 497t.
See also Sugar beets
Beele wax
Beet sugar waste, in MSG production, 2:154
Beet washer, 2:384
Behenic acid, 1:412, 415
Belt press, 1:836
Benedictine and brandy (B&B), 1:153
Benefat, 1:415
Bentonite
in making vinegar, 2:548
in winemaking, 2:696
Benzalkonium chloride, 1:75
Benzoin acid
as food additive, 1:733
waxes from, 2:618
Benzoic acid
as food additive, 1:732
as food additive, 1:732
Beri berry, 2:590, 669–670
Berlin Institute Method, of reducing-sugar determination, 2:403
Beta-adrenergic agonists, as meat health hazards, 2:18
Betacyanins, 1:310–311
Betaine, from sugar beets, 2:391
Betaines, 1:310
Beta-sitosterol, 1:188
Beta vulgaris, 2:382. See also Sugar beets
sucrose in, 2:364
Beverage bases, in carbonated beverages, 1:215
Beverages. See also Alcoholic beverages;
Beer; Coffee; Soft drinks; Tea
carbonated, 1:209–224
corn syrups in, 2:493
dextrose in, 2:481
fructose in, 2:414
glass packaging for, 2:247–248
high fructose corn syrups in, 2:490
packaging for, 2:243
saccharin in, 2:454
vanillin in, 2:535
yeast-fermented, 2:723
Beverage spirits. See Distilled beverage spirits
Beverage spirits manufacture, by-products of, 1:158–159
Bexarotene, 2:599
Biases, in wine tasting, 2:703. See also Scaling biases
Biaxially oriented polypropylene (BOPP) film, in plastic food packaging, 2:250
Bicarbonates, 1:84–86, 802
as food additives, 1:741
Bioactive nutritions, 2:163t, 166
Bioantimutagens, vanillin as, 2:405
Biocatalysts, whole-cell, 1:505–506
Biochemical engineering, 1:511
Biochemical enzymatic transformations, 1:513–514
Biochemical food deterioration, 2:239
Biochemical oxygen demand (BOD), 1:551
Biochemical routes, 1:507
Biochemistry
of ascorbic acid, 2:575–582
of sweetness, 2:466–468
winemaking and, 2:677
Bioconversions, 1:505–506, 508, 509, 511
Biodegradation, of emulsions, 1:387
Biofuel, 2:651–653
Biogen, 1:513
Biological antioxidant models, 2:520–522
Biological assays, ascorbic acid, 2:568
Biological methods, of vitamin analysis, 2:615
Biological oxygen demand (BOD), 1:125 in bakers’ yeast fermentation, 2:725
Biological properties, of sugar alcohols, 2:435–436
Biologicals economic aspects of, 1:523 as fermentation products, 1:506–507
Biological tissue, applying electromagnetic energy to, 2:41–42
Biological value (BV), 1:48, 813
Biomarkers, in nutraceutical testing, 2:166–167
Biomass economic aspects of, 1:522 as a fermentation product, 1:504–505
Biomass production, 1:512 yeasts in, 2:737–740
Bioprocessing, 1:503
Bioregulators, 1:669
Biosynthesis. See also Synthesis of ascorbic acid, 2:554–555, 571–573, 574, 575 of tea polyphenols, 2:504, 507t, 508–509
Biotechnology, 1:503 in the edible oils industry, 1:443 milk and milk products and, 2:111–112 vanillin production via, 2:529–530
Biotechnology companies, examples of, 1:518–521

Biotin, 2:168t, 608 history of, 2:591t in milk, 2:68t in MSG production, 2:155 molecular structure of, 2:608 production/manufacture of, 2:614t RDAs of, 2:594t
Biotin deficiency, 2:608
Bisflavanols, in tea manufacture, 2:512 Bisglycinatocopper(II) reaction, 1:19

Black oxides, 1:314
Blackstrap molasses, 2:496 uses of, 2:412, 497
Black walnut kernels, seasonal compositional changes in, 2:216t
Blanching of microwaved food, 2:60 of nuts, 2:221–222 Blanco Directo process, for sugarcane processing, 2:379
Blast convection freezing, 1:582–583
Blast freezing, 1:578–579
Bleaching of almonds, 2:221 of fats and fatty oils, 1:434 of nuts, 2:220, 221 in wet-milling of corn, 2:340
Bleaching agents, as food additives, 1:732
Blended vinegar, labeling standards for, 2:550
Blended whiskey, 1:150
Blending of cocoa beans, 1:228 of nonnutritive sweeteners, 2:446 of tea, 2:517 of wines, 2:697–699
Blindness, via macular degeneration, 2:176
Bloat, 1:498
Block processed cheese, 1:333–334
Blood calcium ion in, 2:121, 122 chloride ion in, 2:130–131 iron in, 2:137 zinc in, 2:138
Blood clotting calcium ion in, 2:120 vitamin K in, 2:603, 604
Blood glucose response, to sugar alcohols, 2:435–436
Blood lipids, nutraceuticals and, 2:163
Blood plasma. See also Plasma
as meat extender, 2:3
copper in, 2:139
iodine in, 2:142
mineral nutrients in, 2:116, 118t
Blood serum, magnesium ion in, 2:132
Blood–serum albumin, in milk, 2:109, 110t
Blow and blow operations, in bottle manufacture, 2:248
Blow–mold–fill–seal system, in making semirigid food containers, 2:259
Blow molding, in making semirigid food containers, 2:258–259
Blue-green algae, growth of, 1:799, 802–803. See also Cyanobacteria
Bohenin, as a fat replacer, 1:415
Boiling, in brewhouse operations, 1:130–131
Bonded whiskey, 1:145
Bone
calcium in, 2:118–120
magnesium in, 2:131
Paget’s disease of, 2:121–123
phosphorus in, 2:118
silicon and, 2:139
Bone density, tea antioxidants and, 2:522
Booster pump, with HTST pasteurizers, 2:80, 81
Bordeaux, 2:710
Boron (B)
foods rich in, 2:134t
in nuts, 2:211
as trace nutrient, 2:140
Botrytis cunerea, in winemaking, 2:694
Bottled in Bond Act of 1897, 1:143–144
Bottles, glass, 2:247–248
Bottling, of wines, 2:698–699
Bottom spraying, in fluidized-bed encapsulation, 1:630
Bottom-spray units, in microencapsulation, 2:33–34
Bottom yeast, 1:132
Bouquet. See Aroma
Bourbon, 1:143, 150
age versus congener formation in, 1:160t
distillation of, 1:157–158
fermentation of, 1:156
sales of, 1:165
Bovine somatotropin (BST; bST), 1:499, 500t
in dairy biotechnology, 2:111–112
as meat health hazard, 2:18
Bovine spongiform encephalopathy (BSE), 1:487–488, 549; 2:19–20. See also “Mad cow” disease
Bran
corn, 2:666
as a dietary fiber source, 1:350
rice, 2:663–664
wheat, 2:653
Branched polysaccharides, 1:867–869
Bran dy, 1:151
flavored, 1:172
Brassicasterol, 2:187–188
Brazil
Brazil nut production in, 2:230
ouricouri wax from, 2:624
sugarcane harvesting in, 2:374
Brazilian palm tree, carnauba wax from, 2:623
Brazil nuts
processing of, 2:221
uses of, 2:230
world production and consumption of, 2:230
Brazzeina, 2:463t
Bread(s)
cooling, slicing, and wrapping, 1:105
cultural significance of, 2:642–643
high fiber, 1:109
yeast in, 2:727–730
Bread flours, 1:97
Breadmaking, 1:95–96
continuous-mix, 1:106–107
conventional, 1:102–105
dough processes for, 1:102
Breakfast cereals, 2:645–646
Break rolls, in wheat milling, 2:659
Breast cancer, genistein versus, 2:187
Breeding. See Coffee breeding; Wheat breeding
Breeding swine, nutrient requirements of, 1:470t
Breptanomyces
in wine spoilage, 2:705
wine yeast and, 2:735
Brevibacterium, in MSG production, 2:155
Brewed coffee
 analyses of, 1:272t
 chemistry of, 1:273–274
Breweries, 1:115
Brewers, yeast recycling by, 1:132
Brewers’ wort, in beer brewing, 2:731
Brewers’ yeasts, 1:131–135, 504–505
 in biomass production, 2:738
 chromium in, 2:143, 144
Brewery fermentations, yeast-mediated biochemical events during, 1:133
Brewhouse operations, 1:126–131
Brewing, 1:113–141
 fermentation in, 1:131–135
 high gravity, 1:131
 history of, 1:114–115
 hops in, 1:121–140
 process of, 1:115–116
 secondary fermentation and finishing in, 1:135–136
 water in, 1:124–125
 yeasts in, 2:730–733
Brewing by-products, in ruminant feeds, 1:494
Brewing industry, biomass from, 2:738–739
Brick teas, manufacture of, 2:515
Bright beer tank (BBT), 1:136
British food laws, spice-related, 2:318
British gum, from starch, 2:341
Brix refractometer, in sugar analysis, 2:402
Brix spindle (hydrometer), in sugar analysis, 2:403
Broiler chickens
 nutrient requirements of, 1:465t
 United States exports of, 2:14t
Broken orange pekoe (BOP) tea, 2:514
Broken orange pekoe fannings (BOPF) tea, 2:514
Broken rice, 2:663, 664
Bromine (Br), in sugar alcohol oxidation, 2:432
N-Bromosuccinimide, 2:354
Brookfield viscosity, 1:894
Browning, of cane sugar, 2:372
Browning reactions, of lecithin, 1:887
Brown oxides, 1:314
Brown pigments, in tea, 2:505
Brown rice, 2:648, 663–664
Brown sugar, 2:379, 380
 refined, 2:381
 uses of, 2:410–411
Bucherer’s process, 1:38
Bucherer synthesis, 1:18
Bucher-Guyer horizontal rotary press, 1:835–836
Buchner, Eduard, 1:509
Buffers
 in ruminant feeds, 1:498–499
 in yeast breadmaking, 2:728
Buffer solutions, in food systems, 1:738
Building materials, dextrose in, 2:481
Bulk density, of cane sugar, 2:368
Bulkling agents, 1:719; 2:464–465
 erythritol, 2:465
 sugar alcohols as, 2:436–437
D-tagatose, 2:465
Bulk ingredient handling, in yeast-raised products, 1:101–102
Bulk milk tanks, 2:89–92, 92–93
Bundesgesundheitsamt (BGA), on petroleum wax standards, 2:632
Blünnagel formula, polarization measurement via, 2:401
Buns, yeast-leavened, 1:107
Bureau of Alcohol, Tobacco, and Firearms (ATF; BATF), 1:144, 147, 709
 regulations of, 1:167, 169
 in wine regulation, 2:707
Burgundy, 2:680
Burning, in sugarcane harvesting, 2:374–375
1,4-Butanediol (BDO), from succinic anhydride hydrogenation, 2:352
Butter, 2:103, 104t
 packaging for, 2:242
 in yeast-raised products, 1:98
Butterfat, in milk, 2:73
Buttermilk, 2:103, 104t
 dried, 2:103
Butylated hydroxyanisole (BHA)
 as food additive, 1:735
 in peanut products, 2:223
Butylated hydroxytoluene (BHT), as food additive, 1:735
tert-Butylhydroquinone (TBHQ), as food additive, 1:735
Butyrate, 1:345
γ-Butyrolactone (GBL), from succinic anhydride hydrogenation, 2:352
By-products
 in nonruminant feeds, 1:463
 in pet foods, 1:476–477
Caffeic acid, in sunflower seeds, 2:289

Caffeine, 1:786. See also Decaffeination
in carbonated beverages, 1:214
in chocolate and cocoa, 1:240–241
in coffee, 1:270
in tea, 2:505, 506

Cake flours, 1:97; 2:662

Cakes, packaging for, 2:242–243

Calandria, 1:131

Calciferols, 2:168t
production/manufacture of, 2:614t

Calcipotriene, 2:601

Calcitonin, 2:121

Calcitrol, molecular structure of, 2:600

Calcium (Ca)
in dextrose manufacture, 2:476
foods rich in, 2:120t
metabolic functions of, 2:118–120
as mineral nutrient, 2:118–123
in nuts, 2:207t, 212, 215
phosphorus and, 2:123
in ruminant feeds, 1:495
in sugar chromatography, 2:405
Calcium absorption, cereal grains and,
2:670

Calcium acid pyrophosphate (CAPP),
nutritional aspects of, 1:91

Calcium ascorbate, 2:555

Calcium aspartate, 1:54

Calcium-binding proteins (CaBPs), 2:116,
122

Calcium carbonate
in sugarcane processing, 2:379
in sugar juice purification, 2:388, 389,
390, 391–392

Calcium chloride, 1:68, 70
as food additive, 1:733

Calcium disorders, 2:123

Calcium hypochlorite, 1:69

Calcium ion (Ca²⁺)
in blood, 2:121, 122
in blood clotting, 2:120
in muscle, 2:120
magnesium ion and, 2:131
Paget’s disease and, 2:121–123

Calcium oxide, 1:68

Calcium pantothenate, 2:607
production/manufacture of, 2:614t

Calcium pectate, 1:205

Calcium phosphate, 2:115

Calcium propionate, 1:101
microencapsulation of, 2:37

Calcium salts, as food additives, 1:732–733

Calcium silicate, as food additive, 1:739

Calcium sorbate, 2:266, 269

Calcium transport, vitamin D in, 2:600

California, sugar beet cultivation in,
2:382

California brandy, 1:151

Caloric values, of sugar alcohols, 2:436

Calorie Control Council, 1:397

Calorie-free fats, 1:99

Calorie reduction,
1:396–397

Calorimetry, in wax analysis, 2:637

Camellia sinensis
polyphenols in, 2:184
tea from, 2:502–504

Canada
acesulfame-K in, 2:453
aquacultural chemical regulation/registration in,
1:76–77
maple syrup production in, 2:494, 495t
sorbate regulation in, 2:276
soybean production and exports by,
2:295, 298t
sugar beet cultivation in, 2:382
tea decaffeination in, 2:516
vitamin levels in, 2:591
wheat production in, 2:655

Canadian Bureau of Veterinary Drugs
(BVD), 1:76

Canadian whiskeys, 1:147–148

Cancer. See also Breast cancer;
Carcinogen-entries; Malignancies;
Prostate cancer
dioxins and, 1:775
genistein versus, 2:187
lycopene versus, 2:179–180, 181
tea antioxidants versus, 2:520–521
vitamin C versus, 2:576, 578

Cancer biomarkers
in lycopene testing, 2:180
in nutraceutical testing, 2:167

Cancer risks, assessment of,
1:769–770

Candelilla wax, 2:624

Candida
medical problems caused by, 2:712
metabolic pathways of, 2:721
species of, 2:713t
strain improvement of, 2:720
useful mutations of, 2:720
as wine yeast, 2:691, 735
Candida albicans
medical problems caused by, 2:712
as pathogenic yeast, 2:742
Candida dubliniensis, medical problems
caused by, 2:712
Candida glabrata, 2:716t
Candida tropicalis, as pathogenic yeast,
2:742
Candida utilis, 1:799
yeast-fermented food and beverages
with, 2:723
Candida utilis yeast, production of, 1:806
Candling, of eggs, 1:360, 362
Candy. See also Confectionery products/
confections
citric acid in, 1:261
lecithin in, 1:895
packaging for, 2:243
vanillin in, 2:530–531
Candy manufacture, sorbitol in, 2:438
Cane fiber, 2:411–412
Cane molasses, 2:496
composition of, 2:497
Cane sugar. See also Sugarcane
chemical properties of, 2:371–372
in molasses manufacture, 2:496–497
physical properties of, 2:367–370
refining of, 2:376, 379–382
uses of, 2:410–411
Cane table, in sugarcane processing, 2:377
Cane vinegar, 2:541
Canine Nutrition Expert (CNE)
subcommittee, 1:482
Canned foods. See also Soft drink can
production
packaging for, 2:241
tin and, 2:145
Canned fruits/vegetables, citric acid in,
1:262
Canned pet foods, 1:474–475
Canning, corn syrups in, 2:493
Cannizzarro reaction, 2:543
vanillin and, 2:533
Canola oil, 1:443
Canola protein products, 1:816
Cans, for food packaging, 2:245–247
Canthaxanthin, as a food colorant, 1:308
Capacitance discharge, food preservation
via, 1:763
Capillary melting point, 1:452
Caprenin, as a fat replacer, 1:412–414
Capsaicinoids, 1:612
Capsicum annum, 2:322
Capsicum frutescens, 2:322
Capsicum spices, 2:322
Capsules, for microencapsulation, 2:24–35
Captex, 1:418
Captrin, 1:418
Caramel
from cane sugar, 2:372
as a food colorant, 1:308–309
vanillin in, 2:534
Caramel color, in carbonated beverages,
1:215–216
Caraway seed, 2:322
Carbohydrate-based fat mimetics, 1:400
Carbohydrate-based fat replacers,
1:400–408
examples of, 1:402t
Carbohydrate-based substitutes, in
reducing fat in meats, 2:9–10
Carbohydrate metabolism, dextrose
(d-glucose) in, 2:476
Carbohydrates, 1:174–209
classification of, 1:174–175
in coffee, 1:270–271
crystalline state of, 1:622
dextrinized, 1:475
low molecular weight, 1:180
in macadamia embryos, 2:216t
in molasses, 2:497
in MSG production, 2:155
noncrystallizing, 1:626
in nuts, 2:207t, 208–211
in oilseeds, 2:289
in pet foods, 1:479
representations of, 1:175–176
saccharide chemistry, 1:176–191
in syrups, 2:473
uses for, 1:191–207
Carbohydrate sweeteners, in fruit
preserves and jellies, 1:849–850
Carbon (C), in MSG, 2:153
Carbonated beverage ingredients, quality
control of, 1:221
Carbonated beverages, 1:209–224. See also
Carbonated soft drinks
economic aspects of, 1:220
health and safety factors related to,
1:223
ingredients in, 1:210–216
manufacturing, 1:216–220
package recycling for, 1:222–223
packaging for, 1:220–221; 2:243
quality control of, 1:221–222
quality control of packaging for, 1:222
recent and future developments related
to, 1:223–224
Carbonated beverage syrup, quality control
of, 1:221
Carbonated soft drinks, U.S. per capita
availability of, 1:220

Carbon dioxide
in beer brewing, 2:733
in carbonated beverages, 1:214
in MSG production, 2:156
in tea decaffeination, 2:517
in wine classification, 2:679–680
Carbon dioxide gas, 1:71
Carbonic anhydrase, 2:115
Carbon sources, in medium development,
1:526
Carbonylation, succinic acid preparation
via, 2:357
Carbonyl groups
in fructose and glucose, 2:370
reactions of, 1:176–188
Carbowaxes, 2:635
N-Carboxy-α-amino acid anhydride (NCA),
formation of, 1:16–17
γ-Carboxyglutamic acid, 1:1
Carboxylation, biotin in, 2:608
Carboxyl group reactions, 1:15–16
Carboxylic acid group, in sorbic acid, 2:265,
266
Carboxymethylcelluloses (CMC), 1:206,
350, 729, 875–876
Carcinogenesis, tea antioxidants versus,
2:520–521. See also Cancer entries
Carcinogenic dyes, as spice adulterants,
2:318
Carcinogenic food additives, 1:766
Carcinogens, 1:793–794
Cardamom seed, 2:323
Cardiovascular biomarkers, in
nutraceutical testing, 2:167
Cardiovascular disease (CVD)
lycopene versus, 2:180–181
polyunsaturated fatty acids versus, 2:184
vitamin E analogues and, 2:170
Cargi rice, 2:648
Carmine, 1:310
Carnauba wax, 2:623–624
Carnitine
molecular structure of, 2:190
as nutraceutical, 2:190
Carnitine biosynthesis, vitamin C in, 2:577
Carob gum, 1:871, 872
α-Carotene
molecular structure of, 2:175
in plants, 2:174t
β-Carotene, 2:599
as a food additive, 1:745
as a food colorant, 1:306–307
molecular structure of, 2:168, 175
in nuts, 2:212
in plants, 2:174t
vitamin A and, 2:167–168
Carotenoids
in fats and fatty oils, 1:431–432
macular degeneration and, 2:177–178
as nutraceuticals, 2:162, 173–181
in plants, 2:174t
Carrageenans, 1:202–203, 872–873
as food additives, 1:729
in reducing fat in meats, 2:9–10
Carrot oil, as a food colorant, 1:315
Cartier, Jacques, 2:555
Cartons, for food packaging, 2:244–245
Carum carvi, 2:322
Casein, 2:109–111
in dairy substitutes, 1:322–323
as food additive, 1:729
in making cheese, 2:103–105
Caseinates, in dairy substitutes, 1:322–323
Casein hydrolyzates, 2:111
Cashews
oil from, 2:233
processing of, 2:220
uses of, 2:230
world production and consumption of,
2:224t, 230
Cassia, 2:323
Casson relationship method, 1:239
Castanin, in nuts, 2:206
Caster sugar, 2:410
Castor oil, 1:441
Castor wax, 2:626
Cast polypropylene (CPP) film, in plastic
food packaging, 2:249t, 250
Catalase, iron in, 2:133
Catalysts in ascorbic acid manufacture, 2:565, 566
in food, 1:742
in sorbic acid synthesis, 2:266–268
in sorbitol manufacture, 2:433
in sorbitol production, 2:426
in succinic acid/anhydride manufacture/processing, 2:356, 357
in succinic anhydride hydrogenation, 2:352–353
Catalytic hydrogenation, of succinic anhydride, 2:352–353
Catch per unit effort (CUE), 1:569
Catechin quinones, in tea manufacture, 2:510–511, 512
Catechins
molecular structures of, 2:184
as nutraceuticals, 2:184–185
in tea, 2:504–505
as tea anticancer agents, 2:521
in tea manufacture, 2:510–511, 512
Catechol, vanillin and, 2:528, 532
Catecholamine biosynthesis, vitamin C in, 2:577–578
Category scaling techniques, 1:601
Cat foods, 1:480. See also Pet foods
Cation exchange resins, in sugar alcohol analysis, 2:434
Cationic starches, 1:197; 2:342, 344
Cat-specific pet food additives, 1:481–482
Celery seed, 2:323
Celiac disease, cereal grains and, 2:668–669
Cell cultivation processes, comparison of, 1:531–532t
Cell fusion technology, 1:35
Cell mass, manufacture of, 1:504–505
Cell morphology, of yeasts, 714–719
Cells, phosphorus in, 2:124, 125
Cellulose
biomass from, 2:739–740
dextrose (β-glucose) in, 2:473
as a fat replacer, 1:401–403
in making vinegar, 2:544
uses for, 1:193–194
Cellulose industry, vanillin production and, 2:529
Cellulose products, commercial, 1:349–350
Cell wall
dietary fiber in, 1:341
of yeasts, 2:714–715
Center for Biologics Evaluation and Research (CBER), 1:549
Center for Disease Control, 2:97
Center for Drug Evaluation and Research (CDER), 1:549
Center for Veterinary Medicine (CVM), 1:75
Central American Free Trade Agreement (CAFTA) on sugar trade, 2:397–398
Centrifugal evaporators, 1:836–837
Centrifugal pumps, in dairy equipment, 2:87
Centrifugation
in brewhouse operations, 1:136
in microencapsulation, 2:31, 34–35
in milk processing, 2:59, 71–73
in starch-based sweetener production, 2:667
in sugarcane processing, 2:377–378
in wet-milling of corn, 2:339, 340
Cephalin, 1:43
in nuts, 2:2120
Cereal grains, 2:640–673
arabinoxylans in, 1:195
in beverage spirits manufacture, 1:153–154
composition of, 2:648–654
corn, 2:641t, 642, 643, 644, 664–667
defined, 2:642, 645–646
distilled beverages from, 2:735–736
health and safety factors related to, 2:668–670
history of, 2:643–644, 645, 670–671
morphology of, 2:648–650, 651, 652
origins of, 2:643–644
in processed foods, 2:641–642
production of, 2:647–648
rice, 2:641t, 642, 643–644, 662–664
species of, 2:641t, 645–647
trade in, 2:647–648
types of, 2:640, 641t
uses of, 2:640–641, 641–642
wheat, 2:641t, 642, 643–644, 654–662
winemaking versus, 2:676
during World War I, 2:645, 646, 647
Cereal products, packaging for, 2:242–243
Cerebromuprein, copper and, 2:242
Ceresin wax, 2:628
Cerides, 2:617
Ceroplastes ceriferus, Chinese wax from, 2:621
Certified food colorants/colors, 1:298–304, 725–726
chemical classifications of, 1:299
Ceruloplasmin, copper in, 2:139
Cetyl stearate, synthetic waxes from, 2:634
Chablis, 2:680
Chalcone, biosynthesis of, 2:509
Champagne, production of, 2:693
Character impact items, 1:660–663
Chardonnay, 2:680–681
CHARM Analysis (CharmAnalysis), 1:608, 685
Cheddar cheese, 2:105
Cheeses, 2:103–106
imitation, processed, and soya-based, 1:332–334
packaging for, 2:241
sorbates in, 2:273
Cheese whey, biomass from, 2:739
Chelate formation, citric-acid, 1:253–254
Chelates
for insect and pest control, 1:738–739
toxic, 1:785
Chelating agents, 1:736–737
Chemesthesia, 1:693, 695
Chemesthesia perception, stimuli that impart, 1:680
Chemical amino acid production, 1:37–42
Chemical analyses
for flavor characterization, 1:599
of trigeminal stimuli, 1:612
of wines, 2:702–703
Chemical assays, ascorbic acid, 2:568–569
Chemical Buyers Directory, 1:747
Chemical composition, of nuts, 2:206–214
Chemical contaminants
examples of, 1:771–777
international regulation of, 1:767–768
regulation of, 1:765–768
risk assessment of, 1:768–771
Chemical flavor characterization methods, 1:604–612
Chemical food preservation, 1:761–762
Chemical leavening agents, 1:84–95
characteristics of, 1:86–88
nutritional aspects of, 1:88–92
for preleavened mixes, 1:88
for refrigerated/frozen batters and doughs, 1:88
in yeast-raised products, 1:101
Chemical leavening systems, composition of, 1:84–86
Chemically modified waxes, 2:634
Chemical oxygen demand (COD), 1:125
Chemical preservatives, in fruit juices, 1:839–840
Chemical properties
of amino acids, 1:14–18
of amylopectin, 2:333
of amylose, 2:333–335
of ascorbic acid, 2:555, 560–561, 612–613
of aspartame, 2:447, 448–449
of citric acid, 1:250–255
dextrose, 2:475–476
of eggs, 1:356–359
of fats and fatty oils, 1:449–451
of fructose, 2:413–414
gelatin, 1:857–860
glycyrrhizin, 2:460
lecithin, 1:886–887
neohesperidin dihydrochalcone, 2:460–461
of sucrose, 2:263–266
starch, 2:333–336
of succinic acid and anhydride, 2:350–356
of sugar alcohols, 2:429–433
of sugars, 2:370–372
tea, 2:506
vanillin, 2:532–533
Chemical synthesis. See also Synthesis of ascorbic acid, 2:561–563
sucrose as feedstock for, 2:408–409
vitamin production via, 2:614t
Chemical synthesis conditions, adverse and extreme, 1:507
Chemical water treatment, in carbonated beverage facilities, 1:210
Chemistry
of chromium(III), 2:144
coffee, 1:269–274
of glucosamine, 2:190–191
microwave applications in, 2:41–42
of nuts, 2:216–220
of sugar juice purification, 2:390–391
Chickens
nutrient requirements of, 1:465t
reference diets for, 1:471t
United States exports of, 2:14t
Chicory, 1:285
Chile
 aquacultural chemical regulation/registration in, 1:77
 aquaculture antibacterials approved in, 1:80t
Chili powder/peppers, 2:322
 adulteration of, 2:320
“Chill”-haze, in brewing, 1:136
China
 ascorbic acid synthesis in, 2:563
 bagasse in, 2:411
 ginger from, 2:325
 green tea consumption in, 2:518
 green tea manufacture in, 2:515
 instant tea manufacture in, 2:515
 peanut production and consumption in, 2:228
 projected world oilseed trade by, 2:295–296, 297t, 298t, 299t
 rice in, 2:643–644, 663
 tea from, 2:502, 510
 vanillin production in, 2:532
 wheat production in, 2:655
“Chinese restaurant asthma,” MSG and, 2:159
Chinese restaurant syndrome (CRS), MSG and, 2:158–159
Chinese wax, 2:621–622
Chiral centers, in ascorbic acid molecule, 2:557–558
Chiral hplc columns, 1:23
Chiral mobile phases, 1:23
Chitin, glucosamine in, 2:191
Chloramine-T, 1:80
Chloride, foods rich in, 2:129t. See also Chlorine (Cl)
 Chloride ion (Cl\(^{-}\)), 2:130–131
 Chloride shift, 2:128, 131
Chlorinated hydrocarbons, testing milk for, 2:95
Chlorine (Cl), as mineral nutrient, 2:129t, 130–131. See also Chloride entries
5-Chloro-3-hexenoic acid, from sorbic acid, 2:263
6-Chloro-L-tryptophan, 2:462, 463t
Chloroform, 2:463t
Chlorogenic acids
 in coffee, 1:270
 in sunflower seeds, 2:289
 ortho-Chloronitrobenzene, vanillin from, 2:528–529
Chlorophyll, 1:432
Chlorophyllin–copper complex
 as a food colorant, 1:316
N-Chlorosuccinimide, 2:354
Chocolate. See also Chocolate and cocoa
 flavor development of, 1:669
 tocopherols of, 1:244t
 vanillin in, 2:530–531, 534
Chocolate and cocoa, 1:225–247. See also
 Cocoa entries
 alkaloids in, 1:240–241
 chocolate liquor, 1:230–231
 chocolate tempering, 1:239–240
 cocoa butter, 1:233–235, 245t
 cocoa powder, 1:231–233
 economic aspects of, 1:245–246
 polyphenols in, 1:243–244
 standards for, 1:225–226
 sweet and milk chocolate, 1:235–240
Chocolate liquors, 1:230–231
 theobromine and caffeine content in, 1:241t
Chocolate Manufacturers Association (CMA) of the United States, 1:225–226, 241
Chocolate products
 amino acid content of, 1:242t
 mineral element content of, 1:245t
 nutritional properties of, 1:241–245
 theobromine and caffeine content of, 1:241t
 vitamin content of, 1:244t
Choke techniques, for limiting microwave leakage, 2:59
Cholecalciferol (CC), 2:121, 122, 590, 599–602
 molecular structure of, 2:600
 nomenclature and classification, 2:596t
Cholesterol, 1:430
 corn bran and, 2:666
 in eggs, 1:356
 niacin versus, 2:606
 in nuts, 2:212
 phytosterols and, 2:188
 vitamin C versus, 2:576–577
 wines and, 2:706
Cholesterol conversion, in reducing fat in meats, 2:11
Cholesterol metabolism, olestra and, 1:420
Cholesterol test, 2:192
Choline
 in nuts, 2:212
 as pseudovitamin, 2:615
Chromatograms, in the distilled spirits industry, 1:168
Chromatographic amino acid analysis, 1:45
Chromatographic assays, for sorbic acid, 2:269
Chromatographic methods
 amino acid resolution, 1:23–4
 of epigallocatechin gallate extraction, 2:184
 of sugar analysis, 2:404–405
Chromatographic separation, in high fructose corn syrup manufacture, 2:488
Chromatography
 in ascorbic acid analysis, 2:569
 in molasses desugarization, 2:394
 in molasses manufacture, 2:496
 in sugar alcohol analysis, 2:434
 in vitamin analysis, 2:615
 in wax analysis, 2:638
Chromium (Cr)
 foods rich in, 2:135t
 as trace nutrient, 2:143–144
Chromium(III), 2:143–144
 chemistry of, 2:144
Chromium chloride supplements, 2:144
Chromium deficiency, 2:144
Chromium supplements, 2:144
Chromone
 molecular structure of, 2:186
 as nutraceutical, 2:185–186
Chromosomes, of yeasts, 2:715, 717
Chronic diseases
 genistein versus, 2:187
 nutraceuticals versus, 2:163, 166
Chronic renal failure, 2:601
Chutney, vinegar used in, 2:550
Chylomicrons, 1:396
Cider vinegar, 2:539, 541
 labeling standards for, 2:549
Cinnamaldehyde, reaction with succinic acid/ahydride, 2:353
Cinnamate, biosynthesis of, 2:508
Cinnamic acid, in carnauba wax, 2:624
Cinnamomum, species of, 2:323
Cinnamon, 2:323
 “Circling disease,” 1:495
Citizen’s band (CB) radio, microwaves and, 2:42
Citrate ion, 1:248
Citrates, in dairy substitutes, 1:326
Citric acid, 1:248–266
 accumulators of, 1:255
 analytical and test methods for, 1:260
 buffer solutions of, 1:252t
 in carbonated beverages, 1:212–213
 chemical properties of, 1:250–255
 chemical synthesis of, 1:258
 derivatives of, 1:262–264
 economic aspects of, 1:259–260
 environmental considerations related to, 1:261
 esters of, 1:263–264
 50% w/w solution of, 1:257
 as food additive, 1:720, 736, 737
 health and safety factors related to, 1:260–261
 manufacturing and processing of, 1:255–258
 occurrence of, 1:248–249
 physical properties of, 1:249, 251t
 physiological role of, 1:248–249
 recovery of, 1:256–257
 shipment and storage of, 1:258
 solubility of, 1:251t
 specifications for, 1:248, 260
 standards and quality control for, 1:260
 uses for, 1:261–262
 in winemaking waste disposal, 2:697
 worldwide production of, 1:259
Citric acid cycle, 1:248, 250
Citric acid monohydrate, 1:249
Citric acid recovery, by-products of, 1:257–258
Citric acid solutions, 1:258
 pH and specific gravity of, 1:251t
l-Citrulline, fermentative production of, 1:30t
Citrus comminutes, 1:833
Citrus-derived chemicals, 2:460–461
Citrus fruits, versus scurvy, 2:555–556
Citrus juices
 concentration and aroma recovery for, 1:831–832
 extraction of, 1:830
 processing, 1:828–830
Citrus molasses, 2:497
Claisen mechanism, succinic acid/aldehyde and, 2:353–354
Clarification
 in making dry milk, 2:100
 in milk processing, 2:71–72
of raw sugar, 2:380–381
in sugar purification, 2:388, 389
of vinegar, 2:547–548
Clarified lecithins, 1:891
Clarified lime juice, 1:832
Clarifying agents, 1:742
Classifier, in flour air classification, 2:661
Clavibacterium xyli, as sugarcane pest, 1:374
Cleaning
in breweries, 1:125
of dairy equipment, 2:86, 87–88
vinegar used in, 2:550
Cleaning-in-place (CIP) process, in milk processing, 2:70, 87–88
Cleaning systems, for milk processing, 2:87–88
Clean-in-place (CIP), 1:542
Clinical endpoints, in nutraceutical testing, 2:166–167
Clinical trials
of genistein and isoflavones, 2:187
of vitamin E analogues, 2:170
Clostridia, in canned foods, 2:241
Clostridium botulinum, 1:576, 751, 755
inhibition of, 2:2, 8
sorbates versus, 2:273, 274
Clotting, vitamin K in, 2:603, 604
Clouding agents, as food additives, 1:742
Cloudy jelly, 1:852–853
Clove buds, 2:323–324
Coacervates, size of, 1:635–637
Coacervation
of gelatin, 1:859
in microencapsulation, 2:25–26, 26–31
Coacervation encapsulation, 1:633–637, 642–643
difficulties with, 1:638
Coalescence process, 1:380
Coating, of vitamins, 2:613. See also
Coating materials/coatings
Coating materials/coatings
for bottles, 2:247
in fluidized-bed encapsulation, 1:630
for metal cans, 2:245, 246–247
for microencapsulation, 2:23, 24t
for paper food containers, 2:244–245
Cob, of corn, 2:665
Cobalamin, molecular structure of, 2:611
Cobalamin deficiency, 2:612
Cobalt (Co)
foods rich in, 2:135t
as trace nutrient, 2:144–145
Cobalt ion (Co²⁺), zinc ion and, 2:144
Cochineal beetle, 1:310
Cochineal extract, as a food colorant, 1:309–310
Cocoa beans, 1:225, 226–230. See also
Chocolate and cocoa
cleaning, 1:230
commercial grades of, 1:228
composition of, 1:243t
consumption of, 1:229
fatty acid composition of, 1:245t
main varieties of, 1:228t
marketing of, 1:229–230
production of, 1:229
roasting, 1:230–231
specifications for, 1:228
vitamin content of, 1:244t
Cocoa butter substitutes, 1:234–235
Cocoa cake, 1:233
Cocoa hybrids, 1:226
Cocoa powder, manufacture of, 1:232–233
Cocoa shell, analyses of, 1:232t
Coconut vinegar, 2:541
Cocos coronata, ouricouri wax from, 2:624
Code of Federal Regulations (CFR), 1:472, 660
on chocolate and cocoa, 1:225
food additives classification by, 1:706–707
on sorbates, 2:275
Codex Alimentarius Commission, 1:767–768
on sugar standards, 2:399, 400
Codex Committee on Cocoa Products and Chocolate, 1:233
Coenzyme A (CoA), vanadium and, 2:146
Coenzyme B₁₂, cobalt and, 2:145
Coenzyme Q₁₀ (CoQ₁₀)
molecular structure of, 2:191
as nutraceutical, 2:191–192
for plastic food packaging, 2:252–253
vanadium and, 2:146
Coextrusion techniques, 1:637
in making flexible food packaging, 2:253
in making semirigid food containers, 2:258
Cofactors
biotin, 2:608
cobalamin, 2:612
folic acid, 2:609–610r
thiamine, 2:604
vitamins as, 2:590
Coffee, 1:267–287
brewed, 1:273–274
chemistry of, 1:269–274
corn syrups and, 2:494
decaﬀeinated, 1:279–280
economic importance of, 1:280–281
flaked, 1:276
functional genes cloned from, 1:283t
grounding, 1:275–276
health factors related to, 1:284
instant, 1:274, 277–279
isolation of genes from, 1:282–283
packaging, 1:276–277
processing of, 1:267–269
regulations and standards related to, 1:283–284
roasted, 1:271–273
roasted and ground, 1:274–277
transformation and genetic modification of, 1:282
Coffee biotechnology, 1:281–283
Coffee breeding
advances in, 1:281
application of molecular markers to, 1:284
Coffee constituents, chemistry of, 1:270–271
Coffee creamers/whiteners, composition and processing of, 1:329–330
Coffee molecular biology, advances and applications of, 1:282–283
Coffee processing, biotechnology applied to, 1:283
Coffee substitutes, 1:284–285
Coffey still, 1:142, 143
Cognac, 1:151
Coi, 2:647
Cold milk separators, 2:72
Cold storage, holding seafood in, 1:579–581, 583–584
“Cold trub,” 1:131
Coliform bacteria, testing milk for, 2:94
Collagen, copper and, 2:139
Collagen biosynthesis, vitamin C in, 2:575, 576, 577
Colloidal properties, of gelatin, 1:859–860
Colloid mills, 1:389–390
Color. See also Colors of cane sugar, 2:372
determination in sugar analysis, 2:406
of fats and oils, 1:453
in sugar quality control, 2:400
in wax analysis, 2:636
Color additives, in pet foods, 1:481
Color Additives Amendments of 1960, 1:290, 295, 711
Colorants. See also Food colorants for cane sugar, 2:372
in carbonated beverages, 1:215–216
Color changes/fading, in fruit preserves and jellies, 1:853
Colorimetric amino acid analysis, 1:45–47
Colorimetric assays, for sorbic acid, 2:269
Colorimetric methods, of sugar analysis, 2:404
Colorimetry, in ascorbic acid analysis, 2:569
Coloring, spices as, 2:317
Colors, in foods, 1:725–727. See also Color
Color testing, in spice quality measurement, 2:317
Comité International Spécial de Perturbations Radioelectriques (CISPR), microwave frequency allocations and, 2:44
Commercial coffees, 1:267
Commercial gums, 1:867
Commercial lecithins, 1:885–886, 892t
Commercial mixers, for yeast-raised products, 1:102–103
Commercial pet foods, types of, 1:474–476
Commercial refrigeration systems, for seafood, 1:582–584
Commercial vitamin D, 2:600
Common cold, ascorbic acid and, 2:556–557
Complex coacervation, 1:633–635
in microencapsulation, 2:25–26
steps in, 1:635
Complex fluids, flavor encapsulation in, 1:640–641
Complex polyphenols, in tea manufacture, 2:512–513
Compliance Policy Guide (FDA), on vinegar labeling standards, 2:549–550
Compositae, oilseed genera in, 2:409
Composite paper canisters, for food packaging, 2:245
Compounded gin, 1:151
Compounded lecithins, 1:891
Compounding companies, 1:746–747
Compressed yeast, 2:726
Computer integrated manufacturing, in food processing, 1:763
Computer validation, 1:551
Conarachin, in nuts, 2:206, 208t
Concentrated flavor bases, in carbonated beverage manufacture, 1:216–218
Concentrates, in carbonated beverages, 1:215
Concentration, in instant tea manufacture, 2:516
Conching, in chocolate processing, 1:237–238
Conching temperatures, 1:238
Condensation, of succinic acid/anhydride, 2:353–354
Condensed milk, 2:98–99
Condensed molasses solubles (CMS), uses of, 2:412
Condiments, vinegar, 2:550. See also Flavorings; Seasonings
Conditioning
of raw sugar, 2:381
of sucrose, 2:393–394
Conditions, in meat processing, 2:8
Conduction freezing, 1:582–583, 759
Continuous blend production, in carbonated beverage manufacture, 1:219–220
Continuous core microcapsules, 2:24
Continuous core–shell microcapsules, 2:24
Continuous countercurrent extraction, of sugar from sugar beets, 2:386–387
Continuous culture, 1:529–530
Continuous-flow pasteurization, in milk processing, 2:75
Continuous heat processing equipment, 1:756
Continuous hydrogenation processes, 1:436
Continuously operated submerged-culture generators, in making vinegar, 2:479
Continuous saccharification, in dextrose refining, 2:479
Continuous wave (CW) microwave power, 2:49, 50, 52
Controlled atmosphere food preservation, 1:752–753
Controlled atmosphere packaging (CAP), in meat processing, 2:6–7
Controlled delivery systems, structured approach to, 1:645–646
Controlled flavor release, key aspects of, 1:644t
Controlled flavor release systems, 1:617, 618
Controlled release properties, in fluidized-bed encapsulation, 1:629–630
Controlled release systems, 1:631–641
applications of, 1:642–645
careful tuning of, 1:644
careful tuning of, 1:644
careful tuning of, 1:644t
characteristics of, 1:632t
Coacervation encapsulation and gel encapsulation, 1:633–638
commercial applications of, 1:647
encapsulation in complex fluids, 1:640–641
extrusion encapsulation, 1:638–639
future demand for, 1:645
inclusion complexation, 1:641
morphologies of, 1:634
spray chilling, 1:639–640
Control strategies, in fermentation, 1:538–542
Control system, with HTST pasteurizers, 2:81, 82
Convection blast freezing, 1:578–579
Convection freezing, 1:582–583
Conversion processes/reactions, 1:145, 179
in beverage spirits manufacture, 1:155
Conversion to acetates, in sugar alcohol analysis, 2:434
Conveyor-type industrial microwave equipment, 2:55
Cooker magnetrons
in microwave ovens, 2:50, 51, 52
prices of, 2:56
Cookies, 1:108
packaging for, 2:243
Cooking, 1:145
Cooking oils, 1:454–455
packaging for, 2:242
Cooling
of ice cream, 2:108–109
in microencapsulation, 2:33
of milk, 2:89, 92–93
in milk processing, 2:69–70, 78
Copepods, waxes from, 2:619
Copernicia cerifers, carnauba wax from, 2:623
Copolymer film, in plastic food packaging, 2:249t, 252
Copolymerization
with sorbic acid, 2:266
waxes produced via, 2:633
Copolymer polypropylene film, in plastic food packaging, 2:249t
Copolymers, in injection molding, 2:255
Copper (Cu), 1:72
dietary, 2:140
as essential to life, 2:115
foods rich in, 2:134t
in nuts, 2:211
in pet foods, 1:476
in reducing-sugar determination, 2:403, 404
as trace nutrient, 2:139–140
Copper deficiency, 2:139
Copper–molybdenum antagonism, 2:143
Copper sulfate, 1:72, 75
Copy numbers, recombinant protein production and, 1:525
Cordials, 1:153
Coriander seed, 2:324
Coriandrum sativum, 2:324
Corks, in winemaking, 2:698–699
Cork taint, in winemaking, 2:698–699
Corn, 2:641t, 642, 664–667
agriculture of, 2:664–665
oil from, 2:667
origins of, 2:643, 644
pellagra and, 2:670
production of, 2:647–648
starch from, 2:666–667
wet milling of, 2:665–666
Corn bran, 2:666
Corn cribs, 2:665
Corn endosperm oil, as a food colorant, 1:316
Corn kernels, 2:337
Corn mash, 1:154–155
Corn oil, 2:667
Corn Refiners Association (CRA), on sugar standards, 2:400
Corn starch, 1:195; 2:666–667
marketing of, 2:339–340
production/manufacture of dextrose from, 2:476–478
wet-milling of, 2:336–340, 342
Corn sugar molasses, 2:497
Corn syrups, 2:473, 490–494
analysis of, 2:482t, 493
composition of, 2:491t
defined, 2:490
economic aspects of, 2:482t, 493
health factors related to, 2:482t, 493
high fructose, 1:98; 2:343, 473, 486–490
hydrogenation of, 1:188
marketing of, 2:339–340
production/manufacture of, 2:492–493
properties of, 2:490–492
specifications for, 2:482t, 493
uses of, 2:482t, 493–494
Corn whiskey, 1:150
Coronary heart disease (CHD)
lycopene versus, 2:180–181
from meat diet, 2:16–17
tea antioxidants versus, 2:520
Corrosion, citric-acid, 1:254–255
Corrosion rates, citric acid, 1:258t
Cortisone, 1:511–512
Corylin, in nuts, 2:206
Corynebacter, in ascorbic acid synthesis, 2:563
Corynebacterium glutamicum
L-glutamic acid production with, 1:27
in MSG production, 2:27
Cream, 2:102–103
Creamed cottage cheese, 2:106
Creamed yeasts, 1:97
Creameries, 2:72
Cream separators, in milk processing, 2:72–73
Cream yeast, 2:726
Creatine
molecular structure of, 2:189
as nutraceutical, 2:189
Creatine monohydrate, 2:189
Creatine pyruvate, 2:189
Creep feeding, 1:501
Cribs, for corn, 2:665
Critical control points (CCPs), in meat processing, 2:7–8
Crocin, 1:313
Crocus sativus, 2:328
Croissants, 1:108
Cross-grain molders, 1:104
Cross-linked starches, 1:198; 2:345
Cross-linking, copper and polypeptide, 2:139
Crotonaldehyde, sorbic acid from, 2:266–268
Crotonylidenacetone, in sorbic acid production, 2:268
Crude beeswax, 2:621
Crude fiber, 1:342
Crude oils, 1:451
Crusher, in wine production, 2:689
Crustaceans, glucosamine in, 2:191
Cryogenic freezing, 1:583, 759
β-Cryptoxanthin
molecular structure of, 2:175
in plants, 2:174t
Cryptococcus, medical problems caused by, 2:712
Cryptococcus neoformans, 2:713t, 716t
medical problems caused by, 2:712
as pathogenic yeast, 2:742
Crystal formation, in fruit preserves and jellies, 1:853
Crystalline ascorbic acid, 2:558
Crystalline β-carotene, 1:307
Crystalline citric acid, 1:258
Crystalline fructose, 2:414
Crystalline lactose, 2:416
Crystalline MSG, 2:153. See also
Monosodium L-glutamate (MSG)
Crystalline sorbitol, 2:438
Crystalline structures, amino acid, 1:8
Crystallization
in dextrose refining, 2:479–480
of fats and oils, 1:444–447
of maltose, 2:415
of mannitol, 2:433
in molasses desugarization, 2:394
pure succinic acid recovery via, 2:357
of raw sugar, 2:381
of sucrose, 2:392–393, 394
of sugar-beet sugar, 2:391–392, 392–393
in sugarcane processing, 2:377
Crystallization method, of amino acid resolution, 1:21–22
Crystal structure
of cane sugar, 2:367
of sorbic acid, 2:263
of succinic acid and anhydride, 2:350
of sucrose, 2:365, 366–367
Crystal sugar, 2:378–379
CTC (crush, tear, curl) machine, in black tea manufacture, 2:513–514
Culinary uses, of vinegar, 2:550
Cullet, in glass manufacture, 2:247
Cultivation. See also Agriculture
of cereal grains, 2:643–644
of spices, 2:311–313
of sugar beets, 2:382–383
of sugarcane, 2:373
of tea, 2:502, 503–504
of vanilla, 2:526
Culture
algal, 1:799–802
in fermentation, 1:544–545
winemaking and, 2:675
Cultured buttermilk, 2:103
Cultured imitation products, composition and processing of, 1:330–331
Culture purity, in fermentation, 1:548
Culture types, in fermentation, 1:502–503
Cumin seed, 2:324
Cuminum syminum, 2:324
Curculin, as sweetness inducer, 2:466
Curcuma longa, 2:329
Curcumin, 1:314
Curd, in cottage cheese manufacture, 2:106
Cured meats, 2:2–3, 4–5
accelerators for, 2:3
Curing
of barley, 1:118
of cocoa beans, 1:227–228
of peanuts, 2:291
of seafood products, 1:584–585
Curing accelerators, as meat-processing ingredients, 2:3
Curing silos, for sucrose, 2:394
Current density (J), microwaves and, 2:45
Curry powder, 2:324
Curtius degradation, 1:20
Cyanidin, in tea manufacture, 2:512
Cyanobacteria, 1:802. See also Blue-green algae
Cyanocobalamin, 2:144, 611–612.
See also Vitamin B12
production/manufacture of, 2:614t
RDAs of, 2:594t
Cyanocobalamin deficiency, 2:612
Cyanethylation, of starch, 2:341
Cyanogenetic glycosides, 1:789–790
in nuts, 2:213, 214
Cyasin, 1:793
Cyclamates, 1:212, 456
economic aspects of, 2:446
as food additives, 1:717–718
Cyclic adenosine monophosphate (cAMP) phosphorus in, 2:124
in tasting sweetness, 2:468
Cyclitols, 1:188
Cyclization, of starch, 2:336
Cycloamyloses, 1:193
Cyclodextrins, 1:193
from starch cyclization, 2:336
from starch degradation, 2:343
in inclusion complexation, 1:641
Cyclohexane, oxidation of, 2:357
Cyclomaltodextrin glucotransferase (CGTase), 2:334
in starch cyclization, 2:336
Cyclomaltodextrins, from starch cyclization, 2:336
Cyclone separator, in wet-milling of corn, 2:339
Cyclopropenoid fatty acids, in oilseeds, 2:296, 300–301
Cylindro-conical vessels, 1:134–135
Cytochrome, 1:54
1-Cysteine, enzymatic production of, 1:42
Cytoplasm, of yeasts, 2:717–718
Daidzein, in soybeans, 2:289
Daily Values (FDA), for vitamins, 2:593
Dairies, safe milk from, 2:97–98. See also
 Agriculture
 Dairy industry. See also Milk entries
 advances in, 2:89
 biotechnology in, 2:111–112
 economics of, 2:88–89, 90t, 91t, 92t
 evolution of, 2:66
 sorbates in, 2:273
Dairy-Lo, 1:411
Dairy products. See also
 Milk products
 citric acid in, 1:262
 packaging for, 2:239, 240–241
 sorbates in, 2:273
Dairy protein products, dried, 1:323t
Dairy substitutes, 1:319–340
 composition and processing of, 1:328–336
 economic aspects of, 1:336–338
 ingredients in, 1:320–328
 regulatory aspects of, 1:338–339
D&C Blue No. 6, 1:298
D&C colorants/colors, 1:289
 fastness properties of, 1:304t
 solubilities of, 1:303t
Danish doughs, 1:108
Dark chocolate, 1:235
 formulations for, 1:236t
 vanillin in, 2:534
Dark sugar, in molasses manufacture, 2:496
Date palm, sucrose in, 2:364
“Dead end” hydrogenation reactor, 1:437
Deamination, oxidative, 1:16
Debaryomyces hansenii, 2:716t
Decaffeinated coffee, processing of, 1:279–280
Decaffeination, of tea, 2:516–517
Decarboxylation, of succinic acid, 2:350–351
Decoction mashing, 1:130
Decolorization, of raw sugar, 2:381
Decomposition
 of alitame, 2:452
 of citric acid, 1:252
 of sucralose, 2:457
Decontamination, of stored nuts, 2:220
Decoration, sucrose in, 2:408
Decosahexanoic acid (DHA)
 health factors related to, 2:183
molecular structure of, 2:181
as nutraceutical, 2:181–182
Decreaming, in instant tea manufacture, 2:516
Deesterification, of aspartame, 2:447, 448. See also Esterification
Defatted paprika, 2:319
 adulteration of, 2:321
Defatted soybean flakes, 2:304–305
Defaunation, in ruminants, 1:499
Defect Action Levels (DALs), spice-related, 2:317
Deficiency diseases, cereal grains and, 2:669–670
Degradation
 of alitame, 2:452
 of ascorbic acid, 2:560–561
 of ascorbic acid in food, 2:574
 of neotame, 2:451
 of succinic acid/anhydride, 2:356
 of sucrose, 2:370–371
Degree Brix reading, in vinegar
 manufacture, 2:542
Degree of amidation (DA), 1:847
Degree of esterification (DE), 1:204
Degree of methylation (DM), of pectin, 1:847
Degree of polymerization (DP), 1:182, 206
 of amylose, 2:335
Degree of substitution (DS), 1:206, 875
 of starch acetates, 2:342–343, 345
 of starch derivatives, 2:343, 344, 345
 of starch ethers, 2:341
 of starch phosphates, 2:342
Degumming
 of fats and fatty oils, 1:432–433
 of oilseed oils, 2:301
Dehulling
 in soybean processing, 2:292
 in sunflower seed processing, 2:294
Dehydrated beets, as a food colorant, 1:310–311
Dehydration
 of fruit juices, 1:840–841
 of seafood products, 1:584
 of succinic acid, 2:350–351, 351–352
 succinic anhydride preparation via, 2:357
Dehydration food processing, 1:759–761
Dehydro-2-piperidinones, from sorbic acid, 2:264
Dehydroascorbic acid, in ascorbic acid analysis, 2:569
7-Dehydrocholesterol, 2:599–600
Dehydro-\(L\)-ascorbic acid, 2:555
ascorbic acid oxidation/reduction and, 2:560
as dimer and a shemiacetal monomer, 2:558
Dehydrated onion, 2:326–327
Dekkera, in wine spoilage, 2:705
Delaney Clause, 1:711, 766, 767, 794
Delphinidin, in tea manufacture, 2:512
Delphinidin glycoside, in wine, 2:683
Deltanoids, 2:600, 601
Demerara sugar, 2:411
Demeter, 2:644
Demethylation, of vanillin, 2:532
Denatured protein, as a fat replacer, 1:409–411
Density
of fats and oils, 1:447–448
in sugar analysis, 2:402–403
of vinegar, 2:540
Dental caries, fluoridation and, 2:137
Dent corn, 2:337
Deodorants, vanillin in, 2:536
Deodorization, of fats and fatty oils, 1:439–441
Deoiled lecithins, 1:891
Deoiling, of lecithins, 1:887–888, 889
2-Deoxy-D-ribose, 1:189
Deoxyuridylic acid methylation, 2:609
Department of Health and Human Services (DHHS), food guidelines from, 2:1
Department of Treasury, in wine regulation, 2:707
Depletion flocculation, 1:385, 386
Depolymerization, of starch, 2:336
Deposit refund labeling, for distilled beverage spirits, 1:170
Derivatization, of starches, 1:196–197
Descriptive analysis, 1:602–604
of wine, 2:704
Descriptors, in nutritional labeling, 2:16, 17t
Desolvation microencapsulation process, 2:35
Desolventizers
in peanut processing, 2:294
in soybean processing, 2:292
Desserts
citrice acid in, 1:262
vanillin in, 2:535
Dessert wines, 2:679
processing flows for, 2:683
production of, 2:694–695
Desugarization, of molasses, 2:382, 394–395
Desulfoarculus baarsii, sorbic acid and, 2:272
Detergent methods, of dietary fiber analysis, 1:347
Detergent perfumes, vanillin in, 2:536
Detergents, fats and oils in, 1:455
Deterministic exposure assessment methods, 1:770–771
Detoxification of peanut aflatoxins, 2:219–220
sulfur in, 2:126–128
Development, chemical changes in nuts during, 2:216–217
Devenex, 2:601
Dewaxing, of fats and fatty oils, 1:432–433
Dextrans from sucrose, 2:409
from sugar beets, 2:391
Dextrinization, of starch, 2:332, 341
Dextrins, 1:197
in beer, 1:127
from corn, 2:666
as fat replacers, 1:405–406
Dextrose, 2:473–485. See also Glucose entries
analysis of, 2:481
economic aspects of, 2:481, 482t, 483t, 484–485t
fructose and, 2:486
health factors related to, 2:481
history of, 2:473
occurrence of, 2:473
preparation of, 2:473
production/manufacture of, 2:473, 476–481
properties of, 2:474–476
refining of, 2:478–481
specifications for, 2:481
in starch industry, 2:473
uses of, 2:481
Dextrose equivalent (DE), 2:476
of corn syrups, 2:491, 492, 493
Dextrose hydrolyzate, in high fructose corn syrup manufacture, 2:487–488
Dextrose monohydrate, in dextrose refining, 2:479–480
Dhool, in tea manufacture, 2:510
Diabetes
 chromium and, 2:144
 sugar alcohols and, 2:435–436
 tea antioxidants versus, 2:521
 vitamin C versus, 2:577
2,3:4,6-Diacetone-2-keto-L-gulonic acid (DAG)
 in ascorbic acid manufacture, 2:565, 566–567
 in ascorbic acid synthesis, 2:562, 563
2,3:4,6-Diacetone-L-sorbose (DAS)
 in ascorbic acid manufacture, 2:565, 566
 in ascorbic acid synthesis, 2:562, 563
Diacetyl, 2:412
 in beer brewing, 2:733
Diacylglycerols, 1:429
Diadzein, molecular structure of, 2:186
Diagnostic tools, future nutraceutical, 2:192
Dialkyldihexadecylmalonate (DDM), as a fat replacer, 1:422
Dialkyl succinates, in succinic acid/anhydride esterification, 2:352
Dialkyl succinyl succinates, from succinic acid/anhydride esterification, 2:352
Diamines, reactions with succinic anhydride, 2:355
ξ-ε-Diaminopimelic acid (DAP), 1:31t
Diastatic power (DP), 1:119
Diastereoisomeric salts, formation of, 1:21–22
Diathermy, microwave applicators for, 2:54
Diatomaceous earth (DE), in winemaking, 2:696
2,3-Dibromosuccinic acid, 2:353
Dicalcium phosphate dihydrate (DCPD), nutritional aspects of, 1:91
Dichlobenil, 1:72
Dichlorophenolindophenol test, for ascorbic acid, 2:556, 568–569
Dichotomous key, for wine classification, 2:679–681
Dicotyledonous plants, cereal grains from, 2:641t, 646
Didecyldimethylammonium chloride, 1:69
Dielectrical spectrometry, microwave technology for, 2:42
Dielectric constant (ε)
 of cane sugar, 2:368, 369, 370t
 microwaves and, 2:44
Dielectric permittivity (ε)
 microwaves and, 2:44, 45
 of plasma, 2:48
Dielectric properties of food, microwaves and, 2:46, 47, 59–60
Dielectrophoresis, microwave, 2:47
Diels-Alder reactions, 1:457
 of sorbic acid, 2:265
 in vitamin K synthesis, 2:173
Diet
 acquiring vitamin C in, 2:574
 cereal grains in, 2:668
 copper in, 2:140
 fructose in, 2:414
 genistein in, 2:186–187
 high fiber, 1:344
 minerals required in, 2:115–116
 MSG in, 2:158
 nutraceutical marketing and, 2:192
 nuts in, 2:214–215
 phytosterols in, 2:188
 polyunsaturated fatty acids in, 2:183–184
 sugar in, 2:407
 vitamins in, 2:590
Dietary fat, 1:393
 reducing, 1:396–397
 structure and functions of, 1:394–396
Dietary fiber, 1:341–354
 analysis of, 1:346–349
 beneficial effects of, 1:344
 as food additive, 1:743
 food sources of, 1:351, 352–353t
 physicochemical properties of, 1:345–346
 physiological properties of, 1:344–345
 sources, composition, and structure of, 1:342–344
 terminology related to, 1:342
Dietary fiber sources, for processed foods, 1:349–351
Dietary Guidelines for Americans (1995), 1:393
 on wines, 2:706
Dietary lipids, 1:393–394
Dietary Reference Intake (DRI) value of vitamin E analogues, 2:170
 of vitamins, 2:591–593
Dietary supplements. See also Nutraceuticals; Supplements
 ascorbic acid in, 2:569
brewers’ yeast and bakers’ yeast as, 2:738
chromium in, 2:144
magnesium in, 2:132
vitamins in, 2:590
zinc in, 2:138
Diethylstilbestrol (DES), 1:496
as meat health hazard, 2:18
Diethyl succinate, from succinic acid/anhdydride esterification, 2:352
Difference tests, for flavor characterization, 1:600–601
Differential scanning calorimetry (DSC), in wax analysis, 2:637
Differin Gel, 2:598
Diffusers, in sugar-beet sugar extraction, 2:386, 387
Diffusion, in sugarcane processing, 2:378
Digestibility, of nuts, 2:215
Digests, 1:485
Digitalis purpurea, mannitol in, 2:427
Diglycerides as food additives, 1:731
in milk, 2:66
Diheteroglycans, 1:869
Dihydrochalcone, economic aspects of, 2:446
Dihydroflavanol, biosynthesis of, 2:509
1,25-Dihydroxycholecalciferol (1,25-DHCC), 2:121, 122
molecular structure of, 2:600
Diketogulonic acid, in ascorbic acid analysis, 2:569
Diketones, in beer brewing, 2:733
Diketopiperazines (DKPs), 1:16
from aspartame, 2:448
Dilantin, 2:611
Dillseed, 2:324
Dillweed, 2:324
Dimagnesium phosphate trihydrate, nutritional aspects of, 1:91
Dimethyl dicarbonate (DMDC) in fruit juices, 1:840
in winemaking, 2:694
Dimethyl succinate, from succinic acid/anhdydride esterification, 2:352
2,4-Dinitrophenylhydrazine, in ascorbic acid analysis, 2:569
Diode amplifiers, as microwave instrumentation power source, 2:49
Dioxins, 1:774–775
2,3-Dioxo-L-gulonic acid, 2:560
Dipalmitoylphosphatidylcholine, 1:430
Dipole, amino acid, 1:8
Dipropyl succinate, from succinic acid/anhdydride esterification, 2:352
Diquat dibromide, 1:72, 75
Direct consumption sugar, 2:378–379
Direct expansion (DX) bulk milk tanks, 2:89, 92–93
Direct fermentation amino acid production, 1:26–35
Direct food additives, 1:705, 706
Directive 89/107/EEC, 1:712
Direct microscopic count, in testing milk for microbes, 2:94
Direct silylation, in sugar analysis, 2:405
Disaccharide alcohols, 2:424
molecular structures of, 2:429
Disaccharides, dextrose (D-glucose) in, 2:476
Disdispersants, 1:439
Discard molasses, 2:496
Discorine, 1:786
Diseases. See also Chronic diseases; Genetic diseases
genistein versus, 2:187
lycopene versus, 2:179–181
MSG-associated, 2:158–159
of sugarcane, 2:373–374
polyunsatured fatty acids versus, 2:183–184
transmitted in milk to humans, 2:97t
vitamin E analogues and, 2:170
Disinfectants
as registered aquaculture chemicals, 1:75
registration potential of, 1:81–82
Disodium citrate salts, 1:253
Dispersing agents, in microencapsulation, 2:28
Dissipation, microwave, 2:48
Dissociation, of amino acids, 1:12–14
Dissolved oxygen (DO), 1:540–541
Distillation. See also Distillations
of beverage spirits, 1:157–158
of Fischer-Tropsch waxes, 2:634
in processing/manufacture of oilseed oils, 2:301
of vanillin, 2:532
Distillations, for aroma isolation, 1:607.
See also Distillation
Distilled beverages, yeasts and, 2:735–737
Distilled beverage spirits, 1:141–173
alcohol reduction in, 1:161–163
analysis of chemical constituents in, 1:167–168
analytical procedures for, 1:167–168
congeneric content of, 1:147t
economic aspects of, 1:163–167
flavoring, 1:171–172
government regulations and taxation related to, 1:144
health and safety factors related to, 1:170–171
history of, 1:141–144
legal sizes for, 1:169
manufacturing process for, 1:153–159
maturation of, 1:159–161
packaging for, 1:169–170
types of, 1:147–153
volumes by price categories, 1:165t

Distilled gin, 1:151
Distilled Spirits Council of the United States (DISCUS), 1:170
Distilled vinegar, labeling standards for, 2:550
Distilleries, in sugarcane processing, 2:378
Distillers' yeasts, 2:736
Distillers grains, types of, 1:158–159
Distilling, definitions related to, 1:144–146
Distilling by-products, in ruminant feeds, 1:494
Distilling ingredients, 1:143
Distressed pet food, 1:488
Distribution, of wines, 2:674
N,N'-Disuccinimides, 2:355
Disulfides, sulfur in, 2:126
Diversity, in winemaking, 2:674–675, 683–687
DLVO theory, 1:383
DNA (deoxyribonucleic acid). See also Double helix DNA model; Recombinant DNA entries
in dairy biotechnology, 2:111
phosphorus in, 2:124
of yeasts, 2:715, 718, 719
DNA damage, lycopene versus, 2:179
DNA sequencing, 1:513
DNA vaccines, 1:514
Docosahexaenoic acid (DHA), 1:394
Dodecanoic acid, 1:429
Domoic acid, 1:792–793
L-DOPA, 1:7–8, 24, 54
from vanillin, 2:536
Dose-response assessment, 1:768–770

Double bonds
amine addition to, 1:20
in sorbic acid, 2:263–266
Double helix DNA model, 1:512
Double mashing, 1:128
Double polarization, in sugar analysis, 2:402
Doubler, 1:145
Dough
leavening of, 1:84
physical properties of, 1:96–97
from wheat, 2:657
yeast in, 2:728–729
Dough-conditioning agents, as food additives, 1:732
Dough dividers, 1:104
Doughnuts, raised, 1:108
Dough processes
for bread production, 1:102
conventional, 1:103
Dough products, frozen, 1:105–106
Dough rate of reaction (DRR), 1:87–88
Dough strengtheners, 1:106
Doxercalciferol, 2:601
“Draft” beer, 1:137
Dragged fishing gear, 1:568
Draw and iron manufacturing, of metal cans, 2:245
Dried acid whey, 1:323
Dried algae meal, as a food colorant, 1:316
Dried buttermilk, 2:103
Dried dairy protein products, compositions of, 1:323t
Dried egg products, 1:368–369
specialty, 1:369
Dried yeasts, 1:97
Drinking water contaminants, 1:767
Drug–nutrient interactions
of folic acid, 2:611
of pyridoxine, 2:607
Drug products, new types of, 1:514
Drugs, retinoid and retinoid-based, 2:598–599. See also Pharmaceuticals; Pharmacology
Drum drying, in making dry milk, 2:100, 101, 102
Dry beverage mixes, microencapsulation of, 2:38
Dry coffee processing, 1:268
Dry curing, of meats, 2:4
Dry dextrose, in dextrose refining, 2:480–481
Dry foods, packaging for, 2:242–243
Dry heat, flavor development via, 1:669–670
Drying
 in black tea manufacture, 2:514, 515
 of corn, 2:665–666
 in instant tea manufacture, 2:516
 in spice quality measurement, 2:315–316
Drying cribs, for corn, 2:665
Drying oils, 1:455–457
Dry macular degeneration, 2:176
Dry milk, 2:99–102
 properties of, 2:100t
Dry-milling, of corn, 2:337
Dry mills, 1:126
Dry pet foods, 1:475–476
Dry yeast, 2:726–727
Dual-directional coupler, in microwave instrumentation, 2:52
Dual-enzyme processes, in dextrose manufacture, 2:476, 477–478
Dubois method, of sugar analysis, 2:404
Dulcin, 2:462, 463t
Dulcitol, 2:423t
 isomerization of, 2:432–433
 molecular structure of, 2:426
 occurrence and preparation of, 2:428
 pKa value of, 2:425t
Durum wheat, 2:657
 milling of, 2:660
Dust tea, 2:514
Dutch States Mines (DMS) screens, in sugar-beet sugar extraction, 2:387
Dye-binding tests, for milk protein, 2:95
Dyes, in foods, 1:288–289
Dynamic compression, in leaf protein concentrate production, 1:812
Earl Grey tea, 2:515
Economic Research Service, on sugar trade, 2:395–397, 398t, 399t
Economics
 of algal production, 1:803
 of amino acid production, 1:44
 of ascorbic acid, 2:568
 of aspartame, 2:447
 of beer production, 1:137
 of biologicals, 1:523
 of biomass, 1:522
 of carbonated beverage manufacture, 1:220
 of cereal grains, 2:647–648, 670–671
 of chocolate production, 1:245–246
 of citric acid production, 1:259–260
 of coffee production, 1:280–281
 of corn syrups, 2:482t, 493
 of dairy substitute production, 1:336–338
 of dextrose, 2:481, 482t, 483t, 484–485t
 of distilled beverage spirits production, 1:163–167
 of egg production, 1:371–372
 of enzymes, 1:522–523
 of fermentation, 1:515–517, 522–523
 of fish and shellfish products, 1:588–590
 of the flavor industry, 1:670
 of food packaging, 2:238
 of fruit juices, 1:843–844
 of gelatin production, 1:861
 of high fructose corn syrups, 2:488, 489t
 of meat products, 2:11–14, 15
 of microwave technology, 2:56
 of milk, 2:88–89, 90t, 91t, 92t
 of molasses, 2:497–500
 of nonnutritive sweeteners, 2:446
 of nutraceuticals, 2:192
 of nuts, 2:223–230
 of oilseeds, 2:294–296, 297t, 298t, 299t
 of pet food production, 1:485–486
 of rice, 2:663
 of saccharin, 2:455
 of sugar, 2:395–399
 of tea, 2:518–519
 of vinegar, 2:548–549
 of vitamins, 2:169
 of wines, 2:699–702
 of yeast-raised products, 1:109–110
 of yeasts, 2:711–712
Edelhoch spectrometric analysis, 1:45
Edestin, in nuts, 2:206, 208t
Edible nuts, 2:206, 215
 chemical changes during storage of, 2:217–219
Edible oil, from oilseeds, 2:301–303
Egg imports, 1:371
Egg products, 1:100, 355, 364–371
 dried, 1:368–369
 effect of egg quality on, 1:366t
 frozen, 1:368
 labeling of, 1:372
 liquid, 1:367–368
 manufacturing, 1:364–365
 pasteurized, 1:365–367
 in pet foods, 1:478
 specifications for, 1:369–371
Eggs, 1:355–375. See also Shell egg
cal properties of, 1:356–359
couging/thickening characteristics of,
1:359
mental properties of, 1:359–360
health and safety factors related to,
1:372–374
in yeast-raised products, 1:99–100
mental composition of, 1:358–359t
physical properties of, 1:355–356
production issues related to, 1:372
whipping or beating, 1:359s
Egg shell, composition of,
1:359
Egg storage chart,
1:374t
Egg whites,
1:100
dried, 1:368–369
pasteurizing, 1:365–367
Egg yolks, 1:356
gelation of, 1:368
Egypt, winemaking in ancient,
2:676–677
Eicosapentaenoic acid (EPA),
1:394
health factors related to, 2:183
molecular structure of, 2:181
as nutraceutical, 2:181–182
Eight-point model, in tasting sweetness, 2:467
Elastin, copper and, 2:139
Electric fields, microwaves and, 2:46
Electroacoustic emulsion characterization,
1:391
Electrochemical reduction, succinic acid
preparation via, 2:357
Electroexplosive devices (EEDs),
microwave energy leakage and,
2:57
Electromagnetic energy (EM), application
to materials, 2:41
Electromagnetic field patterns, in
microwave applicators, 2:54–56
Electromagnetic problem, microwaves and,
2:45
Electronarcosis, 1:82
Electron paramagnetic resonance (EPR),
ascorbic acid detection via, 2:578
Electrons, microwave power transfer to,
2:48–49
Electron spin resonance (esr), microwave
technology for, 2:42
Electrophoresis, in sugar alcohol analysis,
2:434
Electrospray ionization (ESI), in
nutraceutical identification, 2:165
Electrostatic stabilization, of emulsions,
1:383–384
Electrostriction, microwave, 2:47
Elements
biological roles of, 2:117
in mineral nutrients, 2:118–133, 133–146
of no known physiological role, 2:115
Periodic Table of, 2:117
required dietary intake of, 2:115–116
Elettaria cardamomum, 2:323
Ellman colorimetric analysis, 1:45
Embden-Meyerhof-Parnass (EMP)
glycolysis pathway
in converting hexose sugars to ethanol,
2:543
in yeasts, 2:721
Embryo, of corn kernel, 2:337
Emmerich method, of reducing-sugar
determination, 2:403–404
Emulsification
equipment and methods for, 1:389–390
in low fat spreads, 1:400
Emulsifiers, 1:376, 377, 378–380
in dairy substitutes, 1:320–322
in flavor encapsulation, 1:623–624
in fluidized-bed encapsulation, 1:629
in food, 1:424, 730–732
in margarines, 1:336
regulatory status of, 1:731t
sugar alcohols as, 2:438
in whipped toppings, 1:332
Emulsifying properties, of gelatin,
1:859–860
Emulsion droplets, 1:378, 380–381, 382
stabilized, 1:384
Emulsions, 1:376–392
in carbonated beverages, 1:215
characterizing, 1:390–391
destabilization of, 1:388
in encapsulation, 1:640
formation and stabilization of, 1:377–388
formulating, 1:388–389
interfacial structure of, 1:385–387
preparing, 1:380, 388–391
spray-drying, 1:627
in Type A microencapsulation, 2:24
types of, 1:376
Emulsion stabilizers, 1:377, 379
Emulsion storage stability,
characterization of, 1:391
Enamel, as metal can coating, 2:246
Encapsulated flavors, turnover of, 1:642
Encapsulation. See also Encapsulation processes; Encapsulation technologies; Fluidized-bed encapsulation
cocaversion, 1:633–637, 642–64
in complex fluids, 1:640–641
extrusion, 1:638–639
freeze drying, 1:627–628
gel, 1:637–638
of hydrophobic materials, 1:633, 635
spray drying, 1:626–627
in starch, 2:336
vacuum drying, 1:628
of vitamins, 2:613
Encapsulation matrix, 1:619–622
composition of, 1:622
Encapsulation processes, classification of, 2:23–35. See also Microencapsulation
Encapsulation technologies, 1:618–631
controlled release systems, 1:631–641
fluidized-bed, 1:628–630
glass encapsulation, 1:618–631
Encircling fishing gear, 1:568
End-group analysis, starch molecular weight and, 2:335
Endomycesis, reproduction of, 2:718
Endosperm
of corn, 2:665
of corn kernel, 2:337
in wheat milling, 2:658, 660
Endothall, 1:73
Endotoxins, in fermentation, 1:549
1,2-Enediol, 1:190
Energy content, of food, 2:214-215
Energy feeds, for young animals, 1:500
Energy-rich compounds, phosphorus in,
2:123–124, 125
Energy transfer, lycopene in, 2:179
Engineered microorganisms, in dairy biotechnology, 2:112
English muffins, 1:107
English walnuts
chemical changes during storage of,
2:217
oil from, 2:233
processing of, 2:221
uses of, 2:230
U.S. production and consumption of,
2:225
Enhancers, sweetness, 2:465–466
Enocianina, 1:312
Enology, 2:674
Enriched foods, 1:745
Enriching ingredients, in yeast-raised products, 1:101
Enrichment, with vitamin C, 2:574
Enrobing, of chocolate, 1:240
Enteral nutrition, amino acids in, 1:53
Enteletter mill, in wet-milling of corn, 2:339
Environmental considerations
for citric acid, 1:261
fermentation-related, 1:551
Environmental impacts, of ascorbic acid,
2:567–568
Environmental Protection Agency (EPA) aquaculture regulations, 1:66
chemical contaminant regulations by,
1:767
packaging guidelines of, 1:170
Enzymatic activity tests, 1:96
Enzymatic amino acid production, 1:35–37, 39–41t, 42
Enzymatic assays, in sugar alcohol analysis, 2:434–435
Enzymatic cholesterol conversion, in reducing fat in meats, 2:11
Enzymatic determination, of amino acids, 1:47
Enzymatic food deterioration, 2:239
Enzymatic gravimetric methods, for dietary fiber analysis, 1:347–348
Enzymatic hydrolysates, 1:53
Enzymatic hydrolysis, of fish proteins, 1:818
Enzymatic methods
of amino acid resolution, 1:22
of sugar analysis, 2:404
Enzymatic processes, in dextrose manufacture, 2:476–478
Enzymatic reactions, vitamin C in,
2:577–578
Enzymatic transformations, 1:513–514
Enzyme companies, examples of, 1:518–521t
Enzyme degradation, of starch, 2:343
Enzyme–enzyme conversion, in corn syrup production, 2:490, 492
Enzyme flavor precursors, 1:667–670
Enzyme–heat–enzyme (EHE) process, in dextrose manufacture, 2:476, 477
Enzyme industry, 1:514
Enzymes
applications for, 1:506
in ascorbic acid biosynthesis, 2:571–572, 573
in black tea manufacture, 2:514
calcium and, 2:120
cereal grains and, 2:653, 654
cobalt and, 2:145
copper and, 2:139
in corn syrup manufacture, 2:492
creation of flavor by, 1:669
in dairy biotechnology, 2:112
economic aspects of, 1:522–523
as fermentation products, 1:505–506
as food processing aides, 1:739–741
in high fructose corn syrup manufacture, 2:487
in instant tea manufacture, 2:516
iron in, 2:133
manganese and, 2:142
molybdenum in, 2:143
saccharification, 1:155
selenium and, 2:140–141
starch-degrading, 2:334–335
in starch hydrolysis, 2:335–336
in tea, 2:507–508
in vinegar manufacture, 2:543
in yeast-raised products, 1:100
from yeasts, 2:741
Enzyme treatment, of fruit pulp, 1:834
Epicatechin (EC), as nutraceutical, 2:184
Epicatechin gallate (EG)
as nutraceutical, 2:184
as tea antioxidant, 2:520
Epidemiological studies
of macular degeneration, 2:177
in nutraceutical testing, 2:166
of vitamin E analogues, 2:170
Epigallocatechin (EGC), as nutraceutical, 2:184
Epigallocatechin gallate (EGCG)
molecular structure of, 2:184
as nutraceutical, 2:162, 184–185
as tea anticancer agent, 2:521
as tea antioxidant, 2:519, 520
Epitheflagallin, in tea manufacture, 2:512
Epitheflavic acid, in tea manufacture, 2:512
Epizootic epitheliotropic virus (EEV) disease, 1:82
Epoxides, sugar alcohols and, 2:431
Epoxy phenolic coatings, 2:246
Equipment. See also Instrumentation
emulsification, 1:389–390
food-dehydration, 1:760–761
for food freezing, 1:757–759
milk processing, 2:83–87
stainless steel in food-processing, 2:85t
thermal preservation, 1:755–757
for yeast-raised products, 1:101–107
Equipment validation, in fermentation, 1:550
Ergocalciferol, 2:599–602
molecular structure of, 2:600
nomenclature and classification, 2:596t
Ergosterol, 2:66, 600
Ericeerus pela, Chinese wax from, 2:621
Erwinna, in ascorbic acid synthesis, 2:563
\(L \)-Erythulose, formation of, 2:431
Erythorbic acid, 2:557–558
as food additive, 1:736
Erythritol, 1:715; 2:422, 423t
analysis of, 2:434, 435
as bulking agent, 2:464, 465
physical properties of, 2:425
\(pK_a \) value of, 2:425t
Erythrocuprein, copper in, 2:139
Erythrocytes, ascorbic acid in, 2:580
Erythromycin, 1:81
Escherichia coli, 2:715
in MSG production, 2:154
waxes from, 2:619
in wines, 2:705
Esculin, in nuts, 2:212–213
Esparto wax, 2:625
Essence recovery units, 1:831
Essential amino acids, 1:47
Essential nutrients, 2:163
Essential oil equivalents, 1:667, 668t
Essential oils, 1:660
in carbonated beverages, 1:214–215
as food additives, 1:722
as spice quality measure, 2:315
in spices, 2:313
Esterfication. See also Deesterification
of citric acid, 1:252
of hydroxyl groups, 1:189–190
pure succinic acid recovery via, 2:357
of starch hydroxyl groups, 2:336, 343–344
of succinic acid and anhydride, 2:352
of sugar alcohols, 2:430–431
of vitamins, 2:613
Esterified propoxylated glycerols (EPGs), as fat replacers, 1:422

Esters
- of ascorbic acid, 2:570, 571
- as citric acid derivatives, 1:263–264
- in sugar cane wax, 2:626
- synthetic waxes from, 2:634
- as waxes, 2:632, 634

Estimated Average Requirement (EAR), of vitamins, 2:593

Estolides, waxes from, 2:618

β-Estradiol, as meat health hazard, 2:18

Estrogens, 1:793

Ethanol (ethyl alcohol). See also Ethyl alcohol
- acetic acid from, 2:543
- from cereal starch, 2:651–653
denatured, 1:509
fermentation of, 2:542–543
in making vinegar, 2:539–540
from sucrose, 2:409
in wine, 2:681–682, 683
wine safety and, 2:705–706
as yeast inhibitor, 2:729

Ethanol lignin, 1:160

Etherification
- of hydroxyl groups, 1:190
- of starch hydroxyl groups, 2:336, 343–344
- of sugar alcohols, 2:431

Ethers, hydroxyalkyl starch, 2:341–342

Ethyl acetate, in tea decaffeination, 2:516, 517

Ethyl alcohol, 1:153. See also Ethanol (ethyl alcohol)

Ethyl aminobenzoate, 1:82

Ethyl carbamate, in wines and distilled spirits, 1:170–171

Ethylcellulose, in microencapsulation, 2:26

Ethylene, making vinegar from, 2:539–540

Ethylene diamine tetraacetic acid (EDTA), as food additive, 1:737, 738

Ethylene oxide (ETO), in disinfecting spices, 2:314

Ethylene vinyl acetate (EVA) copolymer, in plastic food packaging, 2:249t, 252

Ethylene–vinyl alcohol (EVOH), in plastic food packaging, 2:257, 258, 259

Ethyl lactate, in wine, 2:683

Ethyl tartrate, in winemaking, 2:698

Ethylvanillin, 2:533

Etretinate, 2:598

Eucalyptus, waxes from, 2:620

Eugenia caryophyllus, 2:323–324

Euonymus, mannitol in, 2:427

Euphorbia antisyphilitica, candelilla wax from, 2:624

Euphorbia cerifera, candelilla wax from, 2:624

Europe
- aquacultural chemical regulation/registration in, 1:77, 78t
cane sugar products in, 2:410
dextrose manufacture in, 2:477
dietary phytosterols in, 2:188
eyelety sugar production in, 2:364
fructose production in, 2:488
hazelnuts (filberts) from, 2:225
lycopene studies in, 2:181
MGS production in, 2:154
microwave exposure hazards in, 2:57–59
microwave frequency allocations in, 2:42–44
molasses from, 2:496
montan wax in, 2:627
peanut consumption in, 2:228–230
regional names for wines in, 2:709–710
soray acid production in, 2:267–268
soybean and oilseed use in, 2:282, 297t, 298t, 299t
specialty sugars in, 2:411
spice recall in, 2:318
sugarcane cultivation in, 2:373
tea decaffeination in, 2:516
tea in, 2:502
viticultural areas in, 2:680–681
wheat production in, 2:655
wine regulation in, 2:709
wine vinegar production in, 2:544
wine yeast in, 2:734

European Agency for the Evaluation of Medicinal Products (EMEA), 1:77

European Article Numbering (EAN) bar code system, 1:169–170

European Commission, on sugar trade, 2:399

European Economic Community (EEC) directives, 1:226

European Union (EU)
- food additive approval in, 1:712
- fruit juice legislation in, 1:825
- sorbate regulation in, 2:276
on sugar standards, 2:399–400
sugar trade in, 2:399
wine production by, 2:699
European Wax Federation, on paraffin wax, 2:628
Evaporated milk, 2:98–99
Evaporation
in dextrose refining, 2:480
of sugar-beet sugar, 2:391–392
Evaporators, for juice concentration, 1:836–837
Evaporator syrup, from sugarcane processing, 2:377
Excelsin, in nuts, 2:206, 208t
Excretion
of mineral nutrients, 2:116, 119t
of sodium and potassium ions, 2:130
of vitamin C, 2:580
Exempt food colorants, 1:305–317
miscellaneous, 1:315–317
production and use of, 1:305
Exocellular bacterial cellulose, in making vinegar, 2:544
Exothermic processes, fermentation as, 2:542–543
Expanders, in soybean processing, 2:292
Expeller cocoa butter, 1:233
Expert tasters, 1:603–604
Exports, fish and shellfish, 1:588–590
Exposure assessment, 1:770–771
Exposure hazards, of microwaves, 2:57–59
Ext. D&C colorants
fastness properties of, 1:304t
solubilities of, 1:303t
Ext. D&C colors, 1:289
Extended interaction klystrons, as microwave instrumentation power source, 2:49
Extended shelf life (ESL) packaged food products, 2:241
Extenders, as meat-processing ingredients, 2:3
Extracellular fluid
anion and cation composition of, 2:125
phosphorus in, 2:124, 125
sodium and potassium in, 2:128–130
Extraction
in instant tea manufacture, 2:515–516
pure succinic acid recovery via, 2:357
of sugar from sugar beets, 2:386–387
of vanillin, 2:526–527
Extract library, in nutraceutical identification, 2:164
Extracts
from spices, 2:313–314
from yeasts, 2:741
Extruded pet foods, 1:475–476
Extrusion. See also Coextrusions
in flexible-film manufacture, 2:253
in making semirigid food containers, 2:255, 256, 258
in microencapsulation, 2:31, 38
in polyester manufacture, 2:251
Extrusion blow molding, in making semirigid food containers, 2:258
Extrusion encapsulation, 1:624–626, 638–639
Extrusion field, 1:625–626
Exudate gums, 1:866, 867
Eye, succinic anhydride irritation of, 2:359.
See also Vision problems
FAC scale, 1:453
Fair traded coffee, 1:269
Falling film vacuum plate evaporators, 1:836
Fancy patent, from wheat milling, 2:659–660
Fannings tea, 2:514
Farina, 2:662
Farms, safe milk from, 2:96–97. See also Agriculture
Fastness properties, of colorants, 1:304t
Fat(s), 1:427–462. See also Fats and fatty oils; Partially defatted nuts
analytical methods for, 1:451–454
chemical properties of, 1:449–451
classification of, 1:394
composition of, 1:429–432
in dairy substitutes, 1:320
derivatives of, 1:455
fatty acid compositions of, 1:442t
hydrogenation of, 1:434–441
lecithin in, 1:896
in meat, 2:2, 8–11
in milk, 2:66, 67t, 73
miscellaneous uses of, 1:457
in nuts, 2:207t, 208, 210t, 214–215
in oilseeds, 2:296
packaging for, 2:242
in peanut butter, 2:222
in pet foods, 1:479
physical properties of, 1:444–449
phyosterols and, 2:189
rendering, I:443
solid, I:441
sources of, I:441–444
unsaturated, I:441
uses of, I:454–457
in the U.S. food supply, I:394t
Fat-based fat replacers, examples of, I:413t
Fat-containing foods, nutrient content claims for, I:398t
Fat content
of cream, 2:102–103
of milk, 2:103, 104t
testing milk for, 2:95–96
Fat globule breakup, in milk homogenization, 2:73–74
Fat globule separation, in milk processing, 2:72–73
“Fat hunger,” I:454
Fat intake
from meat diet, 2:16–17
recommended, I:393–394
reducing, I:396–397
Fat metabolism, sulfur in, 2:126
Fat-reduced meat (FRM) processes, in reducing fat in meats, 2:11
Fat reduction, in meat products, 2:8–11
Fat replacement, routes for, I:399–400
Fat replacers, I:99, 393–426. See also Fat substitutes
carbohydrate-based, I:400–408
categories of, I:401t
labeling of products containing, I:397–398
lipid-based, I:411–418
protein-based, I:408–411
regulatory aspects of, I:398–399
safety of, I:399
terminology related to, I:400t
Fats and fatty oils, processing of, 1:432–434. See also Fat(s); Fatty oils
Fat substitutes, in reducing fat in meats, 2:10. See also Fat replacers
Fatty acid amidation, synthetic waxes from, 2:635
Fatty acid composition, of fats and oils, 1:451–452
Fatty acid esters, I:189–190
Fatty acids, I:393
in carnauba wax, 2:624
in cocoa beans and cocoa butter, I:245t
in cow milk, 2:70t
in fats and fatty oils, 1:427–429
manufacture of, I:457
medium-chain, I:416
in naturally occurring triglycerides, I:428t
as nutraceuticals, 2:181–184
in nuts, 2:210t
in oilseeds, 2:287, 288t, 296, 303
waxes from, 2:619, 620
Fatty esters, in wool grease and lanolin, 2:623. See also Sorbitan fatty esters
Fatty foods, excess consumption of, I:454
Fatty oils, I:427–462. See also Fats and fatty oils
analytical methods for, I:451–454
chemical properties of, I:449–451
composition of, I:429–432
fats and, I:441–444
fatty acid compositions of, I:442t
hydrogenation of, I:434–441
physical properties of, I:444–449
unsaturated, I:441
uses of, I:454–457
FD&C color additives, I:725
FD&C colors, I:289. See also Federal Food, Drug, and Cosmetic Act of 1938 (FD&C)
pH stability of, I:302t
solubility of, I:301t
stability of, I:302t
FD&C lakes, I:299–301
FD&C Red No. 4, I:298
FD&C Red No. 40, I:296
Feather meal, I:482
Fed-batch processes, in bakers’ yeast fermentation, 2:725
Fed-batch yeast cultivation processes, I:510
Federal Communications Commission (FCC), microwave frequency allocations and, 2:44
Federal Food and Drug Act of 1906, I:289
on vinegar, 2:539
Federal Food, Drug, and Cosmetic Act of 1938 (FD&C), I:289, 339, 487, 671. See also FD&C entries
Food Additives Amendment to, I:587, 794
on MSG, 2:157
on spices, 2:318
Federal Meat Inspection Act, 2:14
Federation of American Societies for Experimental Biology (FASEB)
on MSG, 2:159
on sugar alcohols, 2:436
Federation of European Food Additives and Food Enzyme Industries (ELC),
1:712
FEDIAF organization, 1:473
Feed Additive Compendium, 1:472
Feed additives. See also Additives
categories of, 1:472
FDA-approved, 1:472
for nonruminants, 1:464–472
Feedback inhibition mechanism, 1:28
Fedstock, fermentation of, 1:510
Feedstuffs
limiting amino acids of, 1:52t
sorbates in, 2:275
Fehling’s solution
dextrose (β-glucose) and, 2:475
in reducing-sugar determination, 2:403
Feints, 1:145, 149
Feline central retinal degeneration (FCRD), 1:51
Feline Nutrition Expert Subcommittee (AAFCO), 1:51
Feline urinary syndrome (FUS), 1:51
FEMA Generally Recognized as Safe lists, 1:510
Manufacturers Association (FEMA)
Fennel seed, 2:324
Fenugreek, 2:325
Fermentability, of corn syrups, 2:491
Fermentable sugars, 1:145
Fermentation, 1:502–557
advantages over organic synthesis, 1:507–508
in ancient times, 1:508
arabinol from, 2:425
in ascorbic acid manufacture, 2:565, 566, 567
ascorbic acid synthesis via, 2:563–564
bacterial and fungal, 1:515
bakers’ yeast, 2:725
in beer brewing, 2:731–732
in beverage spirits manufacture, 1:155–156
in black tea manufacture, 2:514–515
in brewhouse operations, 1:131–135
in brewing, 1:116
in citric acid manufacture, 1:255–256
of cocoa beans, 1:227–228
coenzyme Q10 production via, 2:191–192
in coffee processing, 1:268
dextrose in, 2:481
economic aspects of, 1:515–517, 522–523
food preservation via, 1:761
in generator process for making vinegar, 2:545–546
history 1700s–1900, 1:508–509
history 1900–1945, 1:509–511
history 1945–1960, 1:511–512
history 1960–1970, 1:512
history 1995–present, 1:514–515
inoculum development and scale-up in, 1:544–545
lactose from, 2:416
in making vinegar, 2:539, 540, 541–543
malolactic, 2:692–593
measuring, 1:135
microbiological aspects of, 1:523–530
in MSG production, 2:154–157
on-line and off-line measurements during, 1:539t
regulatory aspects of, 1:548–551
safety considerations related to, 1:551
in L-sorbose formation, 2:431
succinic acid from, 2:349, 357
sucrose in, 2:408, 409
in tea manufacture, 2:510–513
vitamin production via, 2:614t
in winemaking, 2:673, 677, 691–693
Fermentation companies, 1:517–522
examples of, 1:518–521t
Fermentation-derived compounds, 1:507
Fermentation equipment, 1:530–543
examples of, 1:535t
Fermentation facilities, validation of, 1:550
Fermentation kinetic profiles, 1:533
Fermentation methods, alternative, 1:515
Fermentation processes
development of, 1:503
improved, 1:512
Fermentation products, 1:515–517
parameters for, 1:516t
types of, 1:503–507
Fermentation scales, 1:533
Fermentative metabolism, yeast, 2:721
Fermented products, from meat processing,
2:6
Fermenters/fermentors. See also Waldhof fermentor
in bakers' yeast fermentation, 2:725
in biomass production, 2:738, 740
vent off-gas from, 1:542
in wine production, 2:691, 693
Fermentor agitators, 1:536
Fermentor installations, 1:510
Ferric ion (Fe³⁺), 2:133
Ferric iron, vitamin C and, 2:579
Ferrite circulator, in microwave instrumentation, 2:52
Ferrites, microwaves and, 2:48
Ferroelectric liquid crystals, 1:54
Ferromagnetic materials, microwaves and, 2:48
Ferrous gluconate, as a food colorant, 1:316
Ferrous ion (Fe²⁺), 2:133
Ferrous iron, vitamin C and, 2:579
Ferulic acid, 1:431
Fiber. See also Dietary fiber
cane, 2:411–412
in corn, 2:665, 666
in nuts, 2:207t
in pet foods, 1:477, 479–480
from wet-milling of corn, 2:339
Fiber supplements, 1:353
Field-force microwave effects, 2:47
Field patterns, in microwave applicators, 2:54–56
Filberts
uses of, 2:230
U.S. production and consumption of, 2:225, 226t
world production and consumption of, 2:224t
Filled imitation dairy products, 1:319
Filled milk, 1:337
Filter aids, as food additives, 1:742
Filtered air, in fermentation, 1:548
Filter “probes,” 1:541
Filtration
in dextrose refining, 2:478
in generator process for making vinegar, 2:546
in making vinegar, 2:548
of raw sugar, 2:381, 382
in starch-based sweetener production, 2:667
sterile, 1:538
in succinic acid/anhydride manufacture/
processing, 2:356
of wines, 2:696
Final molasses, 2:496
Fine-grain sugars, 2:410
Finely chopped products, from meat processing, 2:5–6
Finfish, preprocessing, 1:572
Fining, of wines, 2:696
Finishing, in brewhouse operations, 1:135–136
Fire point, of fats and oils, 1:448
Firing, in black tea manufacture, 2:514
Firming agents, as food additives, 1:732–733
Firmylglycine ribotide (FGAR), 2:610
First carbonation, in sugar purification, 2:388, 389
First molasses, 2:496
Fischer formula, 1:175
Fischer-Tropsch waxes, 2:632, 634
Fish. See also Seafood
harvesting, 1:559–569
packaging for, 2:239, 240
processing of, 1:571–588
safety of, 1:594–596
shelf life of, 1:570–571
smoked, 1:586–587
supply and disappearance of, 1:589t
in the United States, 1:558–559
vitamin C in, 2:573–574, 576t
Fishery landings, domestic, 1:559, 560–568t
Fishery products, textured and structured, 1:817–818
Fishing catch
quality maintenance of, 1:569–588
shipboard handling of, 1:570–571
Fishing gear, 1:559–568
impact on quality, 1:569–570
Fishing methods, impact on quality, 1:569–570
Fishing vessels, 1:568–569
Fish oils, 1:441, 574
Fish products, 1:557–598
cured and dried, 1:584–587
economic aspects of, 1:588–590
future developments related to, 1:596–597
irradiation of, 1:587–588
packaging of, 1:590–594
Fish protein concentrates/isolates, 1:817, 818
Fish silage, 1:819
Fish toxins, 1:792–793
Fish trapping, 1:570
Fittings, in dairy equipment, 2:86–87
Fixed knife mill, 1:834
Flame ionization detector (FID), for distilled spirits analysis, 1:168
“Flash” pasteurization, 1:137, 838
Flash point, of fats and oils, 1:448
Flavan-3,4-diol, biosynthesis of, 2:509
Flavanoids, in tea, 2:511
Flavanols
biosynthesis of, 2:509
in tea, 2:504–505
Flavanone, biosynthesis of, 2:509
Flavin adenine dinucleotide, 2:605
Flavin cofactors, 2:605
Flavin mononucleotide, 2:605
Flavonobacterium aurantiacum, in stored nut decontamination, 2:220
Flavone
molecular structure of, 2:186
as nutraceutical, 2:185–186
Flavonoids
in chocolate and cocoa, 1:243
molecular structures of, 2:186
as nutraceuticals, 2:185–186
in tea, 2:504–505, 508–509
Flavanol glycosides, in tea, 2:504–505
Flavanol oxidation, in tea manufacture, 2:510–511
Flavanols, in tea, 2:504–505
Flavor. See also Flavors
in beer brewing, 2:732–733
yeast and, 2:729
Flavor bases, in carbonated beverage manufacture, 1:216–218
Flavor characterization, 1:599–615
chemical methods for, 1:604–612
evolution of, 1:613
sensory methods for, 1:600–604
Flavor chemists, 1:664–665
Flavor compositions, 1:722–724
commercial, 1:723
Flavor compounds, 1:616, 665–670
flavor and diluent portions of, 1:665–666
retention during spray drying, 1:627
Flavor contributory item, 1:665
Flavor delivery, complex fluids for, 1:640–641
Flavor delivery systems, 1:616–652
applications for, 1:618, 641–646
commonly occurring structures of, 1:619
controlled release, 1:631–641
principal mechanisms of, 1:646
Flavor descriptors lists, 1:603
Flavor differential item, 1:665
Flavored carbonated beverages, 1:209
Flavored vodka, 1:149
Flavor emulsifiers, 1:623–624
Flavor encapsulation systems, 1:617
Flavor enhancers, 1:724
for pet foods, 1:485
in pet foods, 1:480–481
Flavor Extracts Manufacturers Association (FEMA), 1:658, 697, 711. See also FEMA Generally Recognized as Safe lists
nonnutritive sweeteners approved by, 2:446
Flavor formulas, 1:666–670
Flavor formulation manuals, 1:660
Flavor industry, 1:647
economic aspects of, 1:670
Flavor information, sources of, 1:698–701
Flavoring dosage, 1:665
Flavoring preparation, 1:724
Flavor ingredients, regulation of, 1:696–698
Flavorings. See also Condiments; Seasonings; Spices
in carbonated beverages, 1:214–215
classifications of, 1:664, 724–725
corn syrups as, 2:491–492
dextrose in, 2:481
in instant tea manufacture, 2:516
lists of, 1:664
microencapsulation of, 2:38–39
MSG, 2:152, 157, 158
succinic acid, 2:358–359
sucrose in, 2:408
vanillin, 2:526–538
in yeast-raised products, 1:101
Flavorists, 1:696
Flavor materials, 1:657–659, 695–696
FlavorNet, 1:679, 692
Flavor perception, 2:533
Flavor release, 1:681, 687, 688
air flow influence on, 1:688
Flavors, 1:652–678. See also Flavor; Taste entries
as chemical stimuli, 1:679
chemical classes approved for, 1:659t
coacervation encapsulation and gel encapsulation of, 1:633–638
compounding, 1:696
defined, 1:678
encapsulation by freeze drying and vacuum drying, 1:627–628
encapsulation by spray drying, 1:626–627
encapsulation by twin-screw extrusion, 1:625
encapsulation in complex fluids, 1:640–641
encapsulation of, 1:616
extrusion encapsulation of, 1:624–626, 638–639
as a feature of food, 1:653
fluidized-bed encapsulation of, 1:628–630
function of, 1:653
hydrophobic, 1:622–623
inclusion complexation of, 1:641
manufacturing processes for, 1:723
natural and food ingredients used in, 1:659t
overview of, 1:678–704
perception of, 1:678–679
regulations related to, 1:671
sensory evaluation of, 1:671–672
shelf life of, 1:631
specifications for, 1:664–665
spray chilling of, 1:639–640
terminology related to, 1:672–674
Flavor substances, regulation of, 1:711
Flexible plastic packaging, for food, 2:253–255
Flexographic printing, on flexible food packaging, 2:253–254
Floating fruit, in fruit preserves and jellies, 1:853
Flocculation, 1:381. See also Depletion flocculation
in beer brewing, 2:732
in sugarcane processing, 2:377
Floral notes, vanillin and, 2:535–536
Florfenicol, 1:81
"Flor yeast," in winemaking, 2:695
Flour
air classification of, 2:660–661
soybean, 2:304–305
wheat, 2:653, 657, 661–662
from wheat milling, 2:659–660
yeast and, 2:728
in yeast-raised products, 1:96–97
Flour brews, 1:107
Flour quality analyses, 1:96
Floury endosperm, of corn kernel, 2:337
Flow-diversion valve (FDV), in milk pasteurization, 2:76, 78
Flowers, of cereal grains, 2:648, 649
Fluid-bed dryers, in black tea manufacture, 2:515
Fluid extraction, in reducing fat in meats, 2:10–11
Fluidized-bed encapsulation, 1:643–644
Fluidized-bed encapsulation technology, 1:631; 2:33, 36
Fluidized-bed flavor, encapsulation technologies, 1:628–630
Fluidized-bed reactors, in making vinegar, 2:546
Fluidized-bed roasting processes, for coffee, 1:275
Fluidized lecithins, 1:891
Fluid shortening, 1:98
Fluorescein sodium, 1:70
Fluoride, in tea, 2:507
Fluorimetric amino acid analysis, 1:45–47
Fluorinated amino acids, nonenzymatic, 1:37
Fluorine (F)
foods rich in, 2:134t
as trace nutrient, 2:137
Fluorine disorders, 2:137
Fluoroquinolones, 1:80–81
Fluridone, 1:73
Flush, in tea manufacture, 2:510
Foaming
 in fermentation, 1:541
 in generator process for making vinegar, 2:546
Foam spray drying
 in making dry milk, 2:102
Foeniculum vulgare, 2:324
Folded guide microwave applicator, 2:53
Folding cartons, for food packaging, 2:244–245
Folic acid, 2:168t, 609–611
 history of, 2:591t
 in milk, 2:68t
 molecular structure of, 2:614t
 RDAs of, 2:594t
 tolerable upper limits of, 2:595t
 toxicity of, 1:789
 vitamin C and, 2:578
 Folic acid deficiency, 2:610
Food(s). See also Nonconventional foods
 amino acids in, 1:51–53
 aroma impact components of, 1:691–693
 cereal grains in, 2:641–642, 643–644, 645, 657
 chemical contaminants and toxins in, 1:771–777
 citric acid in, 1:261–262
 color expectation in, 1:294
 colorless, 1:294
 corn as, 2:665
 deterioration of, 2:239
 energy content of, 2:214–215
 four features of, 1:653
 high fructose corn syrups in, 2:490
 importance of water activity in, 1:585t
 inactive dry yeasts in, 2:740
 irradiation of, 1:587–588
 labeling and nutrition claims for, 1:397–398
 lecithin in, 1:895–896
 microbiological hazard in, 1:596
 microwave irradiation of, 2:46–47
 microwave technology in preparing, 2:59–60
 misbranded, 1:339
 molasses in, 2:497
 MSG in, 2:152, 157, 158
 nutraceuticals as, 2:161–162
 nuts as, 2:214–215
 polyethylene waxes in, 2:633
 regulation of chemical contaminants and toxins in, 1:765–768
 replacement of sugar by sugar alcohols in, 2:436–437
 risk assessment of chemical contaminants and toxins in, 1:768–771
 vanillin in, 2:533–535
 vinegar used in, 2:550
 vitamin C in, 2:573–574, 576t
 yeast-fermented, 2:723
 Food acceptance, flavor and, 1:652, 653–654
 Food additive industry, 1:745–746
 Food Additive petition, 1:711
 Food additives, 1:705–749, 761. See also Additive entries
 acidulants, 1:720–722
 antimicrobials, 1:733–735
 antioxidants, 1:735–737
 bleaching, maturing, and dough-conditioning agents, 1:732
 bulking agents, 1:719
 carcinogenic, 1:766
 classification of, 1:706–707
 colors, 1:725–727
 emulsifiers, 1:730–732
 firming agents, 1:732–733
 flavors and flavor enhancers, 1:722–725
 fumigants, 1:738
 function of, 1:705–709
 glazing and polishing agents, 1:733
 high intensity sweeteners, 1:717–719
 humectants, 1:741
 leavening agents, 1:741–742
 lubricants and release agents, 1:742
 market overview for, 1:745–747
 nutrients, 1:743–745
 pH adjusting agents, 1:737–738
 polyols, 1:714–716
 preservatives, 1:733–739
 processing aides, 1:739–743
 regulations related to, 1:709–713
 solvents, 1:742
 sucrose, 1:714
 sweeteners, 1:713–714
terminology for, 1:707–709
thickeners and stabilizers, 1:727–730
water-correcting agents, 1:742–743
Food Additives Amendment to the Food, Drug & Cosmetic Act, 1:709, 710, 711
Food adjuncts, lists of, 1:664
Food and Agricultural Organization (FAO).
See also Joint FAO/WHO Expert Committee on Food Additives (JECFA)
cereal grains in symbol of, 2:643
on chocolate and cocoa, 1:225
dairy sterilization standards of, 2:98
on sugar standards, 2:399
Food and Drug Act of 1906. See Federal Food and Drug Act of 1906
Food and Drug Administration (FDA)
aquaculture chemicals registered or allowed by, 1:68–74
aquaculture regulations, 1:66
on aspartame, 2:447
on chocolate and cocoa, 1:225
on citric acid, 1:260
on corn syrups, 2:493
on cyclamate, 2:456
Daily Values for vitamins, 2:593
on dextrose, 2:481
on disinfecting spices, 2:314
flavor ingredient regulation by, 1:696–697
food additive terminology of, 1:707–709
food colorants and, 1:290
on gossypol, 2:300
on high fructose corn syrups, 2:481
jurisdiction over food additives, 1:709
on meat health hazards, 2:18, 19–20
meat labeling guidelines of, 2:14–16, 17
on MSG, 2:157, 159
on neotame, 2:451
on nonconventional foods, 1:808
on nonnutritive sweeteners, 2:446
on nutraceuticals, 2:163
on pasteurization standards, 2:83
pesticide residue monitoring by, 1:773
on polyethylene waxes, 2:633
regulation of dairy substitutes, 1:338–339
spice adulteration and, 2:317–321
spice labeling by, 2:317
on stevioside, 2:459–460
on sucralose, 2:457
on sugar health and safety factors, 2:407
on sugar standards, 2:400
on tea decaffeination, 2:517
on vanillin, 2:526
on vinegar labeling standards, 2:549–550
Food and Nutrition Board (FNB), on nutraceuticals, 2:164
Food antioxidants, 1:735–737
manufacturing processes for, 1:736t
Food applications
microencapsulation in, 2:24t, 36–39
sorbates in, 2:272–275
of sucrose, 2:407–408
Food-based therapies, 1:515
Food Chemicals Codex, 1:861, 892
specifications in, 1:22, 664
Food chemical exposure, assessment of, 1:770–771
Food color additives, certification-exempt, 1:727
Food colorants, 1:288–318. See also Exempt food colorants; Food colors
certification of, 1:295–296
certified, 1:298–304
dye types in, 1:300
history of regulation of, 1:288–290
listed and provisionally listed, 1:295
permissible, 1:291–293, 302
properties of, 1:301–302
regional/seasonal problems related to, 1:294–295
regulation of, 1:295–298
specifications for, 1:296–297
titanium dioxide, 1:297–298
use restrictions on, 1:298
Food colors, 1:725–727. See also Food colorants
commonly used, 1:216t
Food components, fats and oils as, 1:454–455
Food consumption surveys, 1:770
See Federal Food, Drug, and Cosmetic Act of 1938 (FD&C)
Food emulsions, 1:391
Food enzymes, categories of, 1:740
Food flavor, nonvolatile components in, 1:610–611. See also Flavor entries
Food flavor education, 1:603–604
Food-grade lecithin, 1:892
Food-grade low-molecular-weight emulsifiers, 1:321
FOOD SPOILAGE 791

Food groups, fortified, 1:744t
Food industry
 amino acid use in, 1:7
t enzyme applications in, 1:740t
 structure of, 1:746
ty es in, 2:726–730
Food ingredients, versus additives, 1:705
Food inspection, dyes used in, 1:295
Food Inspection Decisions (FID), 1:288
Food manufacturing aids, 1:742
Food packaging, 2:238–262. See also General Standards for the Labeling of Prepackaged Foods
 choice of, 2:239
t o forestall/delay food deterioration, 2:239
glass, 2:244, 247–248
metal, 2:244, 245–247
paper, 2:244–245
plastic, 2:248–259
 purpose of, 2:238–239
t ypes of, 2:239–243
Food preservation, 1:752–763. See also Preservatives
 alternative technologies for, 1:762–763
t e chemical, 1:761–762
t e dehydrations, 1:759–761
 freezing, 1:757–759
 long-term storage, 1:754
 short-term storage, 1:752–754
 sorbic acid in, 2:263, 269–275
 thermal, 1:754–757
 yeasts in, 2:741
Food preservation theory, 1:751
Food processing, 1:749–764. See also Food preservation; Meat processing
 computer integrated manufacturing in, 1:763
dextrose in, 2:481
microwave technology in, 2:60
 optimization of, 1:750–752
 regulations related to, 1:750
 water activity in, 1:751–752
Food processing/storage, colorants and, 1:294
Food products
 as emulsions, 1:391
 fresh, 1:593
 from oilseed oils, 2:305–306
 uses of gelatin in, 1:862
 wines as, 2:674–675
Food Quality Protection Act (FQPA) of 1996, 1:772–773
Food safety, chemical contaminants and toxins in, 1:765–778. See also Food toxicants
Food Safety and Inspection Service (FSIS), meat labeling guidelines of, 2:14–16, 17
Food service industry, 1:109
Food sources
 of ascorbic acid, 2:614
 of biotin, 2:608
 of boron, 2:134t
 of calcium, 2:120t
t e carotenes in, 2:599
cereal grains as, 2:645, 657
 of chloride, 2:129t
 of chromium, 2:135t
 of cobalt, 2:135t
 of copper, 2:134t
t of cyanocobalamin, 2:612
 of dietary fiber, 1:351, 352–353t
 of fats, 1:441–444
 of fluorine, 2:134t
 of folic acid, 2:611
 of iron, 2:134t
 of magnesium, 2:131t
 of manganese, 2:135t
 of niacin and niacinamide, 2:606
 of pantothenic acid, 2:608
 of phosphorus, 2:123t
 of pyridoxine, 2:607
 of riboflavin, 2:606
 of selenium, 2:135t
 of silicon, 2:134t
 of sodium and potassium, 2:129t
 of sulfur, 2:126t
 of thiamine, 2:605
 of trace/ultratrace elements, 2:134–135t
 of vitamin D, 2:602
 of vitamin E, 2:603
 of vitamin K, 2:604
 of zinc, 2:134t
Food spoilage
 sources of, 1:749–750
 yeasts in, 2:741
Food toxicants
amines and alkaloids, 1:785–787
antinutrients, 1:787–788
cyanogenic glycosides, 1:789–790
esential minerals and heavy trace elements, 1:789
legislation and regulatory considerations related to, 1:794
mycotoxins, 1:790–792
naturally occurring, 1:779–797
nitrates, nitrites, and nitrosamines, 1:790
oligosaccharides, 1:784–785
oxalates, phytates, and chelates, 1:785–787
phytoalexins, 1:783–784
proteins, peptides, amides, and amino acids, 1:779–783
seafood, 1:792–793
sodium chloride, 1:790
structures of, 1:781
vitamins, 1:788–789
Forages, as ruminant feed, 1:491
Foreshots, 1:145
Formaldehyde
in microencapsulation, 2:29–30
reaction with succinic acid/ahydride, 2:353
Formalin, 1:67, 68, 75, 81
Formaminoimidazole carboxamide ribotide (FAICAR), 2:610
Formed products, from meat processing, 2:5
Formulated foods, freezing, 1:758
N-Formyl-L-aspartic anhydride in aspartame synthesis, 2:449
N-Formyl-L-aspartyl-L-phenylalanine in aspartame synthesis, 2:449
N10-Formyl tetrahydrofolic acid, 2:609–610
Fortification
with vitamin C, 2:574
with vitamins, 2:590
Fortified foods, 1:745
Fortified wines, 2:679, 680
4-D beef, in pet foods, 1:479
4H-chromene
molecular structure of, 2:186
as nutraceutical, 2:185–186
Fractional crystallization, 1:439
Fractional distillation, 1:837
Fractionated lecithins, 1:891
Fractionation
of fats and fatty oils, 1:438–439
pure succinic acid recovery via, 2:357
Fragrance Materials Association (FMA) of the United States, 1:660
specifications by, 1:664
Fragrances, vanillin in, 2:535–536
France
regional names for wines in, 2:709–710
spice recall in, 2:318
wine fermentations in, 2:734
Fraxinus rotundifolius, mannitol in, 2:427
Free amino acids, analytical methods for, 1:44–47
Free fatty acids
in fats and oils, 1:429, 451
removal of, 1:433
Free radicals
toxicity of, 1:793
vitamin C versus, 2:578
Free-run juice, in wine production, 2:689–690
Freeze concentration, of citrus juice, 1:831
Freeze drying
as a flavor encapsulation technology, 1:631
of instant coffee, 1:279
Freeze drying encapsulation, 1:627–628
Freezer jams, no-cooked, 1:852
Freezing
preserving dietary vitamin C via, 2:574
of seafood, 1:577–582
Freezing facilities, for seafood, 1:582–583
Freezing preservation
of food, 1:757–759
of fruit juices, 1:840
Freezing technology, effect of, 1:825
Freidel-Crafts reactions, of succinic anhydride, 2:354
French wines, 2:681
Frequency allocations, microwave, 2:42–44
Fresh foods, packaging for, 2:239–240
Fresh produce, packaging for, 2:240
Freundlich equation, 1:434
Frings acetator, in making vinegar, 2:545
Fröhlich, Theodor, 2:556
Frozen concentrated fruit juices, 1:825
Frozen desserts, 2:107–109
composition of, 2:107t
corn syrups in, 2:493
imitation, 1:330–331
vanillin in, 2:535
Frozen dough products, 1:105–106
Frozen egg products, 1:368
Frozen fish, 1:558
Frozen foods
 citric acid in, 1:262
 packaging for, 2:241–242
Fructooligosaccharides, 2:371
Fructose, 2:412–414
 blood glucose and insulin response to, 2:436
 crystalline, 2:414, 488, 490
 discovery of, 2:486
 in high fructose corn syrups, 2:486, 487–488
 history of, 2:412–413
 isomerization of dextrose to, 2:475
 in molasses, 2:412
 molecular structure of, 2:372, 413
 physical properties of, 2:366
 properties of, 2:413–414, 486–487
 sucrose and, 2:370
 from sucrose hydrolysis, 2:371, 372, 390–391
D-Fructose, 1:191
 formation of, 2:431
 reduction of, 1:187
Fructosyloligosaccharides (FOSs), uses of, 2:409
Fruit(s). See also Citrus fruits
 concentration and aroma recovery for, 1:836–837
 miraculin in, 2:465–466
 nuts as, 2:205
 packaging for, 2:240
 pressing of, 1:835–836
 succinic acid in, 2:349
 vinegar made from, 2:539
 vitamin C in, 2:573–574, 576t
 wine from, 2:673–674
Fruit butters, 1:846
Fruit essences, 1:837
Fruit flavor, increasing, 1:668–669
Fruit flavorings, 1:664
Fruit graders, 1:829
Fruit juice drinks, 1:842–843
Fruit juice extractors, 1:830
Fruit juice industry, 1:825
Fruit juices, 1:825–845
 authenticity of, 1:828
 chemical preservatives in, 1:839–840
 clarification of, 1:837–838
 composition of, 1:826–828
 dehydration of, 1:840–841
 as food colorants, 1:316
 freezing, 1:840
 frozen concentrated, 1:825
 manufacturing of, 1:828–841
 pasteurization of, 1:838–839
 raw materials for, 1:826
 standards for, 1:826–828
 tropical, 1:841–842
 world supply and consumption of, 1:843–844
Fruit nectars, 1:842
Fruit preserves and jellies, 1:846–855
 carbohydrate sweeteners in, 1:849–850
 definitions and standards related to, 1:846
 gelation-pectin mechanism in, 1:846–848
 manufacturing methods for, 1:848–849
 processing techniques for, 1:850–852
 quality parameters for, 1:852–853
 trends in, 1:853–854
Fruit products, sorbates in, 1:834
Fruit pulp, enzyme treatment of, 1:834
Fruit sugar, 2:412. See also Fructose entries
Fruit vinegars, 2:541
 labeling standards for, 2:549
Fuel alcohol, 2:651–653
Full-bodied rums, 1:152
Fully processed foods, packaging for, 2:241–243
Fumaric acid
 as food additive, 1:720, 737
 in succinic acid preparation, 2:357
Fumigants, as food additives, 1:738
Fumigation, versus weevil infestations, 2:218
Functional blends, in reducing fat in meats, 2:10
Fungal amylases, 1:100
Fungi
 arabinosin in, 2:425
 dry weight yields of, 1:808
 for food use, 1:806
 mannitol in, 2:427
 nut toxins and, 2:219
 parasitic, 1:791
 sorbic acid versus, 2:270–271t
 as sugarcane pests, 2:373–374
 toxic, 1:782–783
 vinegar made by, 2:541
 xylitol in, 2:425
 yeasts as, 2:711
Fungicides
as registered aquaculture chemicals, 1:67–75
registration potential of, 1:81
in stored nut decontamination, 2:220
Fungi imperfecti, 2:711
Furanocoumarins, 1:783–784
Furanose ring, 1:177, 179
Furcellarans, 1:202–203, 872, 873
Furfural, from ascorbic acid degradation, 2:560
Fusarium graminearum, 1:808
Fusel oil, 1:145
Fusel oil content, of distilled spirits, 1:168
Gabriel’s modification, 1:18
Galactitol, 2:423t
occurrence and preparation of, 2:428
Galactomannans, 1:203, 271, 869, 871–872
L-Galactono-γ-lactone, in ascorbic acid
biosynthesis, 2:572–573
d-Galactose, in ascorbic acid biosynthesis,
2:571–572, 573, 575
α-d-Galacturonan, 1:204–205
Galacturonans, 1:204
d-Galacturonic acid, in ascorbic acid
biosynthesis, 2:575
Gallic acid
in tea, 2:506
in tea manufacture, 2:512
Gallic acid quinone, in tea manufacture,
2:512
Gamma ketopimelic acid dilactone, from
succinic acid, 2:350, 351
Gardner Color method, 1:894
Gardner scale, 1:453
Garlic, 2:325
Gas chromatographic analysis
of ascorbic acid, 2:569
of distilled spirits, 1:168
of succinic acid/anhydride, 2:358
of wax, 2:638
Gas chromatography (gc), 1:45. See also
gc-ms protocols
for aroma isolation, 1:607
in sugar alcohol analysis, 2:434
of vanillin products, 2:537
Gas chromatography olfactometry (GCO), 1:685, 689. See also GCO analysis
Gaseous plasmas, microwaves and,
2:48
Gases, for insect and pest control,
1:738
Gas liquid chromatography (GLC), in sugar
analysis, 2:404, 405
Gaspe cure, 1:585
Gas-phase catalytic hydrogenation, of
succinic anhydride, 2:352–353
Gastrointestinal (GI) tract, dietary fiber in,
1:344
Gay-Lussac equation, 2:542
gc-ms protocols, for aroma isolation, 1:607. See also Gas chromatography (gc);
Mass spectrometry (MS; ms)
GCO analysis, 1:692–693. See also Gas chromatography olfactometry (GCO)
Gelatin, 1:856–865
analytical test methods and quality
standards for, 1:861
chemical composition and structure of,
1:856–857
commercial, 1:857
economic aspects of, 1:861
as a fat replacer, 1:411
as food additive, 1:729
manufacture and processing of,
1:860–861
in microencapsulation, 2:25
physical and chemical properties of,
1:857–860
stability of, 1:857
uses in food products, 1:862
Gelatin capsules, 1:637
Gelatinization, 1:196
of corn starch, 2:666
of starch, 2:331–332
Gelation-pectin mechanism, in fruit
preserves and jellies, 1:846–848
Gelation processes, 1:857–858
for microencapsulation, 2:24–25
Gel encapsulation, 1:637–638
difficulties with, 1:638
Gellan, 1:874
Gellan gum, as food additive,
1:730
Gel permeation chromatography, in wax
analysis, 2:638
Gel systems, novel, 1:848–849
Genencor, 1:513
General labeled magnitude scales (gLMSs), 1:601
Generally recognized as safe (GRAS) substances, 1:399, 697, 710, 711.
See also GRAS affirmation process
beeswax, 2:621
carnauba wax, 2:624
citric acid, 1:260
corn syrups, 2:493
cyclamate, 2:456
dextrose, 2:481
erythritol, 2:465
feed additives, 1:472
high fructose corn syrups, 2:481
lactisole, 2:466
miraculin, 2:466
nonnutritive sweeteners, 2:446
sorbates, 2:272, 275
succinic acid, 2:358
sugar alcohols, 2:437
D-tagatose, 2:465
vanillin, 2:537, 538
General Standards for the Labeling of Prepackaged Foods, 2:99
Generator process, in making vinegar, 2:545–546, 548
Gene technology, 1:35
breeding of amino acid producers by, 1:36–37t
Gene therapy, 1:514–515
Genetically engineered enzymes, in dairy biotechnology, 2:112
Genetically modified organisms (GMO), 1:514
Genetic diseases, copper-related, 2:139
Genetic engineering
advances in, 1:512–513
in dairy biotechnology, 2:112
of secondary metabolites, 1:524
Genetic studies, yeasts in, 2:712
Genista tinctoria, genistein from, 2:186
Genistin
molecular structure of, 2:186
as nutraceutical, 2:185–187
in soybeans, 2:289
Genomes of Saccharomyces cerevisiae and other yeasts, 2:715, 716t
sequencing of, 1:514
shuffling of, 1:524
winemaking and, 2:677
Gerber test, for milk fat, 2:96
Germ
of corn, 2:665, 666
of corn kernel, 2:337
German mashing process, 1:156–157
German Society for Fat Technology, 2:617
Germany
cereal grains and, 2:645, 646, 647
montan wax in, 2:627
Germination-kilning vessels (GKVs), 1:118
Germination vessels, 1:117
Ghatti gum, as food additive, 1:729
Gibberellic acid, 1:119
Gill nets, 1:559–568, 570
Gin, 1:150–151
sales of, 1:166
Ginger, 2:325
Ginkgoin, in nuts, 2:206
Glacial acetic acid, 1:75
Glass encapsulated flavors
characteristics of, 1:623
structural defects of, 1:623
Glass encapsulation, 1:616–617
principles of, 1:618–624
Glass encapsulation systems, 1:617, 618
applications of, 1:642
characteristics of, 1:621t
comparison of, 1:630–631
morphologies of, 1:620
structural imperfections of, 1:623, 624
Glass food packaging, 2:244, 247–248
Glass-rubber transition, 1:618, 619
Glass transition temperature, 1:618, 622
Glazing agents, as food additives, 1:733
Global meat markets, 2:11–12
table of, 2:12t
Globulins, in nuts, 2:206–208
D-Glucitol, 2:423t
molecular structure of, 2:426
L-Glucitol, 2:423t
Glucoamylase, 2:334
as food additive, 1:740
in amylose and amylopectin degradation, 2:336
in dextrose manufacture, 2:476, 478
Glucomannans, 1:194
D-Gluconic acid, in ascorbic acid biosynthesis, 2:574
Gluconobacter, in vinegar manufacture, 2:544
D-Glucono-γ-lactone, in ascorbic acid biosynthesis, 2:572, 574
Glucono-delta-lactone (GDL), as food additive, I:720–721
nutritional aspects of, I:92
D-Glucopyranose, in dextrose manufacture, 2:478
α-D-Glucopyranosyl-1,1-D-mannitol (duhydrate), molecular structure of, 2:429
α-D-Glucopyranosyl-1,6-D-sorbitol, molecular structure of, 2:429
Glucosamine as nutraceutical, 2:190–191
molecular structure of, 2:190
Glucose. See also Blood glucose response; Dextrose entries
arabinitol from, 2:425
in molasses, 2:412
molecular structure of, 2:372
sorbital from, 2:426–427
sucrose and, 2:370
from sucrose hydrolysis, 2:371, 372, 390–391
α-D-Glucose (α-dextrose), 2:473–474
physical properties of, 2:474t, 475t
β-D-Glucose (β-dextrose), 2:473–474
physical properties of, 2:474t, 475t
d-Glucose, I:175, 186, 191, 192, 473.
See also Dextrose
ascorbic acid synthesized from, 2:556
in ascorbic acid biosynthesis, 2:571–572, 573, 575
in ascorbic acid manufacture, 2:565
in ascorbic acid synthesis, 2:562–563, 563–564
physical properties of, 2:474t, 475t
reaction with ethanol, I:179
Glucose-6-phosphate, from dextrose, 2:476
d-Glucose forms, I:178
Glucose isomerase
as food additive, I:740
in high fructose corn syrup manufacture, 2:487
Glucose metabolism, vitamin C in, 2:577
Glucose oxidase, I:186
Glucose syrups, from starch degradation, 2:343
Glucose tolerance factor (GTF), chromium in, 2:143, 144
Glucose tolerance test (GTT), chromium and, 2:144
Glucose vinegar, 2:539
Glucovanillin, 2:526
d-Glucuronic acid, in ascorbic acid biosynthesis, 2:571–572, 573, 575
Glucuronic pathway, of ascorbic acid biosynthesis, 2:571–572, 573
Glumes, of cereal grains, 2:648–650
Glusulase, 2:718
Glutamate–oxalacetate transaminase (GOT), I:50
Glutamate–pyruvate transaminase (GPT), I:50
Glutamate transaminase, MSG and, 2:153
Glutamic acid, toxicity of, I:782
l-Glutamic acid, I:27
crystal structure of, I:12
enzymatic determination of, I:47
fermentative production of, I:296
MSG and, 2:153, 154–155, 155–156, 157
“Glutamic acid bacteria,” I:27–28
Glutamic acid dehydrogenase, MSG and, 2:153
Glutamic acid hydrochloride, I:54
Glutamine, in sugar beets, 2:391
L-Glutamine, I:8
fermentative production of, I:296
Glutaraldehyde, in microencapsulation, 2:25
Glutaric acid, 2:357
Glutathione peroxidase, selenium and, 2:140–141
Glutelin, in nuts, 2:206
Gluten, I:96
celiac disease and, 2:669
Gluten flour, 2:662
Glutenin, from cereal grains, 2:654
Gluten proteins, from cereal grains, 2:654
Glycals, I:191
Glycation, nonenzymatic, I:15
Glycnergic acid, 2:462, 463t
Glycerides, I:444
crystal structure of, I:445
partial, I:429, 446
refractive indexes of, I:448
Glycerol
analysis of, 2:434
pKₐ value of, 2:425t
in wine, 2:681–682
Glycetein, in soybeans, 2:289
d-Glycitol, occurrence and preparation of, 2:426–427
Glycine, toxicity of, I:782
Glycine derivatives, alkylation of, I:25
Glycine max, classification, production area, and uses of, 2:283t
Glycinin, in soybeans, 2:285
Glycoalkaloids, 1:787
Glycoconjugates, 1:183–185
Glycogen, 1:182
dextrose (D-glucose) in, 2:473, 476
Glycolipids (GL), 1:184, 393
Glycolysis, in converting hexose sugars to ethanol, 2:543
Glycoproteins, 1:184
iodine and, 2:141
in yeast cell wall, 2:714–715
Glycosaminoglycans, 1:184
Glycosides, 1:179
cyanogenic, 1:789–790
molecular structure of, 2:213
in nuts, 2:212–213
in tea, 2:505
in wine, 2:683
Glycosidic bonds, 1:182
Glycosyl chlorides, 1:183
C-Glycosyl compounds, 1:183
Glycyrrhiza glabra, 2:460
Glycyrrhizin, 2:460
economic aspects of, 2:446
Glyoxylic acid, as vanillin by-product, 2:528, 529
Glycoses, 1:179
GMS emulsifier, 1:330
Gob feeder, in bottle manufacture, 2:248
Goiter, iodine and, 2:142
Goitrogens, 1:784–785
Gold rums, 1:152
Gold rums, 1:152
Golgi bodies, of yeasts, 2:717
Good automation manufacturing practices (GAMP), 1:551
Good laboratory practices (GLP), 1:66, 514
Good manufacturing practices (GMP), 1:66, 514
in fermentation, 1:549–551
Gossypium arboreum, classification, production area, and uses of, 2:283t
Gossypol, in cottonseed, 2:289, 300, 303
Gourmet coffee, 2:277
Gourmet fruit spreads, 1:854
Grade AA/A eggs, 1:362–364
Grading
in black tea manufacture, 2:514
of vanillin, 2:531–532
Graham, Sylvester, 2:661
Graham flour, 2:661
Grain-based beverages, 1:114
Grain handling/milling, in beverage spirits manufacture, 1:153–154
Grain neutral spirits, distillation of, 1:158
Grains, in pet foods, 1:479. See also Cereal grains
Grain spirits, 1:149
Grain wort, for bakers' yeast, 2:724
Gramineae, 2:642, 646
Granular flour, 2:662
Granulated sugar, uses of, 2:410
Granulation
in spice quality measurement, 2:316
in sugar quality control, 2:400–401
Grape color extract, as a food colorant, 1:311–312
Grapefruit juice, unpasteurized, 1:832
Grape juice, making vinegar from, 2:540
Grape phenols, winemaking and, 2:678
Grape phylloxera, 2:688
Grape production, 2:702
Grapes
genetic parentage of wine, 2:678t
wine from, 2:673, 675–676, 678
Grape skin extract, as a food colorant, 1:311–312
Grape skins, in wine production, 2:690–691
Grape vinegar, labeling standards for, 2:549
GRAS affirmation process, 1:712. See also Generally recognized as safe (GRAS) substances
Grave's disease, 2:142
Great Britain. See also British entries; English entries
cane sugar products in, 2:410
scurvy and, 2:556
spice recall in, 2:318
tea in, 2:502
tea packaging in, 2:517–518
Greece, winemaking in ancient, 2:677
Green coffee
analyses of, 1:269t
chemical composition of, 1:269
processing of, 1:267–269
world imports of, 1:282t
Green coffee beans, for instant coffee, 1:277
Green harvesting, of peanuts, 2:291
Green tea, 2:505, 506
as anticancer agent, 2:521
composition of, 2:518t
epigallocatechin gallate extraction from, 2:184–185
health benefits of, 2:162
manufacture of, 2:509–510, 515
polyphenols in, 2:184
worldwide consumption of, 2:518–519
Gridded tubes, as microwave instrumentation power source, 2:49
Grinding
of cocoa beans, 1:231
in flour air classification, 2:661
in wheat milling, 2:658
Grocery store, safe milk from, 2:98
Groundnuts, 2:282
Ground pepper, adulteration of, 2:319–320
Ground spices, adulteration of, 2:317–318
Growth and production kinetics, in fermentation, 1:530
Growth and production media, composition of, 1:529
Growth factors, (R)-(-)-lipoic acid, 2:190
Growth promotants
for bakers' yeast, 2:724–725
as meat health hazard, 2:17–18
Growth rate, yeast, 2:721, 723t
Guaiacol, vanillin from, 2:527, 528, 529, 531
(Guanosine triphosphate)-protein coupled receptors (GPCR), in tasting sweetness, 2:467–468
Guaran, 1:203, 871
Guar endosperm preparations, 1:203
Guar gum, 1:203–204, 405, 871–872
as food additive, 1:729
L-Gulonic acid, in ascorbic acid biosynthesis, 2:572, 573, 575
L-Gulono-γ-lactone oxidase, 2:571
Gum arabic, 1:204, 404–405, 875
as food additive, 1:729
in microencapsulation, 2:25, 32
Gum guaiac, as food additive, 1:736
Gummy jelly, 1:853
Gums, 1:866–881
applications of, 1:870–871
defined, 1:866–867
in dairy substitutes, 1:325–326, 327t
as fat replacers, 1:404–405
industrial, 1:868t, 869–870
properties and uses of, 1:869–871, 877
structural features of, 1:867–869
types of, 1:871–877
vegetable, 1:333
water-soluble, 1:199–207
Gum solutions, rheology of, 1:870
Gum tragacanth, 1:405
Gymnemic acid, as sweetness inhibitor, 2:466
Gyrotrons, as microwave instrumentation power source, 2:49
Half-life, of vitamin C, 2:580
Halogenated compounds, 1:793
Halogenation, of succinic acid and anhydride, 2:353
α-Halogeno carboxylic acids, amination of, 1:18
Halogen-substituted succinimides, 2:354
Hammer mills, 1:126, 833–834
Handbook of Pharmaceutical Excipients (HPE), 1:893
Hanseniaspora, wine yeast and, 2:735
Hansenula, wine yeast and, 2:735
Hansenula anomala, 2:713t
useful mutations of, 2:720
Hansenula jejunii, 1:806
Hard baked goods, packaging for, 2:243
Hardeners, amino acids in, 1:55
Hardness, in wax analysis, 2:636
Hard-smoked fish, 1:586, 587
Hard-wheat flours, 2:661
Harry K. Dupree Stuttgart National Aquaculture Research Center (SNARC), 1:81
Harvesting. See also Agriculture of sugarcane, 2:373, 374–375
of tea, 2:503–504
Harvest limited waters, 1:595
Hawaii, sugarcane harvesting in, 2:374, 375
Haworth ring form, 1:177
Hazard analysis, of meat products, 2:7–8
Hazard analysis critical control point (HACCP), 1:765; 2:7–8
in dairy safety, 2:97
principles of, 2:7–8
systems using, 1:596; 2:8
Hazard identification, 1:768
Hazards, in food processing, 1:750
Hazelnuts
uses of, 2:230
U.S. production and consumption of, 2:225, 226
world production and consumption of, 2:224t, 225
Head rice, 2:663, 664
Heads, 1:145, 148
Headspace analysis, 1:606
Headspace concentration methods, 1:606
Headspace extraction techniques, 1:691
Healing, zinc and, 2:138
Health factors
amino acids, 1:47–51
beer-related, 1:137–140
carbonated beverages, 1:223
cereal grains, 2:668–670
citric acid, 1:260–261
coffee consumption and, 1:284
corn syrups, 2:482t, 493
dextrose, 2:481
distilled beverage spirits, 1:170–171
distilled beverage spirits, 1:170–171
egg-related, 1:372–374
green tea, 2:162
high fructose corn syrups, 2:490
lactose, 2:416
lecithin, 1:894–895
lycopene, 2:179–180
meat-product, 2:16–20
microwave technology, 2:56–59
milk, 2:96–98
mineral-nutrient, 2:146
monosodium L-glutamate, 2:157–159
nutraceutical marketing and, 2:192
nutraceuticals, 2:161–162, 163–167
oilseeds, 2:296–301
polyunsaturated fatty acids, 2:183–184
saccharin, 2:454
sorbic acid and sorbates, 2:276–277
stevioside, 2:459–460
succinic acid and anhydride, 2:358–359
sucralose, 2:457
sugars, 2:406–407, 445
tea, 2:519–522
vanillin, 2:537–538
vitamin K, 2:173
wines, 2:705–707
“Health Professionals Follow Up,” on lycopene, 2:180
Health warning statement, for alcoholic beverages, 1:169
Heart disease, vitamin C versus, 2:577.
See also Cardiovascular entries
Heat. See also Temperature
liberated in wine fermentation, 2:692
succinic acid and anhydride and, 2:350–351
Heat effects, on stored nuts, 2:217
Heaters, in milk pasteurization, 2:76–78
Heating
flavor development via, 1:669–670
microwave, 2:46–47
microwave equipment damage due to, 2:57
in microwave food preparation, 2:59–60
Heating system, in microwave
instrumentation, 2:53, 54, 55, 56
Heat processing, of seafood, 1:574–577
Heat-regeneration system, in milk pasteurization, 2:76–78
Heat-resistant spores, inactivation of, 1:754
Heat-sealing, of plastic food packaging, 2:254
Heat-set oriented polypropylene film, in plastic food packaging, 2:250
Heat-stabilized molding, in making semirigid food containers, 2:258–259
Heat sterilized foods, 1:756
Heat-transfer sections, in HTST pasteurizer, 2:78
Heat treatment
of foods, 1:753, 754–757
in milk processing, 2:83, 84
in soybean processing, 2:292
Heavy trace elements, 1:789
Hectoral, 2:601
Hedonic testing, of wine, 2:704
Heiskenskjold process, 1:799
Helianthus, in sunflower seeds, 2:285
Helianthus annuus, classification, production area, and uses of, 2:283t
Hemagglutinins, toxicity of, 1:782
Heme, vitamin C and, 2:579
Hemicelluloses, uses for, 1:194–195
Hemoglobin, 2:115
in meat, 2:2
iron in, 2:133, 137
potassium and, 2:128
Henry’s law, 1:687
Heparin, 1:184
Hepatocuprein, copper and, 2:139
Heptitols, 2:422
analysis of, 2:434
Herbal teas, 2:519
Herb equivalents, 1:668t
Herb extracts, as food additives, 1:736
Herbicides
 as registered aquaculture chemicals, 1:75
 registration potential of, 1:82
Herbs, as spices, 2:312
Hernandulcin, 2:462, 463t
Hesse, Bernard C., 1:289
Heteroglycans, 1:182, 194, 869
Hexadecanoic acid, 1:429
Hexadecyl myristate, in spermaceti, 2:622
Hexadecyl palmitate, in spermaceti, 2:622
Hexahydroxycyclohexanes, 1:188
Hexane extraction
 in cottonseed processing, 2:293
 of oilseed oils, 2:301, 304
 in peanut processing, 2:294
 in soybean processing, 2:291–292
 in sunflower seed processing, 2:294
Hexavinylmannitol, 2:431
Hexides, 2:429
Hexitans, 2:429
Hexitols, 2:422, 423–424t
 analysis of, 2:434, 435
 anhydization of, 2:429
 esterification of, 2:430
 molecular structure of, 2:426
 polymorphism of, 2:422
 uses of, 2:436–438
Hexose monophosphate (HMP) pathway, in yeasts, 2:721
Hexose phosphate metabolism, ascorbic acid from, 2:572
Hexose sugars, fermentation of, 2:542–543
High amylose starches, 1:196; 2:333, 666–667
High conversion syrups
 composition of, 2:491t
 manufacture of, 2:492–493
High-density lipoproteins (HDLs), 1:356, 414, 454
 niacin and, 2:606
 vitamin C versus, 2:576–577
High density polyethylene (HDPE)
 in injection molding, 2:255
 in plastic food packaging, 2:248, 249t, 250
High-energy ruminant feeds, 1:492–493
High fiber bread, 1:109
High fiber diets, 1:344
High fructose [corn] syrups (HFS; HFCS), 1:98, 192, 849; 2:473, 486–490, 667
 analysis of, 2:490
 in carbonated beverages, 1:211
 defined, 2:486
 economic aspects of, 2:488, 489t
 health and safety factors related to, 2:490
 occurrence of, 2:486
 production/manufacture of, 2:487–488
 properties of, 2:486–487
 specifications for, 2:490
 from starch degradation, 2:343
 uses of, 2:490
High gravity brewing, 1:131
High internal phase ratio emulsions, 1:377, 386
High maltose syrup, composition of, 2:491t
High-methoxyl (HM) pectins, 1:204, 205, 847, 849, 873
High moisture forages, 1:491
High molecular weight polyethylenes,
 waxes from, 2:632–633
High performance (pressure) liquid chromatography (HPLC; hplc), 1:45, 241
 in distilled spirits analysis, 1:168
 in nutraceutical identification, 2:164, 165
 in spice quality measurement, 2:317
 in sugar analysis, 2:404, 405
 of vanillin products, 2:537
 in vitamin analysis, 2:615
High pressure homogenizers, 1:390
High proof alcohol, in dessert wines, 2:694–695
High temperature short time (HTST)
 continuous sterilization, 1:538
High temperature–short time (HTST)
 pasteurizer
 homogenization and, 2:73
 in milk processing, 2:71, 75, 76–83, 84
High test molasses, 2:496–497
 uses of, 2:412
High-throughput screening (HTS), in nutraceutical identification, 2:164–165
High wines, 1:145, 149
Histidine, in nuts, 2:209t
L-Histidine, fermentative production of, 1:33t
Histoplasma capsulatum, as pathogenic yeast, 2:742
Hofmann degradation, 1:20
Holder tube, in HTST pasteurizer, 2:78
Hollow molding, of chocolate, 1:240
Holst, Axel, 2:556
Home, safe milk in, 2:98
Homeostatic control
 in antioxidant model systems, 2:520
 of iron, 2:133–137
 mineral nutrient toxicity and, 2:146
Homochiral derivatizing agents (HDAs), 1:23
Homocysteine methylation, 2:610
Homogenization
 in making dry milk, 2:100
 of milk, 2:69, 71–72, 73–74
Homogenizers
 high pressure, 1:390
 with HTST pasteurizers, 2:79–81
 in milk processing, 2:73–74
Homogenizer valves, 2:74
Homoglycans, 1:23
Homoglycans (HDAs), 1:23
L-Homoserine, fermentative production of, 1:31
Honey
 as high fructose corn syrup, 2:486
 vinegar made from, 2:539
 wine from, 2:673
Hook-and-line fishing technique, 1:559
Hop acids, 1:122, 123, 124
Hop compounds, 1:124
Hop “cones,” 1:122, 1:123
Hop essential oils, 1:124
Hop pellets, 1:123
Hops, 1:121–140
 boiling, 1:131
 composition of, 1:123
 growing of, 1:121–122
 milled, 1:123
Hops plants, 1:122
Hop strainer, 1:131
Horizontal form–fill–seal applicationss, 2:254
Horizontal rotary molds, 2:258
Hormones
 in dairy biotechnology, 2:111–112
 iodine and, 2:141–142
 in ruminant feeds, 1:496, 497t, 499
 zinc interactions with, 2:138
Horny endosperm, of corn kernel, 2:337
Hot melt shell formulations, in microencapsulation, 2:35
“Hot trub,” 1:130
Households, vinegar used in, 2:550
HTST plate pasteurizer, 2:76–78, 79t
Hudson-Bertrand rules, 2:432
Hulls
 of corn kernels, 2:337
 from nuts, 2:233
 oilseed, 2:284–285
Human chorionic gonadotropin, 1:71, 75
Human intervention studies/trials
 of epigallocatechin gallate, 2:185
 of lycopene, 2:180
 of vitamin K, 2:173
Humans
 ascorbic acid in, 2:575–582
 biomedical effects of tea drinking on, 2:519–522
 chromium supplements for, 2:144
 diseases transmitted in milk to, 2:97t
 vitamins for, 2:168t
Human skeleton, minerals in, 2:115
Humectants, as food additives, 1:741.
 See also Moisture
Humidity. See Moisture
Husks, of cereal grains, 2:648–650
Hyaluronic acid, 1:184
Hybridization, in developing and improving yeast strains, 2:720
Hybridomas, 1:513
Hydantoin, formation of, 1:16
Hydrates, of dextrose (D-glucose), 2:474
Hydration, of succinic anhydride, 2:351–352
Hydrazones, of vanilla, 2:536
Hydrocarbons
 amino acid production from, 1:34t
 in beeswax, 2:621
 in carnauba wax, 2:624
 in ozokerite wax, 2:628
 in sorbic acid synthesis, 2:266–268
 waxes from, 2:617, 619–620
Hydrocarotenoids, waxes from, 2:618
Hydrochloric acid
 in corn syrup manufacture, 2:492
 in digestion, 2:130
Hydrocolloid carriers, in microencapsulation, 2:32
Hydrocolloids, 1:727
 flavor encapsulation in, 1:636
 natural, 1:728–729
 semisynthetic, 1:729–730
 water-soluble, 1:199–207
Hydrofluorine sweeteners, 2:462, 463t
Hydrogen (H), in sorbito manufacture, 2:433
Hydrogenated starch hydrolysates (HSH), 1:715
as bulking agents, 2:464–465
laxation thresholds of, 2:435
occurrence and preparation of, 2:428
uses of, 2:437
Hydrogenated vegetable oils, 1:395
Hydrogenated waxes, 2:632
Hydrogenation
in ascorbic acid manufacture, 2:565
batch process for, 1:436
of citric acid, 1:253
conditions of, 1:435–436
of dextrose (D-glucose), 2:475
of fats and fatty oils, 1:434–441
of lecithin, 1:886
of maltose syrups, 2:415
of oilseed oils, 2:296, 301, 302, 303
in succinic acid/anhydride manufacture/processing, 2:356–357
of succinic anhydride, 2:352–353
of xylose, 2:433
Hydrogenation catalyst, disposal of, 1:436–438
Hydrogenation reactor, 1:437
Hydrogen bonding
in amylose retrogradation, 2:334
in sucrose, 2:366–367
in sugar alcohols, 2:422
in tasting sweetness, 2:467
Hydrogen cyanide
in nuts, 2:213, 214
versus weevil infestations, 2:218
Hydrogen peroxide, 1:68, 80, 81
in pasteurizing egg whites, 1:366–367
reaction with succinic acid, 2:352
selenium and, 2:140
Hydrogen sulfide, succinic anhydride reactions with, 2:355
Hydrolysis
of ascorbic acid, 2:560
in ascorbic acid manufacture, 2:565, 566–567
of corn starch, 2:667
in corn syrup manufacture, 2:492
in dextrose manufacture, 2:476, 477–478
in fats and oils, 1:449
fructose production via, 2:414
of lecithin, 1:886
of protein, 1:44–45
of starch, 2:335–336, 473
xylitol from, 2:425–426
Hydrolytic rancidity, 1:433
Hydrolyzed proteins, 1:7, 329
in pet foods, 1:480
Hydrolyzed starch, 2:473
Hydrolyzed vegetable protein (HVP), 1:816
Hydrophilic flavor compounds, spray chilling and, 1:639
Hydrophobic compounds, of ascorbic acid, 2:570
Hydrophobic flavors, spray chilling and, 1:639
Hydrophobic materials/substances encapsulation of, 1:633, 635
microencapsulation of, 2:38
Hydroxyalkanoic acid, waxes from, 2:618
Hydroxyalkylcelluloses, 1:206, 876
Hydroxyalkylmethylcelluloses, 1:876–877
Hydroxyalkyl starch, 2:344
ethers of, 2:341–342
Hydroxyapatite, in bone, 2:118–120, 121
25-Hydroxycholecalciferol (25-HCC), 2:121, 122
Hydroxyethylcelluloses (HECs), 1:206–207, 876
Hydroxyethylmethylcelluloses, 1:877
Hydroxyethyl starch, 2:344
3-Hydroxyflavone molecular structure of, 2:186
as nutraceutical, 2:185–186
Hydroxylated amino acids, 1:1
Hydroxylated lecithins, 1:891
Hydroxylation, of lecithin, 1:886
Hydroxylation, of sucrose, 2:341–342
Hydroxyl group reactions, 1:189–191
Hydroxyl groups replacement of, 1:190
in sucrose, 2:366–367, 370
in sugar alcohol esterification, 2:430
in sugar alcohols, 2:421–422
Hydroxyl number, in sugar alcohol analysis, 2:435
Hydroxyl radicals, tea antioxidants versus, 2:520
Hydroxylsine, 2:613
5-Hydroxymethylfurfural (HMF), from cane sugar, 2:371–372
Hydroxypalmitate, in beeswax, 2:621
Hydroxyproline, 2:613
Hydroxypropylcelluloses (HPCs), 1:206–207, 876
Hydroxypropylmethylcelluloses (HPMCs), 1:877
Hydroxypropyl starch, 1:197; 2:344
Hygroscopicity, of sugar alcohols, 2:436, 437. See also Moisture
Hypercalcemia, 2:120
Hypercarotenosis, 2:599
Hyperparathyroidism, 2:601
Hyperphenylalaninaemia, 1:49
Hypertension, 1:790
sodium and, 2:130
Hypervitaminosis A, 2:597–598
Hypervitaminosis biotin, 2:608
Hypervitaminosis cyanocobalamin, 2:612
Hypervitaminosis D, 2:601
Hypervitaminosis E, 2:603
Hypervitaminosis folic acid, 2:611
Hypervitaminosis K, 2:604
Hypervitaminosis niacin, 2:606
Hypervitaminosis niacinamide, 2:606
Hypervitaminosis pantothenic acid, 2:608
Hypervitaminosis pyroxine, 2:607
Hypervitaminosis riboflavin, 2:605
Hypervitaminosis thiamine, 2:605
Hypokalemic alkalosis, 2:131
Ice cream, 1:489–491
properties of, 2:108t
vanillin in, 2:530–531, 535
Ice cream mix, 2:107–109
properties of, 2:108t
Ice wine
processing flows for, 2:683, 686
production of, 2:694
ICUMSA units, in sugar quality control, 2:400
Infestations, of nuts, 2:218
Infrared (ir) spectra, of fats and oils, 1:448
Infrared spectroscopy, in wax analysis, 2:638
Infusion mashing, 1:130, 146
Ingredients, in reducing fat in meats, 2:9–10
Inhibitors, sweetness, 2:465, 466. See also Inhibitory substances
Inhibitory substances
sorbic acid, 2:263–281
testing milk for, 2:95
Injection curing, of meats, 2:4–5
Injection molding, in making semirigid food containers, 2:255–256
In-mold labeling, 2:255–256
Inoculum development, in fermentation, 1:544–545
Inorganic compounds, determination in sugar analysis, 2:406
Inositol, 1:188
Insect control, fumigants for, 1:738
Insects
as vineyard pests, 2:688
waxes from, 2:618, 620–622
Insert injection molding, 2:255
In situ encapsulation processes, 2:29–30
Insoluble dietary fiber (IDF), 1:341, 342, 346
 enzymatic gravimetric methods for analysis of, 1:348
Insoluble fiber
as a fat replacer, 1:403–404
sources of, 1:350
Insoluble matter, determination in sugar analysis, 2:406
Installation qualification (IQ), 1:550
Instant active dry yeast, 2:727
Instant coffee, 1:274
 analyses of, 1:272
 blending, roasting, and grinding, 1:278
drying, 1:278–279
 extraction processes for, 1:278
 freeze drying, 1:279
 processing and packaging of, 1:277–279
Instant N-oil, 1:407
Instant pectins, 1:848
Instant tea, manufacture of, 2:510, 515–516. See also Ready-to-drink (RTD) tea
Institute of Food Technologists, sensory evaluation committee of, 1:672
Institute of Medicine (IOM), 1:393
Instrumentation, 1:538–542
 using microwave technology, 2:49–56
Insulin
 amino acids in, 2:127
 chromium and, 2:143–144
 sulfur in, 2:126, 127
Insulin response, to sugar alcohols, 2:435–436
Intercellular fluid
 anion and cation composition of, 2:125
 phosphorus in, 2:124, 125
 Interesterification, 1:457
 in fats and fatty oils, 1:438
 Interfacial polymerization encapsulation process, 2:28
 Interfacial tension, of fats and oils, 1:447
 Intermittent-motion thermoforming–die-cut machines, 2:257
 International Agency for Research on Cancer, 1:775
 International Association of Fish and Wildlife Agencies (IAFWA), 1:80
 International Commission for Uniform Methods of Sugar Analysis (ICUMSA), 2:400
 in sugar analysis, 2:402
 International Dairy Federation (IDF), terminology of, 1:319–320
 International Lecithin and Phospholipid Society (ILPS), 1:882
 International Microwave Power Institute (IMPI), 2:42
 International Sugar Scale, polarization measurement via, 2:401–402
 Intestine, calcium absorption from, 2:121
 Intolerance, to cereal grains, 2:668–669
 Intracellular fluid, sodium and potassium in, 2:128–130
 Intracellular organelles, phytosterols in, 2:188
 Intrinsic factor (IF), cobalt and, 2:145
 Inulins, 1:353
 Invertebrates, glucosamine in, 2:191
 Inverter-type power supply, in microwave instrumentation, 2:53
 Invert molasses, 2:496–497
 Invert sugar, 2:371, 372
 In vitro testing
 of lycopene, 2:180
 in nutraceutical identification, 2:165, 166, 167
In Vitro testing
In vivo testing, in nutraceutical identification, 2:165

Iodine (I)
- starch and, 2:333
- as trace nutrient, 2:141–142
- in winemaking waste disposal, 2:697

Iodine deficiency disorders (IDDs), 2:142

Iodine value (IV), 1:452, 894
- in wax analysis, 2:637

Ion exchange
- in carbonated beverage facilities, 1:211
- of dietary fiber, 1:346

Ion-exchange chromatography, amino acid analysis by, 1:46

Ion exclusion, in separating sugar from molasses, 2:382

Ion-exclusion chromatography, in molasses manufacture, 2:496

Ionic solutions, in microwave food preparation, 2:59

Ionizing radiation, food preservation via, 1:761–762

Ion-moderated cation-exchange resins, in sugar chromatography, 2:405

Ionomers, in plastic food packaging, 2:249t, 252

Ionophores, in ruminant feeds, 1:496, 497t

Iota-carrageenans, 1:202–203

Iran, cereal grains and bread in, 2:642

Irish whiskeys, 1:149

Iron (Fe)
- as essential to life, 2:115
- foods rich in, 2:134t
- homeostatic control of, 2:133–137
- in nuts, 2:211, 215
- sorbic acid reactions with, 2:264
- toxicity of, 2:137
- as trace nutrient, 2:133–137

Iron absorption, vitamin C in, 2:579

Iron compounds, microencapsulation of, 2:37

Iron deficiency, 2:137

Iron oxide, synthetic, 1:314

Iron tricarbonyl, sorbic acid reaction with, 2:264

Irradiation
- of fish products, 1:587–588
- in milk processing, 2:83
- of spices, 2:314–315

ISM (industrial, scientific, medical) applications
- magnetrons for, 2:51t

microwave frequency allocations for, 2:42–44, 52
-microwave tubes for, 2:50–51

Isocyanates
- amino acids in, 1:55
- in microencapsulation, 2:28, 29

Isoflavones
- clinical trials of, 2:187
- molecular structures of, 2:186
- in soybeans, 2:289

Isoflavonoids
- molecular structures of, 2:186
- as nutraceuticals, 2:185–186

Isohexides, 2:433

Isoidide, 2:430

Isolation
- in fermentation, 1:545–546
- vitamin production via, 2:614t

Isolation amino acid production process, 1:42

Isoleucine, in nuts, 2:209t

L-Isoleucine, fermentative production of, 1:32t

Isomalt, 2:424t
- as bulking agent, 2:464–465
- as food additive, 1:715
- laxation threshold of, 2:435
- occurrence and preparation of, 2:428
- uses of, 2:437

Isomaltose, in dextrose manufacture, 2:478

Isomannide, 2:430

Isomerization
- of dextrose (D-glucose), 2:475
- hydroxyl groups in, 1:190–191
- of sugar alcohols, 2:432–433

Isomers, of ascorbic acid, 2:557–558

Isoniazid, 2:607

Iso-pentenyl-mercaptan, 1:124

Isophytol, in vitamin K synthesis, 2:172

Ispoprenoids, in wine, 2:682

Isopullulanase, 2:334

Isosorbids, 2:430

 Isotheaflavins, in tea, 2:511

Isotopes
- for ascorbic acid labeling, 2:571
- in vinegar analysis, 2:550

Isotretinoin, 2:598

Israel
- cereal grains and bread in, 2:642–643
- winemaking in ancient, 2:677

Italy, vinegar manufacture in, 2:544
Jams/jellies, 1:846. See also Fruit preserves and jellies
citric acid in, 1:261

Japan
aquacultural chemical regulation/registration in, 1:77
aquaculture drugs approved in, 1:79
corn-starch-based sweeteners in, 2:667
dextrose refining in, 2:480
food additive regulations in, 1:713
generator process for making vinegar in, 2:545
genistein consumption in, 2:186–187
glycyrrhizin in, 2:460
green tea consumption in, 2:185, 518
high fructose corn syrups in, 2:486
instant tea manufacture in, 2:515
MSG in, 2:152
sake production in, 2:737
sorbate regulation in, 2:276
sorbic acid production in, 2:267–268
soy sauce production in, 2:306
tea anticancer studies in, 2:521
tea from, 2:502, 503, 510
vanillin production in, 2:532
vinegar clarification patents in, 2:548
vinegar manufacture in, 2:541, 547
Japanese Food Sanitation Law, 1:713
Japanese Standards for Food Additives, on sorbates, 2:276
Japan wax, 2:624
Japonica rice, 2:662
Jars, glass, 2:247
Jasmine, in tea manufacture, 2:515
Jeffrey’s rule, 2:422
Jellies. See Fruit preserves and jellies
Jelly strength, 1:858
Jet impact emulsification, 1:390
Joint FAO/WHO Expert Committee on Food Additives (JECFA), 1:50, 697
on MSG, 2:158–159
on stevioside, 2:460
on vanillin, 2:537

Jojoba oil, 2:626–627
Journal of Biotechnology and Bioengineering, 1:511
Journals, flavor information in, 1:698–699
Juglansin, in nuts, 2:206
Juglone, in nuts, 2:214
Juice-based flavors, in carbonated beverages, 1:214

Juice factories, 1:826
Juice purification, in sugar-beet sugar extraction, 2:387–392, 392–393, 394
Juices
digestion of, 1:838
making vinegar from, 2:540

Kaempferol
biosynthesis of, 2:509
in tea, 2:505
Kappa-carrageenans, 1:202–203
Kariopsis, of cereal grains, 2:650
Karl Fischer method, 1:894
Karl Fisher reagent, determination in sugar analysis, 2:406
Karyotyping, in developing and improving yeast strains, 2:720
Kernel
of corn, 2:665
in wheat milling, 2:658
Ketals, sugar alcohols and, 2:431
Ketene, in sorbic acid synthesis, 2:266
alpha-Keto acids, amination of, 1:19–20
alpha-Ketocarboxylic acids, 1:22
alpha-Ketoglutaric acid, MSG and, 2:153, 155, 156
2-Ketogulonic acid (2-KGA)
in ascorbic acid manufacture, 2:567
in ascorbic acid synthesis, 2:562, 563–564
Ketones
succinic acid/anhydride condensation with, 2:353–354
sugar alcohols and, 2:431
waxes from, 2:617, 620
Ketopimelic acid dilactone, from succinic acid, 2:350, 351
Ketose, 1:174
alpha-Ketoxime, reduction of, 1:20
Kilning, of barley, 1:117–118
Kinases, manganese and, 2:142
Klebsiella pneumoniae, in starch cyclization, 2:336
Kloeckera apiculata, wine yeast and, 2:734, 735

Kluyveromyces
as fermentation agent, 2:712
species of, 2:713t
strain improvement of, 2:720
Kluyveromyces fragilis, 2:741
yeast-fermented food and beverages with, 2:723
Kluyveromyces lactis, 2:716t
 cytoplasm of, 2:717
 genetic studies of, 2:712
Kluyveromyces marxianus var. fragilis, 1:806
Kluyveromyces polysporus, reproduction of, 2:718
Klystrons, as microwave instrumentation power source, 2:49, 51–52
Knight and Allen method, in reducing-sugar determination, 2:404
Koenigs-Knorr reaction, 1:182
Kola nut, uses of, 2:231
Konbu, MSG from, 2:152
Korea, dextrose refining in, 2:480
Kraft paper, for food packaging, 2:244
Krausening, 1:135
Krebs cycle, 1:248, 250; 2:605, 606
 phosphorus and, 2:124
Kwashiorkor, 1:814
Labeled magnitude scales, 1:601–602
Labeling
 of ascorbic acid with isotopes, 2:571
 of egg products, 1:372
 of food, 1:397–398
 of MSG-containing foods, 2:159
 of pet foods, 1:487
 of prepackaged foods, 2:99
 of spices, 2:317
Labeling standards
 for vinegar, 2:549–550
 for vitamins, 2:593, 595t
 for wines, 2:686–681, 687, 706, 708–709
Lactalbumin, in milk, 2:110t
Lactase, from yeasts, 2:741
Lactating swine, nutrient requirements of, 1:470t
Lacteals, 1:396
Lactic acid
 from cane sugar, 2:372
 as food additive, 1:721
 in malolactic fermentation, 2:692–593
 in sourdoughs, 2:730
Lactic acid bacteria, distilled beverages and, 2:736
Lactisole, as sweetness inhibitor, 2:466
Lactitol, 2:424t
 as bulking agent, 2:464–465
 as food additive, 1:716
 laxation threshold of, 2:435
 molecular structure of, 2:429
occurrence and preparation of, 2:428
 uses of, 2:437
Lactobacillus
 in sourdoughs, 2:730
 in soy sauce production, 2:738
Lactobacillus bulgaricus
 in making yogurt, 2:106
 in wet-milling of corn, 2:338
Lactobacillus plantarum, in meat processing, 2:6
Lactococcus lactis, buttermilk cultured with, 2:103
Lactoglobulin, in milk, 2:110, 110t
Lactonization, in ascorbic acid biosynthesis, 2:572
Lactose, 2:415–416
 crystalline, 2:416
 health factors related to, 2:416
 as milk by-product, 2:109
 molecular structure of, 2:416
 uses for, 1:192; 2:416
 α-Lactose, as milk by-product, 2:109
 β-Lactose, as milk by-product, 2:109
Lactose intolerance, 2:98
Lac wax, 2:622
Lagares, in wine production, 2:689
Lagering, 1:135
Lager yeast, 1:131–132
Lakes
 FD&C, 1:299–301
 properties of, 1:301
Lamb/mutton, United States imports and exports of, 2:13t
Laminaria japonica, MSG from, 2:152
Laminates, for seafood packaging, 1:593
Lane and Eynon Constant Volume Procedure, of reducing-sugar determination, 2:403
Lanolin, 2:622–623
Large-grain specialty sugars, 2:410
Latin America
 molasses in, 2:412, 496
 stevioside from, 2:458–459
 sugarcane harvesting in, 2:374, 375
 sugar trade in, 2:397–398
Lauric acid, 1:429
Lauric oils, 1:416, 441, 449
Laurus nobilis, 2:322
Lauter vessel, 1:130
Laxation thresholds, of sugar alcohols, 2:435
Laying hens, nutrient requirements of, 1:467t
Lead acetate solution, in sugar analysis, 2:402
Leaf protein, enzyme degradation of, 1:813
Leaf protein concentrates (LPCs), 1:809–815. See also LPC entries
functional properties of, 1:814–815
human-feeding studies on, 1:814
preparation of, 1:809–812
Leakage, of microwave energy, 2:57, 59
Lean cuts, in reducing fat in meats, 2:9
Leather, artificial, 1:55
Leavening, 1:95
with yeast, 2:728
Leavening acids, 1:88, 89, 94
as food additives, 1:741–742
Leavening agents
characteristics of, 1:86–88
chemical, 1:84–95
as food additives, 1:741–742
nutritional aspects of, 1:88–92
for preleavened mixes, 1:88
for refrigerated/frozen batters and doughs, 1:88
Leavening ingredients, sodium and calcium in, 1:89t
Leavening systems, baking acids for, 1:85t
Lecithin(s), 1:430, 433, 881–897
analytical and test methods for, 1:893–894
categories and composition of, 1:883–884t
chemical properties of, 1:886–887
in chocolate processing, 1:238–239
commercial, 1:885–886
commercial grades of, 1:891–892
deoiling of, 1:887–888, 889
as food additives, 1:732
health and safety factors related to, 1:894–895
industrial, 1:882–884
manufacture and processing of, 1:887–891
in nuts, 2:212
physical properties of, 1:884–886
solubility of, 1:884t
specifications and standards for, 1:892–893
U.S., British, Japanese, and European specifications for, 1:893t
uses for, 1:895–896
Lectins, toxicity of, 1:782
Lees, in winemaking, 2:696
Legal age, for wine consumption, 2:707
Legg cutter, in black tea manufacture, 2:514
Leghorn-type chickens, nutrient requirements of, 1:466t
Legislation, food-toxicant-related, 1:794
Legume forages, 1:494
Leguminosae, oilseed genera in, 2:283t
Lemma, of cereal grains, 2:648–650
Lemon juice, 1:832–833
Lemon peel oils, 1:833
Lentils, 2:647
Leptin, tea and, 2:521
Leucine
in nuts, 2:209t
toxicity of, 1:782
L-Leucine
enzymatic production of, 1:42
fermentative production of, 1:32t
Leucine α-ketoglutarate transaminase, in tea, 2:507
Leuconostoc citrovorum, buttermilk cultured with, 2:103
Leuconostoc mesenteroides, 2:409
Leucrose, from sucrose, 2:409
Leukocytes, ascorbic acid in, 2:579
Levans
from sucrose, 2:409
from sugar beets, 2:391
Levoglucosan, 1:183
Levulose, 2:412. See also Fructose
L-form amino acids, 1:25
Lichens, arabininitol in, 2:425
Licorice, glycyrrhizin from, 2:460
Life, minerals essential to, 2:115–151
Life cycle, of yeasts, 2:711, 714–719
Ligand-exchange chromatography, 1:23
Ligands, multidentate, 1:254
Light effects, on stored nuts, 2:217
Light rum, 1:152
Light-scattering methods, starch molecular weight and, 2:335
Light whiskey, 1:150
Lignin
in dietary fiber, 1:342–343
vanillin from, 2:529, 531
Lignite-wax, 2:627
Lime, 1:70
in sugar purification, 2:387, 388, 389, 390
Lime juice, 1:832–833
Lime peel oils, 1:833
Lime-sulfuric citric acid recovery, 1:256–257
“Limeys,” 2:556
Limit dextrins, 1:146
Limiting amino acids, 1:48, 52t
Limonin, 2:460
Linatine, 1:787
Lind, James, 2:555–556
Linear low density polyethylene (LLDPE), in plastic food packaging, 2:248–250
Linear polymers, 1:871
Liners, for food packaging, 2:244–245
Linoleic acid, 1:454
from oilseeds, 2:296
as pseudovitamin, 2:615
Linoleic acid residues, 1:435
Linolenic acid (LA)
in conjugated linoleic acid synthesis, 2:182
from oilseeds, 2:296
molecular structure of, 2:181
Linolenic acid, 1:429
α-Linolenic acid (ALA)
molecular structure of, 2:181
as pseudovitamin, 2:615
γ-Linolenic acid (GLA), molecular structure of, 2:181
Linolenic acid residues, 1:435
Lipase enzymes, 1:438
Lipid analogues, as fat replacers, 1:418–424
Lipid-based fat replacers, 1:411–418
Lipids, 1:393, 394, 395. See also Phospholipids
in calorie reduction, 1:396–397
in cereal grains, 2:653
in coffee, 1:270
in cow milk, 2:69t
nutraceuticals and, 2:163
in oilseeds, 2:287–288
in ruminant feeds, 1:493
selenium and, 2:140–141
sulfur in, 2:125
vanadium and, 2:145
vitamin E analogues and, 2:169–171
vitamin E and, 2:602
waxes from, 2:618
(R)-(α)-Lipoic acid
molecular structure of, 2:190
as nutraceutical, 2:190
Lipolytic enzymes, 1:457
Lipopolysaccharides, 1:184
Lipoproteins, vitamin E and, 2:602
Liposomes, 1:430
lecinthin used to produce, 1:896
Lipoxygenase-catalyzed oxidation, 1:451
Lippia berlandieri, 2:327
Lippia graveolens, 2:327
Liqueurs, 1:153
Liquid chromatography (LC)
in nutraceutical identification, 2:164, 165
in succinic acid/anhydride analysis, 2:358
Liquid citric acid, 1:258
Liquid crystals, amino acids in, 1:54
Liquid egg products, 1:367–368
pasteurization requirements for, 1:367t
physical properties of, 1:355t
Liquid extraction citric acid recovery, 1:257
Liquid Ferment dough making process, 1:107
Liquid food ingredients, microencapsulation of, 2:37–38
Liquid heat-transfer media, for immersion freezing, 1:759
Liquid invert sugar, uses of, 2:410
Liquid membrane method, 1:23
Liquid oils, 1:455
specific heats of, 1:445–446
Liquid refrigerants, 1:578
Liquid sucrose, uses of, 2:410
Liquor, chocolate, 1:230–231, 241t
Liquor tax, 1:144
Lister, Joseph, 1:509
Listeria, in wines, 2:705
Livestock, oilseed protein meal for, 2:303
Livestock industry, feed ingredient usage by, 1:463t
Lobry de Bruyn-Alberda van Ekenstein reaction, 1:190
Locust bean gum, 1:203–204, 405, 871, 872
as food additive, 1:728–729
Loganin, in nuts, 2:213
London dry gin, 1:151
Longevity, wines as extending, 2:706–707
Long-lining technique, 1:559
Loss tangent (tan δ), microwaves and, 2:44
Lovibond color scale, 1:453
Low calorie fats, 1:99
Low calorie foods, high fructose corn syrups in, 2:490
Low cholesterol egg products, 1:369
Low-density lipoprotein (LDL), I:356, 412–414, 454, 455
niacin and, 2:606
tea antioxidants versus, 2:520, 521t
Low density polyethylene (LDPE), in plastic food packaging, 2:248–250
Lowest observed adverse effect level (LOAEL), I:769
Lowest observed effect level (LOEL), I:769
Low internal phase ratio emulsions, I:377
Low-methoxyl (LM) pectins, I:204, 873, 847, 848–850
Low moisture forages, I:491
Low molecular weight polyethylenes, waxes from, 2:632–633
Low temperature process, in dextrose manufacture, 2:476–477
Low temperature rendering systems, I:478
Low wines, I:146
LPC processes, I:812–813
LPC product quality, I:813–814
Lubricants, in food processing, I:352
Lubricating oil, 2:628
Lubrication
petroleum waxes in, 2:628
wool grease in, 2:623
Luff Schoorl method, of reducing-sugar determination, 2:404
Lutein
macular degeneration and, 2:177–178
as nutraceutical, 2:162, 173–176
molecular structure of, 2:173, 175
in plants, 2:174t
Lycopene
health factors related to, 2:179–180
molecular structure of, 2:175, 178
as nutraceutical, 2:162, 178–181
in plants, 2:174t
Lyophilization, in MSG production, 2:156
Lysine
copper and, 2:139
in nuts, 2:209t
L-Lysine, I:51
enzymatic production of, I:42
fermentative production of, I:30–31t
Lysine diisocyanate (LDI), I:14
Lysine triisocyanate (LTI), I:55
Lysinoalanine, I:50
Lyxitol, 2:425. See also D-Arabinitol

Macadamia nuts
chemical changes during storage of, 2:217
processing of, 2:220–221
uses of, 2:230
U.S. production and consumption of, 2:227t
world production and consumption of, 2:230
Macaroni, lecithin in, I:896
Mace, 2:325–326
Maceration, in black tea manufacture, 2:628
Macroemulsions, I:376
Macular degeneration. See Age-related macular degeneration (AMD)
Macular pigment, 2:177, 178
“Mad cow” disease, I:494, 549. See also Bovine spongiform encephalopathy (BSE)
Magnesium (Mg)
as essential to life, 2:115
foods rich in, 2:131t
as mineral nutrient, 2:131–133
in nuts, 2:212
in ruminant feeds, 1:495
Magnesium complexes, sugar alcohols and, 2:432
Magnesium deficiency, 2:132
Magnesium disorders, 2:132–133
Magnesium ion (Mg²⁺), 2:131
in serum, 2:132
manganese and, 2:142
Magnesium sulfate, I:68
Magnesium supplements, 2:132
Magnetic fields (H), microwaves and, 2:48–49
Magnetic separator, in wheat milling, 2:658
Magneton in microwave ovens, 2:50, 51, 52
prices of, 2:56
Magnitude estimation, I:601
Maillard reaction, I:15, 51, 537, 670
of aspartame, 2:449
of cane sugar, 2:372
sucrose stability and, 2:391
Main liming, in sugar purification, 2:388, 389
Main malt mash, I:128
Maize, 2:647, 664. See also Corn
Malathion, versus weevil infestations, 2:218
Maleic acid, in succinic acid preparation, 2:357

Malic acid, 1:213
 as food additive, 1:721, 737

Malignancies, drugs for treating, 2:598–599. See also Cancer

Mallorizer, 2:83

Malolactic fermentation, in winemaking, 2:692–693

Malonic acid, sorbic acid from, 2:266

Malt(s)
 analysis/specification of, 1:121t
 in beer brewing, 2:730
 quality of, 1:119–120
 special, 1:125

Malting, 1:115, 116–120
Malting barleys, 1:116
Malting loss, 1:119

Maltose
 in corn syrup manufacture, 2:492
Malto-dextrins, 1:622; 2:473
 composition of, 2:491t
 as fat replacers, 1:406–407
 health factors related to, 2:493
 manufacture of, 2:492–493
 in microencapsulation, 2:32
 from starch degradation, 2:343
 uses for, 1:192

Maltose, 1:180; 2:414–415
 in corn syrups, 2:491t
 molecular structure of, 2:414–415

Maltose syrups, manufacture of, 2:492–493

Maltrin, 1:406

Malt Scotch, 1:149

Malt sugar, 2:414. See also Maltose

Malt vinegar, 2:539, 541
 labeling standards for, 2:549
 manufacture of, 2:541

Malt whiskey, 1:146

Malvaceae, oilseed genera in, 2:283t

Malvidin glycoside, in wine, 2:683

Mammals
 constituents of milk from, 2:66, 67t, 68t, 69t, 70t
 homeostatic controls in, 2:146

Management, vineyard, 2:688

Mandelonitrile, in nuts, 2:213

Manganese (Mn)
 as essential to life, 2:115
 foods rich in, 2:135t
 in nuts, 2:211
 toxicity of, 2:142
 as trace nutrient, 2:142–143

Manganese deficiency, 2:143

Mango, 1:841

Mannitol, 1:187
 analysis of, 2:434–435
 anhydrazination of, 2:429, 430
 blood glucose and insulin response to, 2:435–436
 as food additive, 1:715–716
 manufacture of, 2:433
 nitration of, 2:430–431
 in nuts, 2:211
 occurrence and preparation of, 2:427–428
 physical properties of, 2:425
 pKₐ value of, 2:425t
 reduction of, 2:432
 synthesis of, 2:426
 toxicity of, 2:435t
 uses of, 2:436, 437, 438

D-Mannitol, 2:423t
 esterification of, 2:430, 431
 etherification of, 2:431
 isomerization of, 2:432–433
 molecular structure of, 2:426
 occurrence and preparation of, 2:427–428
 oxidation of, 2:431
 polymorphism of, 2:422

D,L-Mannitol, occurrence and preparation of, 2:428

L-Mannitol, 2:423t
 occurrence and preparation of, 2:428

L-Mannitol hexanitrate, 2:430–431

Manometric determination, of amino acids, 1:47

Maple, sucrose in, 2:364

Maple syrup, 2:473, 494–495
 collection of, 2:494
 concentration of, 2:494
economical aspects of, 2:494, 495t
evaporation of, 2:494
preparation and uses of, 2:494
Maple syrup urine disease, 1:49
Margarine
composition and processing of, 1:334–336
lecithin in, 1:896
market share of, 1:337
oilseed oils for, 2:301, 303
packaging for, 2:242
sorbates in, 2:273
Margarine fat blends, 1:336t
Marinades, vinegar used in, 2:550
Marjoram, 2:134
Markets. See also Antibiotic market;
Economics; Global meat markets; Meat markets; Organic egg market
for nutraceuticals, 2:192
for phytosterols, 2:188
for vitamins, 2:169
Marmalades, 1:846
Mash, temperature profile of, 1:129
Mash filter, 1:130
Mashing. See also German mashing process
in beverage spirits manufacture,
1:154–155
in brewhouse operations, 1:126–130
Mashing regimes, alternative, 1:130
Mash-off temperature, 1:128–130
Massaging, in meat processing, 2:5
Mass spectrometry (MS; ms). See also gc-ms protocols
for aroma isolation, 1:607
in nutraceutical identification, 2:165
in sugar alcohol analysis, 2:435
in wax analysis, 2:638
Mass-transfer events, in microencapsulation, 2:31
Materials. See also Raw materials
applying electromagnetic energy to, 2:41, 44–49
for dairy equipment, 2:84–86
Materials Safety Data Sheet, on sucralose, 2:457
Maturation
of distilled beverage spirits, 1:159–161
of wines, 2:697–699
Maturing agents, as food additives, 1:732
Maximum Residue Limit (MRL), 1:77
Maximum tolerated dose (MTD), 1:768
Maxwell's equations, microwaves and, 2:45
Mead, defined, 2:673
Meals
from nuts, 2:232, 233
in ruminant feeds, 1:493–494
Meat emulsion, 1:391
Meat markets, global, 2:11–12
Meat processing
ingredients in, 2:1–4
procedures for, 2:4–7
safety innovations in, 2:20
Meat products, 2:1–22
citric acid in, 1:262
economic aspects of, 2:11–14, 15
fat reduction in, 2:8–11
hazard analysis of, 2:7–8
health and safety factors related to, 2:16–20
meat processing ingredients in, 2:1–4
meat processing procedures for, 2:4–7
nutritional labeling of, 2:14–16, 17
Meats
cured, 2:2–3, 4–5
as food, 2:1
hazard analysis critical control point system for, 2:7–8
as meat-processing ingredient, 2:1–2
packaging for, 2:239–240
packaging for nitrite-cured, 2:240
in pet foods, 1:479
sorbates in, 2:274–275
U.S. household expenditures for, 2:15t
vitamin C in, 2:573–574, 576t
Mebeverine, from vanillin, 2:536
Mechanical tenderization, in meat processing, 2:4
Media, growth and production, 1:529
Media components, batch concentrations for, 1:527–528t
Media sterilization, 1:537
Media suppliers, 1:535t
Medical Device Amendments of 1976, 1:290
Medical problems, from yeasts, 2:712
Medicated feed additives, 1:472
Medicine
amino acid used in, 1:7–8, 54
minerals used in, 2:115
selenium in, 2:141
vinegar used in, 2:550–551
wool grease in, 2:623
Mediterranean oregano, 2:327
Medium-chain fatty acids (MCFAs), 1:416
Medium-chain triacylglycerols (MCTs), as fat replacers, 1:416–418
Medium development/feeding, 1:526–530
Medium internal phase ratio emulsions, 1:377
Megaloblastic anemia, folic acid deficiency and, 2:610
Melamine, in microencapsulation, 2:29–30
Melanoidins, 1:610
Melengesterol acetate (MGA), 1:499
Melissyl palmitate, in beeswax, 2:621
Mellorine, 2:109
Melt extrusion, encapsulation by, 1:623
Melting behavior, of fats and oils, 1:444–447
Melting points of amino acids, 1:8 in wax analysis, 2:636
Melting properties, of fats and oils, 1:452–453
Melt sugar, for refineries, 2:376, 379–381
Melt-to-mold thermoforming, 2:257–258
Membrane filtration of beer, 1:137
in dextrose refining, 2:478
in making vinegar, 2:548
in sugar refining, 2:382
Membranes, for juice clarification, 1:838
Membrane separation, in making cheese, 2:105
Menadione, 2:603
in vitamin K synthesis, 2:172
Menaquinone-4, 2:603
Menaquinone-n, as nutraceutical, 2:171
Menkes’ kinky-hair syndrome, 2:139
Mentha spicata, 2:326
Mercury (Hg), in fish and shellfish, 1:594–595
Mercury compounds, of vanillin, 2:536
Metabolites, isolation of, 1:545
Metabolic engineering, advances in, 1:512
Metabolic functions of ascorbic acid, 2:613
of boron, 2:140
of calcium, 2:118–120
of chlorine, 2:130–131
of cobalt, 2:145
of copper, 2:139
of folic acid, 2:610
of iodine, 2:141–142
of iron, 2:133, 136
of magnesium, 2:132
of manganese, 2:142
of molybdenum, 2:145
of niacin and niacinamide, 2:606
of pantothenic acid, 2:608
of phosphorus, 2:123, 124, 125
of pyridoxine, 2:607
of riboflavin, 2:605
of selenium, 2:140–141
of silicon, 2:138–139
of sodium and potassium, 2:129
of sulfur, 2:125–128
of thiamine, 2:604
of vitamin A, 2:597
of vitamin D, 2:600
of vitamin E, 2:602
of vitamin K, 2:603–604
of zinc, 2:138
Metabolic pathways, in fermentation, 1:530
Metabolism of epigallocatechin gallate, 2:185
of green tea, 2:185
of MSG, 2:157–158
of vitamin C, 2:580
of yeast, 2:721
Metabolites economic aspects of, 1:522
as fermentation products, 1:503–504
Metal chelation, from amino acids, 1:17–18
Metal citrates, stability constants for, 1:255t
Metal complexes, sugar alcohols and, 2:432
Metal food packaging, 2:244, 245–247
Metallic taste, 1:655
Metalloenzymes, molybdenum in, 2:143
Metalloproteins, in stored peanut butter, 2:219
Metals in ascorbic acid degradation, 2:560
for bakers’ yeast, 2:724
sorbic acid reactions with, 2:264
in sorbic acid synthesis, 2:266
in succinic acid/anhydride manufacture/processing, 2:356, 357
in succinic anhydride hydrogenation, 2:352–353
in tea, 2:507
Meteorites, succinic acid in, 2:349
N6,N10-Methenyl tetrahydrofolic acid, 2:610
Methionine, 2:610
 in nuts, 2:209t
 in oilseed protein meal, 2:303
 in oilseeds, 2:300, 301
 toxicity of, 1:782
D,L-Methionine, 1:51
L-Methionine, fermentative production of, 1:31t
Methyl anthranilate, in wine, 2:682
Methylation, arsenic in, 2:146
Methyl bromide, versus weevil infestations, 2:218
Methylcelluloses, 1:353, 876–877
 as food additives, 1:730
Methylcobalamin, 2:612
\(\alpha\)-Methyl-D-glucoside, from dextrose, 2:475
L-\(\alpha\)-MethylDOPA, 1:54
Methylene blue, in testing milk for microbes, 2:94
Methylene chloride, in tea decaffeination, 2:517
Methylene compounds, alkylation of, 1:19
\(N^5, N^{10}\)-Methylene tetrahydrofolic acid, 2:609
Methylmercury acetate, 1:789
Methylo troph yeasts, biomass from, 2:739
\(N^1\)-Methyl tetrahydrofolic acid, 2:610
5-Methyl vanillin, from vanillin production, 2:529
Methylxanthines, in tea, 2:504, 506
Metschnikova pulcherrima, wine yeast and, 2:734, 735
Mexican oregano, 2:327
Mexico
 soybean production and exports by, 2:295, 297t
 sugar trade in, 2:398–399
Mezcal, 1:142
Microbes, in nuts, 2:215. See also Bacteria;
Mixroorganisms
Microbial assay, for amino acids, 1:47
Microbial biomass, yeasts in, 2:737–740
Microbial cells, for human food or animal feed, 1:799
Microbial isolates, 1:523
Microbial polysaccharides, 1:205
Microbial quality, testing milk for, 2:93, 94–95
Microbials, in ruminant feeds, 1:496–498
Microbial waxes, 2:617
Microbiological discoveries, fermentation and, 1:508–509
Microbiological food deterioration, 2:239
Microbiological hazard, in foods, 1:596
Microbiology
 of spices, 2:314–315
 in vitamin analysis, 2:615
 winemaking and, 2:677
Microcapsules, 2:23
Micrococcus, in MSG production, 2:155
Micrococcus aurantiacus, in meat processing, 2:6
Micrococcus glutamicum, in MSG production, 2:154
Microcrystalline cellulose (MCC), 1:194, 349, 403
Microcrystalline structure, of cane sugar, 2:367
Microcrystalline wax, 2:628
 composition and properties of, 2:629
 production/manufacture of, 2:630–632
Microemulsions, 1:376
 stability of, 1:387–388
Microencapsulation, 2:23–40
 defined, 2:23
 food applications of, 2:36–39
 future applications of, 2:39
 processes for, 2:23–35
 shell/coating materials used for, 2:23, 24t
 by simple coacervation, 2:26–31
 Type A, 2:24–25, 25–26
 Type B, 2:24–25, 31–35
Microgranules, 2:23
Micromanipulator, in developing and improving yeast strains, 2:719
Micronutrients, vitamins as, 2:590
Microorganisms. See also Bacteria;
 Microbes; Nonphotosynthetic microorganisms
 amino acid-producing, 1:26–27
 photosynthetic, 1:800–801t
Microparticulated protein, as a fat replacer, 1:409
Microscopic count, in testing milk for microbes, 2:94
Microwave cooking pads, in reducing fat in meats, 2:11
Microwave coupling, 2:49, 52–53
Microwave energy leakage, as hazard, 2:57
Microwave heating, of seafood, 1:575
Microwave ovens, 2:50, 51, 52
 in food preparation, 2:59–60
 for processing jams and jellies, 1:852
Microwave power, 2:42–49
frequency allocations for, 2:42–44
for materials processing, 2:51–56
principles of, 2:44–49
recent applications of, 2:50–51
Microwaves, 2:41
exposure hazards of, 2:57–59
Microwave susceptor, in food packaging, 2:60
Microwave technology, 2:41–65
in agriculture, 2:61
chemistry applications of, 2:41–42
economic aspects of, 2:56
in food preparation, 2:59–60
in food processing, 2:60
health and safety factors related to, 2:56–59
instrumentation using, 2:49–56
power applications of, 2:42–49
Middle Ages, winemaking during, 677, 705
Middle East, tea in, 2:510
Milk, 2:66–98. See also Dairy entries; Milk products
analysis and testing of, 2:93–96
biotechnology and, 2:111–112
composition and properties of, 2:66, 67t, 68t, 69t, 70t, 71t
condensed, 2:98–99
cooling of, 2:89, 92–93
diseases transmitted to humans in, 2:97t
dry, 2:99–102
economic aspects of, 2:88–89, 90t, 91t, 92t
evaporated, 2:98–99
health and safety factors related to, 2:96–98
history of, 2:66
lactose in, 2:415–416
of mammals, 2:66, 67t, 68t, 69t, 70t
organic, 2:89, 92t
packaging of, 2:69, 89, 93
processing of, 2:69–88
proteins in, 2:110t
shipping of, 2:69–70, 89, 93
skimmed, 2:72, 73, 98–99
storage of, 2:69, 89–92
sweetened condensed, 2:98–99
vanillin in, 2:535
vitamin C in, 2:573, 576t
Milk by-products, 2:109
Milk chocolate, 1:235–240
formulations for, 1:237t
production of, 1:236–237
vanillin in, 2:534
Milk fat, 2:66, 67t
anhydrous, 2:103, 104t
composition of, 2:66
saturated acids in, 2:70t
unsaturated acids in, 2:71t
Milk fat globule membrane (MFGM), 1:331
Milk/milk replacers, in yeast-raised products, 1:99
Milk processing, 2:69–88
centrifugation, 2:69, 71–73
cleaning systems in, 2:87–88
cooling, 2:69–70
equipment for, 2:83–87
homogenization, 2:69, 71–72, 73–74
pasteurization, 2:69, 71–72, 74–83, 84
standardization, 2:69, 73
Milk products, 2:66, 98–112. See also Dairy products
additives in, 2:98–99
anhydrous milk fat, 2:103, 104t
biotechnology and, 2:111–112
butter, 2:103, 104t
buttermilk, 2:103, 104t
casein, 2:109–111
cheeses, 2:103–106
cream, 2:102–103
dry milk, 2:99–102
evaporated and condensed milk, 2:98–99
frozen deserts, 2:107–109
milk by-products, 2:109
nutritional value of, 2:111
in pet foods, 1:478
yogurt, 2:106–107
Milk protein concentrates (MPC), in dairy substitutes, 1:324
Milk proteins, in dairy substitutes, 1:322
Milk replacer protein, for young animals, 1:500
Milk substitutes, composition and processing of, 1:328
Milk sugar, 2:415. See also Lactose
Millet, 2:647
origins of, 2:644
trade in, 2:648
Milling
in beverage spirits manufacture, 1:154
in brewhouse operations, 1:126–130
of corn, 2:665–666
of corn starch, 2:336–340, 342
of fruit, 1:833–834
of rice, 2:663–664
of sugarcane, 2:375–378
of wheat, 2:658–660
Milling by-products, in ruminant feeds, 1:494
Mill starch, 2:339
Mill white sugar, 2:378–379
Minced fish, 1:573, 574
Minced products, from meat processing, 2:5
Mineral jelly, 2:629
Mineral nutrients, 2:115–151
absorption and excretion of, 2:116, 119t
health and safety factors related to, 2:146
principal elements in, 2:118–133
trace/ultratrace elements in, 2:133–146
types, occurrences, and roles of, 2:115–118, 119
Minerals
in chocolate products, 1:245t
essential, 1:789; 2:115–151
in MSG production, 2:155–156
in nonruminant feeds, 1:463
in nuts, 2:207t, 211
in pet foods, 1:477
recommended daily allowances of, 2:115, 116t
in ruminant feeds, 1:494–495
in tea, 2:507
in vinegar, 2:539
in winemaking, 2:696
for young animals, 1:500
Mineral waxes, 2:617, 627–632
Miniemulsions, 1:376
Minimally processed foods, packaging for, 2:239
Ministry of Agriculture, Forests, and Fisheries (Japan), 1:77
Ministry of Health and Welfare (Japan), 1:713
Minor component analysis, for fats and oils, 1:453–454
Mints, 2:326
Miracle fruit, 2:466
Miraculin, as sweetness enhancer, 2:465–466
Miso, manufacture of, 2:306
Mitochondria, of Saccharomyces cerevisiae and other yeasts, 2:715–717
Mixers, for yeast-raised products, 1:102–103
Mixing
in carbonated beverage manufacture, 1:218
in chocolate processing, 1:237
Mixtures, of flavors, 1:604
Mobilization, of vitamin C, 2:580
Modeling, in fermentation, 1:543
Modena-style vinegar process, 2:544
Modified atmosphere packaging (MAP), in meat processing, 2:6–7
Modified food starch, as a fat replacer, 1:407–408
Modified protein, as a fat replacer, 1:409–411
Modified starch, 2:339
Modified tubular pasteurization, 2:83
Mogroside V, 2:336
Moisture. See also Hygroscopicity; Water
in black tea manufacture, 2:513, 514
corn syrups and, 2:491
determination in sugar analysis, 2:406
fructose and, 2:413
in peanut storage, 2:291
in soybean storage, 2:290
in spice quality measurement, 2:315–316
in starch oxidation, 2:341
in sugar-beet sugar extraction, 2:386–387
in sugarcane cultivation, 2:373
in sugar quality control, 2:400
in sunflower seed storage, 2:291
in wheat milling, 2:658–659
Moisture effects, on stored nuts, 2:217
Mojonnier method, for testing milk fat, 2:96
Molasses, 2:379, 380, 473, 496–500
for bakers’ yeast, 2:724
composition of, 2:497
desugarization of, 2:382, 394–395
economic aspects of, 2:497–500
history of, 2:496
in MSG production, 2:154, 155
production/manufacture of, 2:496–497
from sugar beets, 2:385, 394–395
uses of, 2:412, 497
Molding, of chocolate, 1:240
Mold (mould) inhibitors, 2:729
as feed additives, 1:468
in yeast-raised products, 1:101
Molds (moulds)
dry weight yields of, 1:808
for food use, 1:806–808
in fruit preserves and jellies, 1:853
sorbic acid versus, 2:269, 270–271t, 272
Molecular biology, of sweetness, 2:467–468
Molecular encapsulation, 1:641
Molecular interactions, of dietary fiber, 1:346
Molecular markers, application to coffee breeding, 1:282
Molecular weight, of starch, 2:335
Moles of substitution (MS), 1:207, 876
Molten glass, in bottle manufacture, 2:247–248
Molybdenum (Mo)
toxicity of, 2:143
as trace nutrient, 2:143
Molybdenum deficiency, 2:143
Monatin, 2:463t, 464
Monellin, 2:463t
Moniliella pollinis, 2:465
Monitoring procedures, in meat processing, 2:7–8
2,3-Monoacetone-L-sorbose (MAS), in ascorbic acid manufacture, 2:566
Monoacylglycerols (MAGs), 1:395, 429
Monoamine oxidase inhibitors (MAOI), 1:786
Monocalcium phosphate (MCP), nutritional aspects of, 1:89–90
Monocalcium phosphate monohydrate, 1:84
Monochloroacetic acid process, 1:38
Monocotyledonous plants, cereal grains from, 2:641t, 646
Monodehydro-L-ascorbic acid, 2:555
Monooesters, waxes from, 2:617, 618
Monoglycerides, 1:99
as food additives, 1:731
Monographs for Emulsifiers for Foods, 1:893t
Monolayer flexible food packaging, 2:253, 256
Monomeric surfactants, as emulsion stabilizers, 1:379
Monoenoil monoxygenase, in tea, 2:507–508
Monosaccharides, 1:174–175, 179
defined, 2:364
isomerization of, 1:190
oxidation to lactones, 1:186
reduction of, 1:187
uses for, 1:192
Monosantuates, 1:439
Monosodium citrate salts, 1:253
Monosodium L-glutamate (MSG), 1:50, 53, 724; 2:152–161
health and safety factors related to, 2:157–159
isolation of, 2:152
production of, 2:154–157
properties of, 2:152–153
toxicity of, 1:782; 2:158
uses of, 2:152, 157
Monounsaturated fats, 1:394
Monounsaturated fatty acids, 1:455, 456
Montan wax, 2:617, 627–628
Montmorillonite clay, in winemaking, 2:696
Mother liquor
in dextrose refining, 2:480
in molasses manufacture, 2:496
Mother of vinegar, 2:547
Mouthfeel, of food, 1:653
MSG hydrochloride, 2:154. See also Monosodium L-glutamate (MSG)
MSG Symptom Complex, 2:159
MSNose, 1:691
Mucopolysaccharides, 1:814
Multilamellar vesicles (MLV), 1:885
Multilayer flexible food packaging, 2:253, 256
Multilayer injection stretch blow molding, 2:259
Multimode cavity microwave applicator, 2:54
Multinuclear microcapsules, 2:24
Multitherm process, for fruit preserve and jelly processing, 1:851
Multivitamin-fortified milk, 2:66
Multiwall food packaging, 2:244
Muscle, calcium ion in, 2:120
Muscle tissue, in meat, 2:1–2
Muscovado sugar, 2:411
Mushrooms, toxic, 1:782–783
Muskogee-type warehouses, for cottonseed storage, 2:291
Mustard, 2:647
Mustard seed, 2:326
Mutarotation, 1:178
Mutations
microbial, 1:523–524
useful yeast, 2:720
vanillin as preventing, 2:538
Mutton, United States imports of, 2:13t
Mycobacteria, waxes from, **2:619**

Mycobacterium tuberculosis, waxes from, **2:619**

Mycoprotein, **1:808**

Mycoserosates, **2:619**

Mycostats, in pet foods, **1:481**

Myctoxins, **1:790–792**

in nuts, **2:219**

Myelin growth, **1:885**

Myoglobin

iron in, **2:133**

in meat, **2:2**

Myo-inositol, **1:188**

Myosin, calcium ion and, **2:120**

MyPyramid food guidance system, **1:393**

Myrica cerifera, bauberry wax from, **2:625**

Myricetin, in tea, **2:505**

Myristica fragrans, **2:325–326**

Myristicin, **1:136**

Mysticism, in winemaking, **2:675, 676**

NAD$^+$ (niacinamide adenine dinucleotide), **2:606**

NADP$^+$ (niacinamide adenine dinucleotide phosphate), **2:606**

Nanoparticles, **2:23**

Naphthoquinone, **2:172, 173**

Naringin, **2:460**

Narrow band backward wave oscillators, as microwave instrumentation power source, **2:49**

Nasal impact frequency (NIF), **1:608, 609**

National Academy of Sciences (NAS), on nutraceuticals, **2:120**

National Center for Agricultural Research (ARS), **1:350**

National Institutes of Health (NIH), in nutraceutical testing, **2:166–167**

National Registration Authority for Agricultural and Veterinary Chemicals (Australia), **1:77**

National Research Council (NRC), **1:767, 768**

National Shellfish Sanitation Program (NSSP), **1:595**

National Toxicology Program (NTP), **1:260**

Natural antioxidants, as food additives, **1:736**

Natural colors, **1:726–727**

Natural convection freezing, **1:582**

Natural flavorings/flavors, **1:657, 658, 659–660, 724**

defined, **1:697**

Natural hydrocolloids, **1:728–729**

Naturally occurring food toxicants, **1:779–797**

Natural preservatives, **1:735**

Natural-style juices, **1:837, 838**

Natural wines, **2:679–680**

Nature-identical flavoring substance, **1:724**

Navel orange juice, **1:830**

NCBI gene databank, **1:282**

Near-infrared spectroscopy (nir), in sugar analysis, **2:405–406**

Nematodes, in making vinegar, **2:547**

Neobee, **1:417**

Neohesperidin, **2:460, 461**

economic aspects of, **2:446**

Neohesperidin dihydrochalcone (NHDC), **2:460–461**

as food additive, **1:718**

Neopullulanase, **2:334**

Neotame, **2:451–452**

economic aspects of, **2:446**

as food additive, **1:718**

tasting sweetness of, **2:467**

Neothelavin, in tea, **2:511**

Nerve cells, calcium ion and, **2:120. See also Neurotransmitter entries**

Net-caught fish, quality of, **1:569–570**

Net positive suction head required (NPSHR), in dairy equipment, **2:87**

Netting, in black tea manufacture, **2:513**

Neural networks, winemaking and, **2:678–679**

Neurotransmitter receptors, chloride ion and, **2:131**

Neurotransmitters

amino acids as, **1:50**

in tasting sweetness, **2:468**

Neutral detergent fiber (NDF), **1:342**

method using, **1:347**

Neutralizing value (NV), **1:86**

Neutral spirits, **1:149**

New Animal Drug Application (NADA), **1:67**

New York Sugar Trade Laboratory (NYSTL), **2:400**
Niacin, 2:168t, 590, 606
history of, 2:591t
molecular structure of, 2:606
physiological effects of, 2:591
production/manufacture of, 2:614t
RDAs of, 2:594t
tolerable upper limits of, 2:595t
Niacinamide, 2:606
production/manufacture of, 2:614t
Niacin deficiency, 2:606, 670
Niacin inhibitors, 1:787
Nickel (Ni), as trace nutrient, 2:146
Nickel catalyst, in sorbitol production, 2:426
Nickel deficiency, 2:146
Niclosamide, 1:74
Nicotinic acid, 2:606, 670
in milk, 2:68t
in nuts, 2:212
toxicity of, 1:788
Night blindness, 2:597
Ninhydrin-color reaction, 1:17
Nitrates, 1:790
as food additives, 1:734
in organic foods, 1:777
Nitration, of mannitol, 2:430–431
Nitrite(s), 1:790
as food additives, 1:734
as meat-processing ingredient, 2:2–3
from sugar beets, 2:391
vitamin C and, 2:578–579
Nitrite-cured meats, packaging for, 2:240
Nitroanisole, 2:528
z-Nitro carboxylic acid, reduction of, 1:20
Nitrogen (N)
for bakers' yeast, 2:724
in macadamia embryos, 2:216t
Nitrogen compounds
in black tea manufacture, 2:514
dextrose (d-glucose) reactions with, 2:475–476
in MSG production, 2:155
succinic acid/anhydride reactions with, 2:354–355
Nitrogen sources, in medium development, 1:526
N-Nitrosamides, vitamin C and, 2:579
Nitrosamine formation, vitamin C versus, 2:576, 578–579
Nitrosamines, 1:790
N-Nitroso compounds, vitamin C and, 2:579
Nobel prizes, vitamin-related, 2:591, 592t
Nonalcoholic beverages, packaging for, 2:243
Noncaloric fat substitutes, in reducing fat in meats, 2:10
Noncertified colors, 1:726–727
Nonconventional foods, 1:798–824
classes of, 1:798
derived plant and animal products, 1:809–818
FDA regulations related to, 1:808
quality and safety of, 1:819–820
synthetic protein products, 1:818–819
Noncrystallizing carbohydrates, 1:626
Nondairy products, 1:319–320
Nonenzymatic fluorinated amino acids, 1:37
Nonenzymatic glycation, 1:15
Nonessential nutrients, 2:163
Nonfat dry milk (NFDM), 1:99
in dairy substitutes, 1:322
Nonheat-set oriented polypropylene film, in plastic food packaging, 2:250
Nonnutrient additives, in pet foods, 1:480–481
Nonnutritive sweeteners, 2:445–446, 446–464
acesulfame-K, 2:453–454
alitame, 2:452
aspartame, 2:446–451
in carbonated beverages, 1:212
cyclamate, 2:456
economic aspects of, 2:446
glycyrrhizin, 2:460
miscellaneous, 2:462–464
neohesperidin dihydrochalcone, 2:460–461
neotame, 2:451–452
saccharin, 2:454–456
stevioside, 2:458–460
sucralose, 2:456–458
thaumatin, 2:461–462
Nonphotosynthetic microorganisms
amino acid content of, 1:810
protein quality and digestibility of, 1:811t
quality of, 1:808
SCP production processes based on, 1:807t
Nonphotosynthetic organisms, 1:799, 805–809. See also Animals; Fungi; Microbes
commercial-scale and batch production of, 1:805, 806
Nonproduct contact utilities, in fermentation, 1:547–548
Non-protein nitrogen (NPN), 1:493
Nonruminant feeds, 1:462–473
Nonstarch polysaccharides (NSP), 1:342
No observed adverse effect level (NOAEL), 1:769
No observed effect level (NOEL), 1:769
Noodles, 2:657
lecithin in, 1:896
Norbixin, as paprika adulterant, 2:321
North America corn in, 2:664
molasses from, 2:496
peanut consumption in, 2:228–230
sugarcane processing in, 2:373
tea in, 2:502
wild rice in, 2:662–663
Not from concentrate (NFC) juices, 1:825
No-time dough process, 1:105, 106
Nouveau-style wines, processing flows for, 2:683, 686
Novel food preparation processes, 1:647
Nozzle techniques, 1:637
Nuclear magnetic resonance (NMR; nmr) microwave technology for, 2:42
in wax analysis, 2:639
Nucleation tempering, 1:239
Nucleic acids, phosphorus in, 2:124. See also DNA entries; RNA (ribonucleic acid)
Nucleosides, 1:183
Nucleotides, 1:183
boron and, 2:140
molybdenum and, 2:143
Nucleus, of yeast cell, 2:715
Nut butters, uses of, 2:230
Nut flours, uses of, 2:230–231
Nut kernels, uses of, 2:230
Nut meals from oilseeds, 2:300–301
uses of, 2:232, 233
Nutmeg, 2:325–326
Nut pastes, uses of, 2:230
Nut products, 2:148
uses of, 2:230–233
Nutraceuticals, 1:515; 2:161–202. See also Dietary supplements
carnitine, 2:190
carotenoids, 2:162, 173–181
classification of, 2:167–192
coenzyme Q10, 2:191–192
creatine, 2:189
defined, 2:161
efficacy of, 2:165–167
folic acid, 2:173
as food, 2:161–162
future trends in, 2:192
glucosamine, 2:190–191
health benefits of, 2:161–162, 163–167
health factors related to, 2:192
identification of, 2:164–165
(R)-α-lipoic acid, 2:190
market for, 2:192
nutrition trends and, 2:162–163
phytosterols, 2:187–189
polyphenols, 2:184–187
desaturated fatty acids, 2:181–184
safety of, 2:165
terminology for, 2:163–164
vitamins, 2:167–173
NutraSweet, aspartame production/manufacture by, 2:447, 449–451
Nutrient feeding, in fermentation, 1:541
Nutrient requirements, of swine and poultry, 1:464
Nutrients
cereal grains as, 2:650–654, 668
essential versus nonessential, 2:163
as food additives, 1:743–745
nuts as, 2:214–215
in oilseeds, 2:296–301
in organic foods, 1:777
in pet foods, 1:476–480
vitamin C, 2:581
vitamins as, 2:590
for yeasts, 2:721
Nutrient side effects, of olestra, 1:420
Nu-TrimX, 1:404
Nutrition
amino acids and, 1:47–48
leavening agents and, 1:88–92
nutraceuticals and, 2:161–162, 162–163
proper, 1:393
Nutritional content
of cereal grains, 2:668
of milk, 2:66, 67t, 68t, 69t, 70t, 71t, 78

Nutritional labeling, of meat products, 2:14–16, 17
Nutritionally modified yeast-leavened products, 1:108–109
Nutritional properties, of chocolate products, 1:241–245
Nutritional quality
 of microwaved food, 2:60
 of milk products, 2:111
Nutrition claims, 1:397–398
“Nutrition Facts” label, 1:397–398
Nutrition Labeling and Education Act of 1990 (NLEA), 1:397
on peanut butter, 2:222
on sugar standards, 2:399–400
Nutritive sweeteners
 in carbonated beverages, 1:211
 sugar as, 2:445
Nutritive value, of food, 1:653
Nuts, 2:202–238
 botanical names of, 2:203–205t
 chemical changes in, 2:216–220
 chemical composition of, 2:206–214
 defined, 2:202
 economic aspects of, 2:223–230
 edible, 2:206, 215, 217–219
 geographic occurrence of, 2:203–205t
 as nutrients, 2:214–215
 partially defatted, 2:232–233
 physical shapes, sizes, and structure of, 2:205
 processing of, 2:220–223
 types of, 2:202, 203–205t
 uses of, 2:202, 203–205t, 230–233
U.S. production and consumption of, 2:223–225, 226–227t
world production and consumption of, 2:224t
Nylon, in plastic food packaging, 2:2497, 251
O-acetylated hemicelluloses, 1:194
Oatrim, 1:403
Oats, trade in, 2:648
Obesity, 1:396
 carbonated beverages and, 1:223
 dietary sugar and, 2:407
 tea antioxidants versus, 2:521
Ochratoxin A (OTA), in coffee, 1:284
Ocimum basilicum, 2:321
Octadecanoic acid, 1:429

Odor(s)
 memory effect of, 1:683
 taste and, 1:656–657
Odor activity, 1:689
Odor activity values (OAVs), 1:607–608, 684–685
Odorant molecules, 1:682
Odorants, 1:686
 determining in food, 1:608
 potency versus intensity of, 1:686
 “unbalanced,” 1:687
Odor detection-threshold values, 1:657, 658t
Odor spectrum values (OSVs), 1:685
Offal, from wheat milling, 2:660
Offset printing, on flexible food packaging, 2:253–254
Ofner Method, of reducing-sugar determination, 2:404
Oil content, in wax analysis, 2:637
Oil-in-water (O/W) emulsion, 1:640
Oil of bergamot, in tea manufacture, 2:515
Oils. See also Essential oils; Fatty oils;
 Volatile oils
 derivatives of, 1:455
 in dairy substitutes, 1:320
 lecithin in, 1:896
 in macadamia embryos, 2:216t
 mechanical pressing of, 1:443
 miscellaneous uses of, 1:457
 in nuts, 2:206, 207t, 208, 210t, 233
 from oilseeds, 2:296, 301–303
 packaging for, 2:242
 peanut oil, 2:231
 in pet foods, 1:479
 phytosterols and, 2:189
 production of, 1:444
 purification of, 1:447
 solvent extraction of, 1:443–444
 stability of, 1:453
 from wheat germ, 2:653
Oilseed products, 2:301–306
Oilseed proteins, in dairy substitutes, 1:322
Oilseeds, 2:282–310, 641t
 botanical classification of, 2:283t
 chemical composition of, 2:284–290
 economic aspects of, 2:294–296, 297t, 298t, 299t
 harvesting of, 2:290–291
 health factors related to, 2:296–301
 minor chemical constituents of, 2:289–290
nutritional properties of, 2:296–301
physical characteristics of, 2:282–284
processing of, 2:291–294
storage of, 2:290–291
uses of, 2:301–306
world production and consumption of, 2:295t, 297t, 298t, 299t
Olefin oxides, sugar alcohols and, 2:431
A-OLEFINS, polymerization into waxes, 2:633, 635
Oleic acid, 1:427, 429
Oleoresins, 1:312–313, 313–314
in carbonated beverages, 1:215
extraction from spices, 2:313–314
Olestra, 1:399
as a fat replacer, 1:419
benefits of, 1:420
Olfaction, neurology of, 1:681–682
Olfactory adaptation, 1:683
Olfactory perceptions, 1:599
Olfactory receptor cells, 1:682
Olfactory response, 1:656
Oligosaccharides, 1:175, 179, 180
in oilseeds, 2:289t
reduction of, 1:187
from starch, 2:335
from starch cyclization, 2:336
synthetic, 1:182–183
toxic, 1:784–785
uses for, 1:192–193
Omega-3 polyunsaturated fatty acids, 1:394
effect of processing on, 1:575t
health factors related to, 2:183–184
Oncogenesis, role of protein kinases in, 1:51
One-step pectin gelling, 1:848
Onion, dehydrated, 2:326–327
Origanum marjorana, 2:326
Origanum vulgare, 2:327
Oriza sativa, rice bran oil from, 2:625
Orleans process, in making vinegar, 2:543–544
Ormetoprim, 1:69
L-Ornithine, 1:54
fermentative production of, 1:30t
Orthonasal smelling, 1:369
Oscillators, as microwave instrumentation power source, 2:49
Osladin, 2:463t, 464
OSME aroma analysis, 1:608
Osmophore, 1:656
Osmotic pressure
of cane sugar, 2:368, 369t
yeast activity and, 2:729
Osmotic pressure determination, starch molecular weight and, 2:335
Osteitis deformans, 2:121
Osteocalcin, 2:604
Osteoporosis biomarkers, in nutraceutical testing, 2:167
Ostwald ripening, 1:387
Ouricouri wax, 2:624–625
Orange juice
adulterated, 1:828
frozen concentrated, 1:825
manufacturing process for, 1:829
unpasteurized, 1:832
Orange pekoe (OP) tea, 2:514
Oregano, 2:326
Mediterranean, 2:327
Mexican, 2:327
Organelles, phytosterols in, 2:188
Organic acids
in beer brewing, 2:733
as fermentation products, 1:503–504
as food additives, 1:734
Organic coffee, 1:269
Organic compounds
odor detection thresholds of, 1:658t
in vinegar, 2:539
Organic egg market, 1:371–372
Organic foods, chemical components of, 1:776–777
Organic growth factors, in vinegar manufacture, 2:543
Organic milk, sales of, 2:89, 92t
Organic production methods, 1:777
Oriented polypropylene (OPP) film, in plastic food packaging, 2:249t, 250–251
Origanum marjorana, 2:326
Origanum vulgare, 2:327
Oriza sativa, rice bran oil from, 2:625
Orleans process, in making vinegar, 2:543–544
Ormetoprim, 1:69
L-Ornithine, 1:54
fermentative production of, 1:30t
Orthonasal smelling, 1:679
Oscillators, as microwave instrumentation power source, 2:49
Osladin, 2:463t, 464
OSME aroma analysis, 1:608
Osmophore, 1:656
Osmotic pressure
of cane sugar, 2:368, 369t
yeast activity and, 2:729
Osmotic pressure determination, starch molecular weight and, 2:335
Osteitis deformans, 2:121
Osteocalcin, 2:604
Osteoporosis biomarkers, in nutraceutical testing, 2:167
Ostwald ripening, 1:387
Ouricouri wax, 2:624–625
<table>
<thead>
<tr>
<th>Term</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overwraps, for food packaging</td>
<td>2:244</td>
</tr>
<tr>
<td>Oxalates, toxic</td>
<td>1:785</td>
</tr>
<tr>
<td>Oxalic acid</td>
<td>2:560</td>
</tr>
<tr>
<td>N-Oxalyl-L-α-diaminopropionic acid (ODAP)</td>
<td>1:782</td>
</tr>
<tr>
<td>Oxidases, molybdenum in</td>
<td>2:143</td>
</tr>
<tr>
<td>Oxidation of ascorbic acid</td>
<td>2:555, 560</td>
</tr>
<tr>
<td>Oxidation measurement for fats and oils</td>
<td>1:453</td>
</tr>
<tr>
<td>Oxidation–reduction reactions, iron in</td>
<td>2:133</td>
</tr>
<tr>
<td>Oxidative deamination</td>
<td>1:16</td>
</tr>
<tr>
<td>Oxidized starches</td>
<td>1:197, 2:340–341</td>
</tr>
<tr>
<td>Oxidized wines, production of</td>
<td>2:695</td>
</tr>
<tr>
<td>Oxidizers, in making vinegar</td>
<td>2:545–546</td>
</tr>
<tr>
<td>Oxygen (O) in ascorbic acid degradation</td>
<td>2:560</td>
</tr>
<tr>
<td>Oxygen scavengers, as food additives</td>
<td>1:737</td>
</tr>
<tr>
<td>Oxygen transfer, in fermentation</td>
<td>1:545</td>
</tr>
<tr>
<td>Oxytetracycline, 1:68, 71</td>
<td></td>
</tr>
<tr>
<td>Oxytocin</td>
<td>2:126</td>
</tr>
<tr>
<td>Oyster shucking, microwave technology for</td>
<td>2:60</td>
</tr>
<tr>
<td>Ozokerite wax</td>
<td>2:628</td>
</tr>
<tr>
<td>Ozone, as a disinfectant</td>
<td>1:82</td>
</tr>
<tr>
<td>P-4000</td>
<td>2:463t, 464</td>
</tr>
<tr>
<td>Pachysoklen tannophilus</td>
<td>2:713t</td>
</tr>
<tr>
<td>Packaging recycling, carbonated beverage</td>
<td>1:222–223</td>
</tr>
<tr>
<td>Packaging</td>
<td>See also Food packaging</td>
</tr>
<tr>
<td>Pantothenic acid</td>
<td>2:168t, 607–608</td>
</tr>
<tr>
<td>Pantothenic acid, history of</td>
<td>2:591t</td>
</tr>
<tr>
<td>Pantothenic acid, in milk</td>
<td>2:68t</td>
</tr>
<tr>
<td>Pantothenic acid, molecular structure of</td>
<td>2:607</td>
</tr>
<tr>
<td>Pantothenic acid, in nuts</td>
<td>2:212</td>
</tr>
<tr>
<td>Pantothenic acid, RDAs of</td>
<td>2:594t</td>
</tr>
<tr>
<td>Pantothenic acid deficiency, 2:608</td>
<td></td>
</tr>
<tr>
<td>Pantothenic acid, production/manufacture of</td>
<td>2:614t</td>
</tr>
<tr>
<td>Pantothenol</td>
<td>2:607</td>
</tr>
<tr>
<td>Papain</td>
<td>1:68</td>
</tr>
<tr>
<td>Papaverine, from vanillin</td>
<td>2:536</td>
</tr>
<tr>
<td>Papaver somniferum</td>
<td>2:328</td>
</tr>
<tr>
<td>Papaya</td>
<td>1:841</td>
</tr>
<tr>
<td>Paper bags</td>
<td>2:244</td>
</tr>
<tr>
<td>Paperboard containers, for food packaging</td>
<td>2:244–245</td>
</tr>
<tr>
<td>Paper canisters, for food packaging</td>
<td>2:245</td>
</tr>
</tbody>
</table>
Paper chromatography, in sugar analysis, 2:405
Paper electrophoresis, in sugar alcohol analysis, 2:434
Paper food packaging, 2:244–245
Paper industry, phytosterol by-products from, 2:189
Paprika, 2:322
 adulteration of, 2:319, 321
 as a food colorant, 1:312–313
 measuring quality of, 2:317
Paprika oleoresins, as food colorants, 1:312–313
Papyrus, starch in, 2:330
Parabens, as food additives, 1:734
Paraffin wax, 2:628
 composition of, 2:628–629
 production/manufacture of, 2:630, 631
Paralytic shellfish poisoning, 1:793
Parasiticides
 as registered aquaculture chemicals, 1:75
 registration potential of, 1:81
Parasorbic acid, sorbic acid from, 2:268
Parathyroid hormone (PTH)
 calcium ion and, 2:121, 122
 magnesium ion and, 2:132
Parboiling, of rice, 2:664
Parenteral nutrition, amino acids in, 1:53
Paricalcitol, 2:601
Parsley, 2:327
Partial glycerides, in fats and fatty oils, 1:429
Partially defatted chopped beef (PDCB), in reducing fat in meats, 2:11
Partially defatted nuts, 2:232–233
Partially processed food products, packaging for, 2:240–241
Particles, as emulsion stabilizers, 1:379
Particle-size distribution determination in sugar analysis, 2:406
 of vanillin, 2:530
 Particle sizing, 1:390
Partition chromatography, in sugar alcohol analysis, 2:434
Paselli SA2, 1:406–407
Passion fruit, 1:841
Passover, cereal grains and bread in, 2:642–643
Pasta, 2:657
Pasteur, Louis, 1:508
 winemaking and, 2:677, 678
Pasteurization
 of egg products, 1:365–367
 of fruit juices, 1:838–839
 of milk, 2:69, 71–72, 74–83, 84
 of seafood, 1:574
 winemaking and, 2:677, 694
Pasteurization unit (PU), 1:137
Pasteurized beer, 1:137
Pasteurized Milk Ordinance (PMO), 2:75, 97
Pasteurized process cheese, citric acid in, 1:262
Pasteurized single-strength orange juice, 1:832
Pasteur modification, to Orleans process, 2:544
Pastries, packaging for, 2:242–243
Patent flour, from wheat milling, 2:659–660
Pathogenic yeasts, 2:741–742
Pathogens, in meat, 2:18–20
Pauling, Linus, on vitamin C, 2:556–557
Pea, 2:647
Peanut butter
 commercial manufacture of, 2:222–223
 composition of, 2:222
 nutritional content of, 2:215
 storage of, 2:218–219
 uses of, 2:231, 232
 U.S. production and consumption of, 2:228
Peanut flour, uses of, 2:230–231, 231–232
Peanut Institute, The, 2:231
Peanut meal, uses of, 2:232
Peanut oil
 fatty acid analysis of, 2:210t
 uses of, 2:231, 232
Peanut products, 2:223
Peanuts, 2:202
 aflatoxins in, 2:219–220
 amino acids in, 2:287t
 blanching of, 2:221
 botanical classification of, 2:283t
 chemical composition of, 2:284–290
 fatty acids in, 2:288t
 food products from, 2:305, 306
 harvesting and storage of, 2:291
 minor chemical constituents of, 2:289–290
 as oilseeds, 2:282
 oligosaccharides in, 2:289t
 physical characteristics of, 2:284
processing of, 2:221–222, 293–294
protein meal from, 2:303–304
proteins from, 2:301
respiration of, 2:217
roasted, 2:232
saponins in, 2:290
sterols in, 2:288t
U.S. production and consumption of,
2:228–230, 231
uses of, 2:230, 231–232
world production and consumption of,
2:228
Pearl-chain microwave effects, 2:47
Peat waxes, 2:628
Pecan oil, fatty acid analysis of, 2:210t
Pecans
developmental chemical changes in,
2:217
salting of, 2:221
storage of, 2:218
uses of, 2:230
U.S. production and consumption of,
2:226t
pectic acids, 1:204
Pectin, 1:405
as food additive, 1:729
in fruit preserves and jellies, 1:847
Pectin gel, 1:847
Pectinic acids, 1:204, 205
Pectins, 1:204–205, 873–874
Pectolytic enzymes, 1:834
Pediococcus, in soy sauce production, 2:738
Pekoe fannings (PF) tea, 2:514
Pelargondin, in wine, 2:683
Pelargonidin, in wine, 2:683
Pellagra, 1:49; 2:590, 670
Pelleral, 1:49; 2:590, 670
Pelleted feeds, 1:496–499
Pelleted pet foods, 1:475
Pericarp of cereal grains, 2:648, 650
of corn kernel, 2:337
Perillartine, 2:463t, 464
Periodate oxidation, in sugar alcohol analysis, 2:434
Periodic Table, 2:117
Pernicious anemia, cyanocobalamin and,
2:612
Peroxidase (POD), in tea, 2:507, 508
Peroxide value, 1:894
Peroxyl radicals, tea antioxidants versus,
2:520
Persian walnuts, U.S. production and consumption of,
2:225
Pervaporation, in whiskey, 1:161–162
Pest control, fumigants for, 1:770
Pesticide exposure, 1:770
Pesticide residue monitoring programs,
1:776–777
Pesticide Residue Regulatory Monitoring Program (FDA), 1:773
Pesticide residues, 1:767, 771–774
in organic foods, 1:776–777
Pesticides
agricultural use of, 1:771–772
classes of, 1:772t
regulation of, 1:772–774
starch encapsulation of, 2:336
testing milk for, 2:93, 95
Pests, of sugarcane, 2:373–374
Pet food additives, cat-specific, 1:481–482
Pet food products, sales history of, 1:486t
Pet foods, 1:473–489
 economic aspects of, 1:485–486
 formulation of, 1:476–485
 labeling, 1:487
 processing, 1:474
 safety of, 1:487–488
 salvage and distressed, 1:488
 sorbates in, 2:275
 sorbitol in, 2:438
 types of, 1:474–476
Petrolatums, 2:628
 composition and properties of, 2:629
Petroleum, making vinegar from, 2:539–540
Petroleum jelly, 2:629
Petroleum waxes, 2:628–632
 production/manufacture of, 2:629–632
 properties of, 2:630t
 refining of, 2:630, 631, 632
 uses of, 2:632
Petroselinum crispum, 2:327
Petunidin glycoside, in wine, 2:683
pH
 in ascorbic acid degradation, 2:560
 in brewing, 1:124
 aspartame and, 2:447–448
 in cane sugar hydrolysis, 2:371
 in fermentation, 1:540
 in generator process for making vinegar, 2:546
 in high fructose corn syrup manufacture, 2:487–488
 in sugarcane processing, 2:377
 sorbic acid dissociation and, 2:269–271
 sucrose degradation and, 2:370
 of vinegar, 2:540, 542
pH-adjusting agents, as food additives, 1:737–738
Phaffia rhodozyma, 2:713t
Pharmaceuticals. See also Nutraceuticals
dextrose in, 2:481
 sucrose in manufacture of, 2:409–410
vanillin in, 2:536
 vitamins as, 2:491
Pharmacology, of epigallocatechin gallate, 2:185
Phenolic acids, in soybeans, 2:289
Phenolic compounds, in tea, 2:504–506
Phenolic oil, in nuts, 2:214
Phenols, in wine, 2:682–683, 696, 706
 Phenol–sulfuric acid method, of sugar analysis, 2:404
 Phenylalanine
 aspartame isomers and, 2:449, 450
 in nuts, 2:209t
 in tea flavonoid biosynthesis, 2:508, 509
 l-Phenylalanine
 enzymatic production of, 1:43
 fermentative production of, 1:33t
 Phenylthiourea, 1:694
 Phenytoin, 2:611
 Philippines, soybean production and exports by, 2:295
 Phoenix dactylifera, sucrose in, 2:364
 Phosgene, amino acid reaction with, 1:14–15
 Phosphatase
 milk pasteurization and, 2:74
 testing milk for, 2:95
 Phosphatation, of raw sugar, 2:380–381
 Phosphate
 in evaporated milk, 2:99
 as meat-processing ingredient, 2:2
 Phosphated flours, 2:662
 Phosphate esters, of sugars, 2:431
 Phosphate ion, 2:130
 Phosphates
 in dairy substitutes, 1:326–328
 of starch, 2:342–343, 344–345
 Phosphatides, in oilseeds, 2:287
 Phosphatidylcholine (PC), 1:882, 885–886
 highly purified, 1:890
 Phosphatidylcholine fractions, 1:889, 890–891
 Phosphatidylcholine fractions, 1:889, 890–891
 Phosphatidylinositol, 1:430
 Phosphocreatine, 2:189
 Phospholipids (PL), 1:393, 395, 881–882;
 2:124
 in fats and fatty oils, 1:429–430
 in nuts, 2:212
 reactions of, 1:887
 soybean, 1:886s
 Phosphonomannans, 1:185
 Phosphonoxy-L-ascorbic acid magnesium salt, 2:571
 Phosphoric acid
 in carbonated beverages, 1:212
 in cat foods, 1:482
 as food additive, 1:721
 Phosphorus (P)
 in bone, 2:118
 calcium and, 2:123
foods rich in, 2:123t
as mineral nutrient, 2:123–125
in nuts, 2:207t, 212, 215
Phosphorus disorders, 2:125
Phosphorylase, 2:334
Phosphorylation
of corn, 2:342
of dextrose (β-glucose), 2:476
Photographic gelatin, 1:861
Photographic products, gelatin in, 1:860
Photography, ascorbic acid in, 2:570
Photosynthesis, yeasts as lacking, 2:711
Photosynthetically grown algae, 1:803t
Photosynthetic microorganisms, 1:800–801t
Photosynthetic organisms, 1:799–804
Phthiocerol, waxes from, 2:619
Phyconycetes, 2:711
Phyllodulcin, 2:463t, 464
Phylloquinone, 2:168t
as nutraceutical, 2:171
Phytoalexins,
Phytochemicals, in wines, 2:706
Physical analysis, of wines, 2:702–703
Physical food deterioration, 2:239
Physical properties
of acesulfame-K, 2:453
of allitame, 2:452
of amino acids, 1:8–14
of ascorbic acid, 2:558–560
of aspartame, 2:447–448
of butter, 2:104t
of citric acid, 1:249, 251t
of dextrose, 2:474–475
of eggs, 1:355–356
of fats and fatty oils, 1:444–449
of fructose, 2:413
of gelatin, 1:857–860
of lactose, 2:416
of lecithin, 1:884–886
of liquid egg products, 1:355t
of maltose, 2:415
of milk, 2:67t
of milk fat, 2:104t
of neohesperidin dihydrochalcone, 2:461
of nuts, 2:205
of oilseeds, 2:282–284
of potassium sorbate, 2:263, 265t, 266
of saccharin, 2:455
of sorbic acid, 2:263, 264t, 265t
of starch, 2:330–333
of succinic acid and anhydride, 2:350, 351t
of sucralose, 2:457
of sugar alcohols, 2:422–425
of sugars, 2:365–370
of tea, 2:506
of vanillin, 2:530–532
Physicians’ Health Study, on lycopene, 2:180
Physicochemical properties, of dietary fiber, 1:345–346
Physiological effects
of ascorbic acid, 2:557, 575–582
of citric acid, 1:248–249
of dietary fiber, 1:344–345
of tea, 2:519–522
vitamin classification by, 2:596t
of vitamins, 2:591
Phytates, toxic, 1:785
Phytic acid, 1:188
in oilseeds, 2:289
Phytin, in nuts, 2:212
Phytoalexins, 1:783–784
Phytochemicals, in wines, 2:706
Phytoene, 2:178
Phytotriene, 2:178
Phytonadione, 2:603–604. See also Vitamin K
production/manufacture of, 2:614t
RDAs of, 2:594t
Phytosterols
as fat/oil by-products, 2:189
future trends in, 2:192
molecular structures of, 2:187–188
as nutraceuticals, 2:187–189
in nuts, 2:212
pI, of amino acids, 1:13t
Pichia
metabolic pathways of, 2:721
species of, 2:713t
strain improvement of, 2:720
wine yeast and, 2:734
Pichia pastoris, genome of, 2:715
Pigments
in fats and fatty oils, 1:431–432
in tea, 2:505
Pignolia nuts, uses of, 2:230
Pilot scale equipment, 1:533
Pimenta dioica, 2:321
Pimpinella anisum, 2:321
Pineapple juice, 1:841
Pin mill, 1:231
Piñon nuts, processing of, 2:221
Piperine, in black pepper, 2:311, 314
Piper nigrum, 2:327–328
pepper from, 2:311
Piping, 1:533–537
in dairy equipment, 2:86–87
Piscicides
as registered aquaculture chemicals, 1:76
registration potential of, 1:82
Pistachios
uses of, 2:230
U.S. production and consumption of, 2:227t, 230
world production and consumption of, 2:224t
“Pitching” process, 1:134
Pituitary gland, vitamin C and, 2:580
pK, of amino acids, 1:13t
pKa values, of sugar alcohols, 2:425
Plantation white sugar, 2:373, 378–379
Plant extract antioxidants, as food additives, 1:736
Plant products
derived, 1:809–816
in pet foods, 1:479
Plant proteins, in pet foods, 1:477, 478
Plants. See also Tea entries; Vegetal waxes
ascorbic acid biosynthesis in, 2:572–573, 574, 575
ascorbic acid from, 2:554–555
carotenoids in, 2:174t
cereal grains from, 2:641t
dulcitol in, 2:428
genistein from, 2:186
lactose from, 2:416
mannitol in, 2:427
physical characteristics of oilseed, 2:284
phytosterols from, 2:187
sorbitol in, 2:426
starch from, 2:330
sterols in, 1:430–431
stevioside from, 2:458–459
sucrose in, 2:364, 365
vitamin D from, 2:599–600
waxes from, 2:618
xylitol in, 2:425–426
Plasma, ascorbic acid in, 2:579, 580. See also Blood plasma
Plasmas
in microwave applicators, 2:53
microwaves and, 2:48–49
Plasma spectroscopy, in succinic acid/ anhydride analysis, 2:358
Plastein synthesis, 1:818–819
Plastic, in dairy equipment, 2:87
Plastic food packaging, 2:248–259
applications of flexible, 2:254–255
coeXtrusions for, 2:252–253
flexible, 2:253–255
materials in, 2:248–252
semirigid, 2:255–259
three-dimensional, 2:256–259
Plate evaporator, 1:836
Plate freezers, 1:578
Plate pasteurizers, 1:838–839
Plates, in HTST pasteurizer, 2:76–78
Poland
cereal grains and bread in, 2:642
vinegar clarification patents in, 2:548
Polarimetry
in sugar alcohol analysis, 2:435
in sugar analysis, 2:401–402, 403
Polarization
of refinery melt sugar, 2:379, 380
in sugar analysis, 2:401–402, 403
in winemaking, 2:678
Polioencephalomalacia, 1:495
Polished rice, beriberi and, 2:669–670
Polishing agents, as food additives, 1:733
Polyacrylonitrile (PAN) film, in plastic food packaging, 2:249t, 252
Poly(alkyl cyanoacrylate), in microencapsulation, 2:29
Polyamino acids, 1:791
Polyarboxylic acid esters/ethers, as fat replacers, 1:423
Polychlorinated biphenyls (PCBs), 1:774
Polychlorinated dibenzo-furans (PCDFs), 1:774
Polychlorinated dibenzo-p-dioxins (PCDDs), 1:774
Polycondensation, of dextrose (D-glucose), 2:475
Polycyclic aromatic hydrocarbons (PAHs), 1:794
Polycyclic peptides, 1:791
Polydextrose, 1:180, 399
as bulking agent, 2:465
as a fat replacer, 1:408
as food additive, 1:719
Polyester(s)
in injection molding, 2:256
in plastic food packaging, 2:248, 249t, 251
wax, 2:618–619
Polyester films, as metal can coatings, 2:247
Polyethylene (PE)
in injection molding, 2:255
in making flexible food packaging, 2:253
in plastic food packaging, 2:248–250
Polyethylene shrink wrapping, for food packaging, 2:245
Poly(ethylene terephthalate) (PET).
See also Polyester beverage containers of, 1:221
in plastic food packaging, 2:251
Polyethylene waxes, 2:632–634
Polyglycerol esters (PGEs), as fat replacers, 1:423–424
Polyglycerol polyricinoleate, 1:447
Polyglycols, in microencapsulation, 2:35
Polymerization
in microencapsulation, 2:25–26, 26–31
of sorbic acid, 2:265–266
waxes produced via, 2:632–634, 635
Polymerized α-olefins, as waxes, 2:635
Polymer–polymer incompatibility encapsulation, 2:26, 27
Polymers
amino acid, 1:8
amylopectin, 2:333–334
amylose, 2:333–335
in complex coacervation, 1:637
as emulsion stabilizers, 1:379
starch, 2:332–333
Polymethylene wax, 2:634
Polymorphism
consequences in food products, 1:446
of sugar alcohols, 2:422
Polyols, 1:187; 2:421–422. See also Sugar alcohols
alkyl halides and, 2:431
analysis of, 2:434–435
as fermentation products, 1:503–504
as food additives, 1:714–716
olefin oxides and, 2:431
Poly(oxyalkylene), 2:431
Poly(oxyethylene), uses of, 2:438
Poly(oxypropylene), 2:431
Polypeptide cross-linking, copper and, 2:139
Polypeptides
microencapsulation of, 2:30–31
in oilseeds, 2:285–287
protein-like, 1:819
Polyphenoloxidase, in tea manufacture, 2:512
Polyphenol oxidase (PPO), in tea, 2:507–508, 511
Polyphenols
in chocolate and cocoa, 1:243–244
in instant tea manufacture, 2:516
as nutraceuticals, 2:184–187
in tea, 2:504–505, 507t, 508–509
in tea manufacture, 2:512–513
as tea antioxidants, 2:519, 520–521
Polyphosphate emulsifying salts, 1:332
Polypropylene (PP)
in injection molding, 2:255
in making flexible food packaging, 2:253
in plastic food packaging, 2:248, 249t, 250–251
tea packaging in, 2:518
Polypropylene films, as metal can coatings, 2:247
Poly(p-xylene), in microencapsulation, 2:29
Polysaccharide gels, 1:201
Polysaccharide gums, classification of, 1:869
Polysaccharides, 1:175, 179, 180, 181–182, 870
boron and, 2:140
classification of, 1:200–201t
in coffee, 1:270–271
crystalline state of, 1:622
in dietary fiber, 1:342
gel-forming, 1:637
manganese and, 2:142
in plant tissue, 1:343
soluble, 1:345–346
sources of, 1:350–351
structures of, 1:867–869
uses for, 1:193–207
Polysaccharide stabilizers, 1:331
in dairy substitutes, 1:325–326
Polysaccharidic gums, 1:866
commercial, 1:867
Polystyrene
in plastic food packaging, 2:252
thermoforming of, 2:257
Polyunsaturated fats, 1:394
Polyunsaturated fatty acids (PUFAs), 1:320, 455, 456
health factors related to, 2:183–184
microencapsulation of, 2:37–38
as nutraceuticals, 2:181–184
from oilseed oils, 2:303
Polyunsaturates, 2:441
Polyurea shells, in microencapsulation, 2:29
Poly(vinyl alcohol), in microencapsulation, 2:26
Poly(vinyl chloride) (PVC), in plastic food packaging, 2:249t, 251
Poly(vinylidene chloride) (PVDC), in plastic food packaging, 2:249t, 250, 251–252
Polyvinylpyrrolidone (PVPP), 1:136
in winemaking, 2:696
Pomace
in winemaking, 2:674
in wine production, 2:690
Poppy seed, 2:328
Pork
U.S. household expenditures for, 2:15t
U.S. imports and exports of, 2:13–14t
Port wines, 2:680
processing flows for, 2:683, 687
production of, 2:694–695
Position Paper on Sudan, 2:320
Positive pumps, in dairy equipment, 2:87
Post-mold decoration, 2:255–256
Potassium (K)
in carbonated beverages, 1:216
foods rich in, 2:129t
fruits and vegetables rich in, 2:131
as mineral nutrient, 2:128–130
in molasses desugarization, 2:394
in nuts, 2:217
in tea, 2:507
Potassium aspartate, 1:54
Potassium benzoate, 1:214
as food additive, 1:734
Potassium channels, in tasting sweetness, 2:468
Potassium chloride, 1:68
Potassium disorders, 2:130
Potassium ferrocyanide, in making vinegar, 2:548
Potassium hydroxide, vanillin treatment with, 2:527
Potassium ion (K$^+$), 2:128–130
magnesium ion and, 2:131
Potassium permanganate, 1:71, 75, 81
in succinic acid/anhydride analysis, 2:358
reaction with succinic acid, 2:352
E,E-Potassium sorbate, 1:101
health and safety factors related to, 2:276–277
physical properties of, 2:263, 265t
purification of, 2:268–269
regulation of, 2:275–276
in sorbic acid production, 2:267
uses of, 2:269–275
Potatoes
distilled beverages from, 2:735
sunburned, 1:787
Potato starch
amylopectin from, 1:196
oxidation of, 2:341
Potential energy diagrams, 1:381–383
Pot stills, 1:142
Pouches
flexible plastic, 2:254
for food packaging, 2:244
Poultry
nutrient requirements of, 1:464
oilseed protein meal for, 2:303
packaging for, 2:239, 240
sorbates in, 2:274–275
U.S. exports of, 2:14t
U.S. household expenditures for, 2:15t
vitamin C in, 2:573
Poultry by-products, in pet foods, 1:478
Poultry feed, 1:462–464
Poultry industry, feed ingredient usage by, 1:463t
Poultry Products Inspection Act, 2:14
Povidone-iodine compounds, 1:70, 75
Powder coating, 2:247
Powdered carbon, in sugarcane processing, 2:379
Powdered cellulose, 1:349
Powdered sugar, uses of, 2:410
Powdered whipped toppings, 1:331–332
Power, microwave, 2:42–49
Power sources, for microwave
instrumentation, 2:49–51, 52–53
Precipitation, in sugar alcohol analysis, 2:434
Precoat filtration, in dextrose refining, 2:478
Precrystallizer, in dextrose refining, 2:479
Precursor atmosphere (PA), 1:668
Preferments, yeast in, 2:728–729
Pregelatinized starches, I:198
uses of, 2:343
Pregnancy, folic acid deficiency and, 2:610
Pre-liming, in sugar purification, 2:388, 389
Prepressing, in peanut processing, 2:293–294
Preservatives. See also Food preservation
ascorbic acid, 2:569–570
in carbonated beverages, 1:214
corn syrups in, 2:493
food, 1:753–754
as food additives, 1:733–739
natural, 1:735
sorbic acid, 2:263–281
sugar, 2:466
sugar alcohols, 2:437–438
Preserves, fruit, 1:846–855
Press aids, for fruit, 1:834–835
Press and blow operations, in bottle manufacture, 2:248
Press cocoa butter, 1:233
Presses, in wine production, 2:689–690
Pressing
in cottonseed processing, 2:292–293
of oils, 1:443
in peanut processing, 2:293–294
in sugar-beet sugar extraction, 2:386–387
in sunflower seed processing, 2:294
Pretzels, 1:107–108
Primary metabolites
economic aspects of, 1:522
as fermentation products, 1:503–504
mutations for, 1:524
Principal components analysis (PCA), of wine, 2:704
Prior sanctioned substances, 1:710
Proanthocyanidin polymers, in tea manufacture, 2:512
Probes, fermentation-related, 1:541
Processed cheese, composition and processing of, 1:332–334
Processed foods
cereal grains in, 2:641–642
dietary fiber sources for, 1:349–351
Process flavorings, 1:724
Processing. See also Food processing; Meat processing; Milk processing
of nuts, 2:220–223
of oilseeds, 2:291–294
of spices, 2:313–315
of succinic acid and anhydride, 2:356–357
of sugar beets to sugar, 2:384–386
of sugarcane, 2:373, 375–382
of vinegar for marketing, 2:547–548
Processing aides, as food additives, 1:739–743
Processing techniques
for fruit preserves and jellies, 1:850–852
for gelatin, 1:860–861
gelation, 1:857–858
Process validation, 1:551
Produce, packaging for, 2:240
Producer price index, for corn sweeteners, 2:481, 482t
Product contact utilities, in fermentation, 1:546–547
Product heat treatment, in milk processing, 2:83, 84
Production areas, of oilseeds, 2:283t
Production fermentors, scale-up to, 1:545
Production/manufacture, 1:545
of acesulfame-K, 2:454
of alitame, 2:452
of amino acids, 1:25–44
of ascorbic acid (vitamin C), 2:564–567
of aspartame, 2:446–447, 449–451
of baking powders, 1:92–94
of carbonated beverages, 1:216–220
of cereal grains, 2:647–648
of citric acid, 1:255–258
of cocoa beans, 1:229
of cocoa powder, 1:232–233
of corn oil, 2:667
of corn syrups, 2:492–493
of dextrose, 2:473, 476–481
of distilled beverage spirits, 1:153–159
of egg products, 1:364–365
of epigallocatechin gallate, 2:184–185
of fatty acids, 1:457
of flavors, 1:723
of food antioxidants, 1:736t
of fructose, 2:412–413, 414
of fruit juices, 1:828–841
of fruit preserves and jellies, 1:848–849
of gelatin, 1:860–861
of glucosamine, 2:191
of high fructose corn syrups, 2:487–488
of lactose, 2:416
of lecithin, 1:887–891
of maltose, 2:415
of microcrystalline wax, 2:630–632
of molasses, 2:496–497
of monosodium L-glutamate, 2:154–157
of neotame, 2:452
of paraffin wax, 2:630, 631
of petroleum waxes, 2:629–632
of phytosterols, 2:189
of proteins, 1:513
of red wines, 2:690–691
of rice, 2:663–664
of rosé wines, 2:690
of saccharin, 2:455
of sorbic acid, 2:266–268
of starch, 2:336–343
of starch-based sweeteners, 2:667
of succinic acid and anhydride, 2:356–357
of sugar alcohols, 2:425–429, 433
of sugar from sugar beets, 2:382–395
of sugar from sugarcane, 2:373–382
of sweet chocolate, 1:236–237
of tea, 2:509–516
of vanillin, 2:527–530
of vinegar, 2:541–547
of vitamins, 2:613–614
of wheat, 2:654–657
of white wines, 2:689–690
of wines, 2:683–699
of yeast, 1:806
Production strain, in fermentation, 1:523–530
Product quality, in fermentation, 1:548–549
Product screening, in nutraceutical identification, 2:164–165
Product utilities, testing and validation of, 1:550
Proglycinin precursors, in soybeans, 2:285
Prohibition, 1:114, 144; 2:705, 707
L-Proline, fermentative production of, 1:29t
Proof, 1:146
of distilled spirits, 1:167
Proof gallon, 1:146
Proofing, of dough, 1:104
Propagation, of tea, 2:503
Propagation plant, 1:132–133
Properties. See also Biological properties; Chemical properties; Dielectric properties of food; Fastness properties; Physicochemical properties; Physical properties
of ascorbic acid, 2:558–561
of corn syrups, 2:490–492
of dextrose, 2:474–476
of dry milk, 2:100t
of food colorants, 1:301–302
of fructose, 2:413–414, 486–487
of gums, 1:877
of high fructose corn syrups, 2:486–487
of ice cream and ice cream mix, 2:108t
of lactose, 2:416
of maltose, 2:415
of maple syrup, 2:494
of milk, 2:66, 67t
of monosodium L-glutamate, 2:152–153
of petroleum waxes, 2:630t
of phytosterols, 2:188
of vinegar, 2:540–541
of vitamins, 2:613–614
Propionic acid, as food additive, 1:734
Proprietary wines, 2:681
Propylene oxide (PPO), in disinfecting spices, 2:314
(6-n-Propylthiouracil) taster status, 1:602, 603
Prostate cancer
genistein versus, 2:187
lycopene versus, 2:179–180
Proteaminobacter rubrum, 2:409
Protective coatings
for bottles, 2:247
for metal cans, 2:246–247
Protein Advisory Group, 1:819
Protein amino acids, 1:7, 47. See also Amino acids
Protein-based fat mimetics, 1:400
Protein-based fat replacers/substitutes, exampes of, 1:410t
in reducing fat in meats, 2:9
Protein content, testing milk for, 2:96
Protein dispersibility index (PDI), 2:304
Protein efficiency ratio (PER), 1:48, 813
Protein hydrolysates, 1:53
Protein hydrolysis method, 1:44
Protein inhibitors, 1:779–782
Protein isolates, manufacture of soybean, 2:305
Protein kinase C, vitamin E analogues and, 2:170
Protein kinases, 1:50–51
Protein meals
from oilseeds, 2:300–301, 303–304
world consumption of, 2:295t
Protein products
from oilseed proteins, 2:303–305
isolation of, 1:545–546
synthetic, 1:818–819
Proteins
amino acids in, 1:2–7
biosynthesis of, 1.2, 49
calcium-binding, 2:116, 122
casein, 2:109–111
celiac disease and, 2:669
in cereal grains, 2:653–654
chloride ion and, 2:131
cobalt and, 2:145
in coffee, 1:271
copper in, 2:139
in corn, 2:666
in dairy substitutes, 1:322–325
in eggs, 1:356
in egg whites, 1:357
iodine and, 2:141–142
iron in, 2:133
manganese and, 2:142
manufacturing, 1:513
in microbial biomass, 2:737–740
in milk, 2:110t
nickel in, 2:146
nutritional value of, 1:48
in nuts, 2:206–208, 209t, 214–215
in oilseeds, 2:285–287, 300–301
in pet foods, 1:474, 477–479
in ruminant feeds, 1:493–494
selenium in, 2:140
single-cell, 2:737–740
sulfur in, 2:125
synthetic, 1:819
in tasting sweetness, 2:466, 467, 468
in tea, 2:505
thaumatin, 2:461–462
toxic, 1:779–782
in winemaking, 2:696
in yeast cell wall, 2:714–715
in yeast nucleus, 2:715
Protenoids, 1:819
Proteoglycans, 1:184
Proteolytic enzymes, 1:100, 332
Prothrombin, 2:603, 604
Protocatechic acid, 2:532
Proton-transfer reaction mass spectrometers (PTRMS), 1:688
Protoplast fusion, 1:524
in developing and improving yeast strains, 2:720
Provesteen process, 1:806
Pro-vitamins, 2:167
Pro-Xan process, 1:812–813
Pruteen, 1:505
Pseudoglobulin, in milk, 2:110t
Pseudomonas putida, in aspartame manufacture, 2:450
Pseudomycelium, of yeasts, 2:714
Psuedovitamins, 2:169, 615
Psoriasis, drugs for treating, 2:598, 601
Psychrophilic bacteria, testing milk for, 2:94, 95
Psyllium seed husk, 1:353
Public health disease organisms, 1:576
Pufferfish toxin, 1:793
Pullulanase
in corn syrup manufacture, 2:492
in dextrose manufacture, 2:478
Pulp pressing, in sugar-beet sugar extraction, 2:386–387
Pulse method separation, in molasses desugarization, 2:394
Pulses, 2:641t
Pump-over, in wine production, 2:690–691
Pumps, in dairy equipment, 2:87
Pump suction, in dairy equipment, 2:87
Punch-down, in wine production, 2:690–691
Pure Food and Drug Act of 1906, 1:144, 671
Purification. See also Juice purification of ascorbic acid, 2:564
in ascorbic acid manufacture, 2:565
of lactose, 2:416
of lecithin, 1:887–891
of maltose, 2:415
of sorbic acid, 2:268–269
of sucrose, 2:365
of vanillin, 2:528–529
Puritan Ethic, wines and, 2:705
Purity, in sugar analysis, 2:403
Pyceze, 1:81
Pyrometers, in microwave applicators, 2:56
Pyranose ring, 1:177, 178, 179
Pyranose structure, of dextrose (D-glucose), 2:474
Pyrazine derivatives, in wine, 2:682
Pyridine and acetic anhydride (PAA), 1:260
Pyridoxal group, 2:168t
Pyridoxine, 2:606–607. See also Vitamin B6 molecular structure of, 2:606, 607
production/manufacture of, 2:614t
RDAs of, 2:594t
tolerable upper limits of, 2:595t
Pyridoxine deficiency, 2:607
Pyrodextrins, from starch, 2:341
Pyrometers, in microwave applicators, 2:56
2-Pyrrolidinone-5-carboxylic acid, from
sugar beets, 2:391
Pyruvic acid, creatine and, 2:189
Pyruvic carboxylase, manganese and, 2:142
Qualitative synergy, of nonnutritive
sweeteners, 2:446
Quality
of fruit preserves and jellies, 1:852–853
in wheat breeding, 2:657
Quality assurance, for spices, 2:315–317
Quality control
of carbonated beverages, 1:221–222
of citric acid, 1:260
in corn syrup manufacture, 2:492
of fish, 1:558
of fishing catch, 1:569–588
of refinery melt sugar, 2:379, 380–381
in sugar industry, 2:400–401
of wines, 2:702–705
Quality standards, for gelatin, 1:861
Quantitative declaration of ingredients
(QUID), 1:713
Quantitative synergy
between acesulfame-K and aspartame,
2:453
of nonnutritive sweeteners, 2:446
Quasi-crystalline structure, of starch,
2:330, 331, 332–333
Quaternary ammonium compounds,
1:70
Quaternary ammonium starches, 2:344
Quercetin
molecular structure of, 2:186
as nutraceutical, 2:185–186
in tea, 2:505
Quick time pasteurization, 2:83
Quinic acid, in sunflower seeds, 2:289
Quinoa, 2:647
Quinones, 2:191
in tea manufacture, 2:510–511
in tea manufacture, 2:512
Quorn, 1:505
Racemic acid, winemaking and, 2:678
Racemization, of MSG, 2:153
Races, of rice, 2:662
Rack and frame press, 1:835
Racking, in wine production, 2:690, 696
Radiating microwave applicators, 2:54
Radio frequency interference (RFI),
microwaves and, 2:43, 57
Radiolysis, of succinic acid, 2:356
Radio waves, 2:41
Radurization, of fresh seafood, 1:588
Raffinate, in high fructose corn syrup
manufacture, 2:488
Raffinose, 1:185
in molasses manufacture, 2:496, 497
from sugar beets, 2:391
Raisin vinegar, 2:541
Raman spectroscopy, in wax analysis, 2:639
Rancidity
hydrolytic and oxidative, 1:449
of stored nuts, 2:217
Rancimat system, 2:519
Randomization, in fats and fatty oils, 1:438
Raney nickel, 2:425, 428, 433
Ranking tests, 1:601
Rapid dietary fiber method, for dietary
fiber analysis, 1:348
Rare-earth elements, in nuts, 2:211
Ratoon stunting disease, 2:374
Ratoon sugarcane, 2:374
Raw materials, in making vinegar, 2:539,
540t
Raw milk, microorganisms in, 2:94
Raw sugar
brown sugar versus, 2:411
molasses from, 2:496
for refineries, 2:376, 379–381
Reabsorption, of sodium and potassium
ions, 2:130
Reactions, of hydroxyl groups, 1:189
Ready-to-drink (RTD) tea, U.S.
consumption of, 2:519. See also Instant
tea
Reagents, in sugar alcohol analysis, 2:434
Rearrangement, in ascorbic acid
manufacture, 2:565, 566–567
“Reasonable certainty of no harm” criteria,
for pesticides, 1:773
Rebaudioside A, 2:459
Recombinant bovine growth hormone
(rNGH), in dairy biotechnology,
2:111–112
Recombinant bovine somatotrophin, in
dairy biotechnology, 2:111–112
Recombinant DNA (rDNA) guidelines,
1:514
Recombinant DNA techniques, in dairy
biotechnology, 2:111–112
Recombinant expression system, selection
of, 1:526
Recombinant proteins, 1:524–525
Recombinant technology, 1:513
Recombined coffee creamer, 1:329–330
Recommended Dietary Allowance (RDA)
of minerals, 2:115, 116t
of vitamin C, 2:581
of vitamin E analogues, 2:170
of vitamins, 2:593, 594t
Recordkeeping
in meat processing, 2:8
for wines, 2:710
Recorking, in sparkling wine production, 2:693
Rector proteins, chloride ion and, 2:131
Red blood cells
iron in, 2:137
zinc in, 2:138
Red iron oxides, 1:314
Redistillation, 1:142
Red pepper,
adulteration of, 2:318, 320–321
measuring quality of, 2:316–317
volatile oil from, 2:315
Red seaweed extracts, 1:203
Red tea, manufacture of, 2:510
Reduced calorie beverages, fructose in, 2:414
Reduced-fat products, 1:397t
Reducing sugar, 1:180
Reduction
of citric acid, 1:253
of glucose to sorbitol, 2:426–427
of sugar alcohols, 2:432
of vanillin, 2:533
in winemaking, 2:698
Red wines, 2:680
extended aging of, 2:699
fermentation of, 2:692, 734
phenols in, 2:682–683
processing flows for, 2:683, 685
production of, 2:690–691
Reference Basis Units (RBUs), in sugar
quality control, 2:400
Reference dose (RfD), 1:769, 771
Refined granulated sugar, uses of, 2:410
Refined montan wax, 2:628
Refined sugar, 2:373, 376, 379–382
Refinery melt sugar, 2:376, 379–381
Refining
in chocolate processing, 1:237
of dextrose, 2:478–481
of fats and fatty oils, 1:433
Refractive index
of fats and oils, 1:448
in petroleum wax classification, 2:628
in sugar analysis, 2:402
Refractometry, in sugar alcohol analysis, 2:435
Refrigeration
of foods, 1:753
of seafood, 1:577–582
Refrigeration systems
for bulk milk tanks, 2:92–93
commercial, 1:582–584
Regenerators, in milk pasteurization, 2:78, 80
Regional names, for wines, 2:680–681, 709–710
Regioselective enzymes, 1:457
Regulation. See also Regulations
of chemical contaminants and toxins in
food, 1:765–768
of dairy substitutes, 1:338–339
of fat replacers, 1:398–399
of flavor ingredients, 1:696–698
of food additives, 1:709–713
of food colorants, 1:288–289
of food processing, 1:750
of food toxicants, 1:794
of nonnutritive sweeteners, 2:446
of pesticides, 1:772–774
of sorbic acid, 2:275–276
of vinegar, 2:539
in wine classification, 2:679
of wine industry, 2:674
of wines, 2:707–710
Regulations. See also Regulation
aquaculture-chemical, 1:66–67
coffee-related, 1:283–284
on distilled beverage spirits, 1:144
fermentation-related, 1:548–551
flavor-related, 1:671
pet-food-labeling, 1:487
Reichstein-Grüssner synthesis, of ascorbic
acid, 2:561–563, 564–567
Release agents, in food processing, 1:742
Remelts, in molasses manufacture, 2:496
Remixed straight dough method, 1:105
Renaissance, winemaking during, 2:677, 705
Renal failure, chronic, 2:601
Rendered meat meal, in pet foods, 1:478
Rennin, as food additive, 1:740
Repression mechanism, 1:28
Reproduction, of yeasts, 2:711, 714–719
Resazurin, in testing milk for microbes, 2:94
Resistance, to sorbic acid, 2:271–272
Resistance thermometer device (RTD), 1:540t
Resistant starches, 1:407; 2:333–334
Respiration, of peanuts, 2:217
Respiratory metabolism, yeast, 2:721
Respiratory quotient (RQ) values, 1:542
Retin-A, 2:598
Retinal
metabolic functions of, 2:597
molecular structure of, 2:168, 597
Retinid-based drugs, 2:598–599
Retinoic acid
metabolic functions of, 2:597
molecular structure of, 2:195
physiological effects of, 2:591
Retinoic acid, 2:598
metabolic functions of, 2:597
molecular structure of, 2:195
physiological effects of, 2:591
Retinoic acid, 2:598
molecular structure of, 2:195
physiological effects of, 2:591
Retinal
molecular structure of, 2:597
Retinol, 2:699. See also Vitamin A entries
in milk, 2:68t
molecular structure of, 2:597
Retinol palmitate, 2:599
Retinoids, 2:598
Retortable plastic cans/trays, 2:257
Retort pouch, in food packaging, 2:241
Retrogradation
of amylose, 2:334–335
of starch, 2:332
Retronasal aroma, 1:679, 681
Retronasal aroma simulator (RAS), 1:688
Reverse osmosis (RO), 1:124–125
in carbonated beverage facilities, 1:210
for distilled beverage spirits, 1:163
in making cheese, 2:105
R-factor, cobalamin and, 2:612
Rheological testing, of emulsions, 1:391
Rhodamine B, 1:71
Rhodamine WT, 1:71
Rhodobacter capsulatus, 1:804
Rhodopsin, retinal in, 2:597
Rhovanil Extra Pure crystallized vanillin, 2:531
Rhovanil Extra Pure vanillin, 2:529, 531, 532
physical properties of, 2:530t
Rhovanil Fine Mesh vanillin, 2:531, 532
Rhovanil Natural vanillin, 2:529–530
Rhus, Japan wax from, 2:624
Ribitol, 2:422, 423t, 425
analysis of, 2:435
esterification of, 2:431
Riboflavin, 2:168t, 605–606. See also Vitamin B2
as a food colorant, 1:316
in milk, 2:68t
molecular structure of, 2:605
production/manufacture of, 2:614t
RDAs of, 2:594t
Riboflavin antagonism, 1:787
Riboflavin deficiency, 2:605
l-Ribohexulose, formation of, 2:431–432
5’-Ribonucleotides, 1:724
Ribosomes, of yeasts, 2:717
Rice, 2:641t, 642, 662–664
beriberi and, 2:669–670
history of, 2:643–644
morbidity of, 2:650
parboiling of, 2:664
processing of, 2:663–664
production of, 2:647–648
trade in, 2:648
in vinegar manufacture, 2:541
Rice bran oil, 2:625
Rice brans, 1:350
Rice starch
acid treatment of, 2:340
oxidation of, 2:341
Rice vinegar, 2:541
labeling standards for, 2:550
Rice wine, defined, 2:673. See also Sake
Rice wine vinegar, labeling standards for, 2:550
Richardella dulcifica, miraculin in, 2:465–466
Rickets, 2:590, 600
Riddling, in sparkling wine production, 2:693
R-Index test, 1:600–601
Ring-forming carbonyl group reactions, 1:176–178
Ripening agents, vanillin, 2:537
Risk assessment/characterization, 1:771
of chemical contaminants and toxins in food, 1:768–771
in meat processing, 2:7
Risk assessment/management practices, 1:765–766
RNA (ribonucleic acid)
phosphorus in, 2:124
of yeasts, 2:715, 717, 718, 719
Road surface repair, microwave applicators for, 2:54
Roasted coffee
 analyses of, 1:272t
 composition of, 1:271–273
Roasted ground coffee
 processing and packaging of, 1:274–277
 regulation of, 1:284
Roasted materials, in brewing, 1:125
Roasted peanuts, uses of, 2:232
Roasting
 of cocoa beans, 1:230–231
 of nuts, 2:221–222
Rodent droppings, in ground spices, 2:317–318
Roller coating, of metal cans, 2:246–247
Roller drum process, in making dry milk, 2:100, 101, 102
Rollers, in wheat milling, 2:659
Rolling, in black tea manufacture, 2:513–514
Roll mills, 1:126, 127
Rolls, yeast-leavened, 1:107
Rome, winemaking in ancient, 2:676–677, 705
Romet-30, 1:67, 69
Romet-B, 1:69
Rosemary, 2:328
Rosé wines
 processing flows for, 2:683, 684
 production of, 2:690
Rosmarinus officinalis, 2:328
Roswell pasteurizer, 2:83
Rotamers, of sugar alcohols, 2:422
Rotary fermenters, in wine production, 2:691
Rotary positive pump, with HTST pasteurizers, 2:79–81
Rotating turntable, with microwave applicators, 2:54, 55
Rotational suspension separation, in microencapsulation, 2:34–35
Rotenone, 1:73, 76
Rotogravure printing, on flexible food packaging, 2:253–254
Rotorvane, in black tea manufacture, 2:513–514
Roughages, as ruminant feed, 1:491
Rough endoplasmic reticulum (RER), of yeasts, 2:717
Rough rice, 2:648
 parboiling of, 2:664
Rum, 1:143, 151–152
 flavored, 1:172
 sales of, 1:166
Ruminal escape protein, 1:494
Ruminant feeds, 1:490–501
 high energy, 1:492–493
 performance modifiers in, 1:496–499
 supplements in, 1:493–496
 for young animals, 1:499–501
Ruminants, 1:490
Rusk, as meat extender, 2:3
Russia
 cereal grains and bread in, 2:642
 sorbic acid production in, 2:268
 tea in, 2:502, 503, 515
 wheat production in, 2:655
Rye
 origins of, 2:644
 trade in, 2:648
Rye mash, 1:154
Rye whiskey, 1:143
Saccharides
 chemical synthesis of, 1:180
 chemistry of, 1:176–191
 in corn syrups, 2:490–491
 uses for, 1:192
Saccharification, 1:155
 in corn syrup manufacture, 2:492
 in dextrose manufacture, 2:478
Saccharin, 1:212; 2:454–456
 analogues of, 2:456
 as food additive, 1:718
 discovery of, 2:454
 economic aspects of, 2:446, 455
 health factors related to, 2:454
 molecular structure of, 2:454
 physical properties of, 2:455
 production/manufacture of, 2:455
 sweetness of, 2:455
 synthesis of, 2:455
 toxicity of, 2:454
Saccharomyces
 economic importance of, 2:711–712
 as fermentation agent, 2:712
 metabolic pathways of, 2:721
 species of, 2:713t
 strain improvement of, 2:719–720
 wine yeast and, 2:734, 735
Saccharomyces bailii, sorbic acid and, 2:272
Saccharomyces carlsbergensis, 1:132
in beer brewing, 2:731

Saccharomyces cerevisiae, 1:131, 155, 799
in bakers' yeast, 2:724
in beer brewing, 2:731
cell morphology of, 2:714–719
cytoplasm of, 2:717
double-stranded RNA of, 2:718
genetic studies of, 2:712
genome of, 2:715, 716t
mitochondria of, 2:715–717
production of, 1:806
sporulation by, 2:718
strain improvement of, 2:720
vaccine made by, 2:539, 540, 541, 542, 544, 546
as wine yeast, 2:691, 734
Saccharomyces exigus, in sourdoughs, 2:730

Saccharomyces lipolytica, sporulation by, 2:719

Saccharomyces pastorianus, in beer brewing, 2:731
Saccharomyces sake, 2:737
Saccharomyces ucarum, 1:132
in beer brewing, 2:731
Saccharomycodes, wine yeast and, 2:735
Saccharose, in nuts, 2:211
Saccharum officinarum. See also Sugarcane
sucrose in, 2:364m
sugar cane wax from, 2:62
Sac locus, in tasting sweetness, 2:468
S-adenosylmethionine (SAM), 2:126–128
Safe cooking, of eggs, 1:373
Safety factors
amino acids, 1:47–51
aspartame, 2:451z
carbonated beverages, 1:223
cereal grains, 2:668–670
chemical contaminants and toxins, 1:765–778
citric acid, 1:260–261
distilled beverage spirits, 1:170–171
egg-related, 1:372–374
fat replacers, 1:399
fermentation-related, 1:551
fish and shellfish products, 1:594–596
high fructose corn syrups, 2:490
lecithin, 1:894–895
meat-product, 2:16–20
microwave technology, 2:56–59
milk, 2:96–98
mineral-nutrient, 2:146
monosodium L-glutamate, 2:157–159
nonconventional foods, 1:819–820
nutraceuticals, 2:165
pet foods, 1:487–488
sorbic acid and sorbates, 2:276–277
spices, 2:317–321
stevioside, 2:459–460
succinic acid and anhydride, 2:358–359
sucralose, 2:457
sugars, 2:406–407
vanillin, 2:537–538
vitamin E analogues, 2:170
wines, 2:705–707
Safety innovations, in meat processing, 2:20
Saffron, 2:328
as a food colorant, 1:313
Sage, 2:328
Sake, 2:736–737
defined, 2:673
Salads, citric acid in, 2:262
Salatrim, as a fat replacer, 1:414–415
Salmonella
in eggs, 1:373
food packaging and, 2:240
in wines, 2:705
Salmonella-negative egg products, 1:365
Salmonella typhimurium, in meat, 2:19
Salt. See also Salts
determination of, 1:611
as a meat-processing ingredient, 2:2
in yeast-raised products, 1:100
Salt formation, from amino acids, 1:17–18
Saltine cracker manufacture, 1:108
Salting, of nuts, 2:221–222, 232
“Salting out,” 1:687
Salts
in carbonated beverages, 1:213t
citric-acid, 1:253, 262–263
distilled beverage substitutes, 1:326–328
in dairy substitutes, 1:309
of sorbic acid, 2:263, 265t, 266
in vinegar, 2:539
Salty snacks, packaging for, 2:243
Salty taste, 1:655–656, 694
receptors for, 2:468
Salvage pet food, 1:488
Salvia officinalis, 2:328
Sanitary standards, for dairy equipment, 2:83–84
Sanitizing, in breweries, 1:125
Sap, maple syrup from, 2:494
Saponification number/value, 1:451
in wax analysis, 2:637
Saponins
in nuts, 2:212
in oilseeds, 2:290
toxicity of, 1:782
Sarafloxacin, 1:80
Saran film, in plastic food packaging, 2:249t, 252
Saturated acids, in milk fat, 2:70t
Saturated fats, 1:394, 395
Saturated fatty acids, 1:455, 456
Satureia hortensis, 2:328
Sausage, finely chopped meat in, 2:5–6
Savory, 2:328
Scale-up, in fermentation, 1:545
Scaling biases, 1:602. See also Biases
Scaling tests, for flavor characterization, 1:601–603
Schiff-bases, formation from amino acids, 1:15
Schizosaccharomyces
reproduction of, 2:718
species of, 2:713t
wine yeast and, 2:735
Schizosaccharomyces pombe
generic studies of, 2:712
genome of, 2:715, 716t
Schizosaccharomyces octosporus,
reproduction of, 2:718
Schmidt reaction, 1:20
Scholler-Tornesch process, 1:799
Schulze-Hardy rule, 1:384
Scientific Committee for Food (SCF), 1:712
Scorching, of microwaved food, 2:60
Scotch whisky, 1:148–149
sales of, 1:164–165
Scourer–aspirator, in wheat milling, 2:659
Scourers, in wheat milling, 2:658, 659
Scouring, of rice, 2:663–664
Scoville Heat test, 2:316–317
Screening
in nutraceutical identification, 2:164–165, 165–167
in sugar-beet sugar extraction, 2:387
Screens, in spice quality measurement, 2:316
Screw presses, 1:836
Screw-pressing
in cottonseed processing, 2:292–293
in peanut processing, 2:293–294
in sunflower seed processing, 2:294
Scurvy, 2:163, 590
vitamin C and, 2:554, 555–556, 557, 579–580
Scutellum, of corn kernel, 2:337
Seafood. See also Fish; Shellfish entries
aquaculture production of, 1:590, 593t
citric acid in, 1:262
cold storage facilities for, 1:583–584
freezing facilities, 1:582–583
heat processing of, 1:574–577
inspecting, 1:571–572
packaging for, 2:239, 240
preprocessing of, 1:572–573
processing of, 1:571–588
quality maintenance of, 1:569–588
radurization of, 1:588
refreezing, 1:581–582
refrigerating and freezing, 1:577–582
safety of, 1:594–596
sorbates in, 2:273
Seafood analogue products, 1:817–818
Seafood chain, 1:558
Seafood products
cured and dried, 1:584–587
U.S. exports and imports of, 1:591–592t
Seafood raw materials, total utilization of, 1:573–574
Seafood toxins, 1:792–793
Seasonal moisture transfer, in soybean
storage, 2:290
Seasonings. See also Condiments
dextrose in, 2:481
as meat-processing ingredients, 2:3
MSG, 2:152, 157, 158
Seaweed, MSG from, 2:152. See also Algae
Secondary direct food additives, 1:706
Secondary fermentation, in brewhouse
operations, 1:135–136
Secondary hyperparathyroidism, drugs for
treating, 2:601
Secondary metabolite cultivations, 1:530
Secondary metabolite cultures, mutations
for, 1:524
Secondary metabolites
economic aspects of, 1:522
as fermentation products, 1:504
Second carbonation, in sugar purification,
2:388–390
Second molasses, 2:496
Sectioned products, from meat processing, 2:5

Sediment
 in sugar quality control, 2:401
 testing milk for, 2:95
 in winemaking, 2:696

Seed coats, oilseed, 2:284–285

Seed-meal concentrates/isolates, 1:815–816

Seed oils, 1:433

Seeds
 nuts as, 2:205
 physical characteristics of oilseed, 2:284

Seed stage medium, 1:529

Seed trains, in fermentation, 1:544

Select Committee on Nutrition and Human Needs, sugar and, 2:407

Selective crystallization, pure succinic acid recovery via, 2:357

Selenium (Se)
 foods rich in, 2:135t
 medicinal aspects of, 2:141
 in tea, 2:519
 toxicity of, 2:141
 as trace nutrient, 2:140–141

Selenium deficiency, 2:141

Selenocysteine, 2:140

Selenoproteins, 2:154

Self-rising flours, 2:662

Semiconductor diode amplifiers, as microwave instrumentation power source, 2:49

Semifermentation amino acid production, 1:35, 38t

Semimoorst pet foods, 1:474–475

Semirigid containers, for food packaging, 2:255–259

Semisweet chocolate, 1:235

Semisynthetic hydrocolloids, as food additives, 1:729–730

Semolina, 2:662

Sensory analysis, 1:609–610
 of wines, 2:703–704

Sensory Evaluation of Food: Principles and Practices (Lawless & Hemann), 1:690

Sensory flavor characterization methods, 1:600–604

Separation. See also Chromatographic separation; Wax component separation
 in making cheese, 2:105
 in milk processing, 2:72–73
 in molasses desugarization, 2:394
 of sugar alcohols, 2:434–435
 of wort, 1:130

Separators
 with HTST pasteurizers, 2:81
 in wheat milling, 2:658

Sephadex column, in ascorbic acid analysis, 2:569

Sequencing, in fermentation, 1:542–543

Sequestering agents, for insect and pest control, 1:738–739

L-Serine
 enzymatic production of, 1:43
 fermentative production of, 1:33t
 production from glycine and methanol, 1:35

Serum magnesium ion, regulation of, 2:132

Servicio Agricola y Ganadero, 1:77

Serving size, in nutritional labeling, 2:15–16, 17

Sesame, 2:647
 seed, 2:328

Sesamoline, 1:431

Sesamum indicum, 2:328

Sheep, lanolin from, 2:622

Sheet extrusion, in making semirigid food containers, 2:256

Shellac wax, 2:622

Shell eggs, 1:360–364
 grading, 1:360–364
 processing, 1:364
 production of, 1:360
 U.S. standards for quality of, 1:363t

Shellfish, supply and disappearance of, 1:589t

Shellfish products
 economic aspects of, 1:588–590
 future developments related to, 1:596–597
 packaging of, 1:590–594

Shellfish toxins, 1:792–793

Shelling
 of nuts, 2:220–221
 of rice, 2:663

Shell materials, for microencapsulation, 2:23, 24t

Shell molding, of chocolate, 1:240

Shells, from nuts, 2:233

Sherbets, 2:109

Sherry wines, 2:680
 processing flows for, 2:683, 687
 production of, 2:694–695
Shionogi Process, ascorbic acid synthesis in, 2:563–564
Shipment/shipping of citric acid, 1:258
of dry dextrose, 2:480–481
of milk, 2:69–70, 89, 93
of molasses, 2:497
of refined sugar, 2:381–382
of succinic acid and anhydride, 2:357
of sugar beets, 2:383
of sugarcane, 2:375
of wines, 2:674
Shipping containers, food packaging in, 2:245
Shipping Container Symbology (SCS) bar codes, 1:169
Shortening oilseed oils for, 2:301, 303
in yeast-raised products, 1:98–99
Short-time dough processes, 1:105
Shredder, in sugarcane processing, 2:378
Shrimp, preprocessing, 1:572
Side-seam cans, for food packaging, 2:246
Silicon (Si)
foods rich in, 2:134t
as trace nutrient, 2:138–139
Silos
for soybean storage, 2:290
for sucrose, 2:394
Silylation, in sugar analysis, 2:405
Simmondsia chinensis, jojoba oil from, 2:626
Simple coacervation, 1:633–634
in microencapsulation, 2:26–31
Simplesse, 1:408, 409
Simulated moving bed (SMB), in molasses desugarization, 2:394
Single (mono)-layer flexible food packaging, 2:253, 256
Single-cell protein (SCP), 1:505
production processes for, 1:807t
Single-cell protein products, 1:798–809
food-grade, 1:805
nucleic acid contents of, 1:808
Single whiskey, 1:146
Six-row barleys, 1:116
Size-exclusion columns, in sugar chromatography, 2:405
Skeleton
calcium in, 2:118–120
magnesium in, 2:131
minerals in, 2:115
Skimmed milk, 2:72, 98–99
Skim milk powder, in dairy substitutes, 1:322
Skyrin, 1:791
Slaked lime, 1:70
Slicing machines, for sugar beets, 2:384, 386
Slow-wave microwave structures, 2:53–54
Small-diameter tube pasteurization, 2:83
Smell, sense of, 1:656–657
Smoke flavoring, 1:724
Smoke point, of fats and oils, 1:448
Smoking, of fish, 1:586–587
Snack crackers, 1:108
Snack foods
olestra in, 1:419, 421
packaging for, 2:243
Soap making, 1:433
Soaps, fats and oils in, 1:455
Societies, as flavor information sources, 1:700–701
Sodium (Na)
in carbonated beverages, 1:216
as essential to life, 2:115
foods rich in, 2:129t
in mannitol etherification, 2:431
as mineral nutrient, 2:128–130
in molasses desugarization, 2:394
E,E-Sodium sorbate, 2:266, 269
health and safety factors related to, 2:276–277
Sodium acid pyrophosphate (SAPP), 1:84, 89, 90, 92
nutritional aspects of, 1:90
Sodium aluminum phosphates (SALP), 1:84, 91
nutritional aspects of, 1:90–91
Sodium aluminum sulfate (SAS), 1:84
nutritional aspects of, 1:92
Sodium ascorbate, 2:554–555
in ascorbic acid manufacture, 2:567
Sodium benzoate, 1:214
as food additive, 1:733
in fruit juices, 1:840
Sodium bicarbonate, 1:71, 84, 498–499
as food additive, 1:741
microencapsulation of, 2:37
Sodium bisulfite, in wet-milling of corn, 2:338
Sodium caseinate, 1:323, 330
as meat extender, 2:3
Sodium chloride, 1:69, 75, 790
microencapsulation of, 2:37
Sodium chlorite, in starch oxidation, 2:341
Sodium d-glucoheptonate, 1:186
Sodium disorders, 2:130
Sodium hypochlorite, in starch oxidation, 2:340, 341
Sodium ion (Na\(^+\)), 2:128–130
magnesium ion and, 2:131
Sodium methanesulfonate, 1:71
Sodium nitrite, as meat-processing ingredient, 2:2–3
Sodium pectate, 1:205
Sodium propionate, 1:101
Sodium tripolyphosphate (STP), 2:342
as meat-processing ingredient, 2:2
Soft baked goods, packaging for, 2:242–243
Soft drinks, 1:209. See also Carbonated beverages
high fructose corn syrups in, 2:490
packaging for, 2:243
Soft fruit processing, 1:833
Soft sugars, 2:381
Soft-wheat flours, 2:661
Soil microbiologist, 1:511
Solanine, 1:787
Solar energy, sugarcane as collector of, 2:374
Solasodine, 1:787
Solid chocolate molding, 1:240
Solid Fat Content (SFC), 1:452
Solid Fat Index (SFI), 1:452
Solid fats, 1:441
measurement of, 1:452
Solid-phase microextraction (SPME), 1:606
Solid-phase pressure forming (SPPF), 2:257
Solids-not-fat (SNF), in milk, 2:73
Solubility
of amino acids, 1:12
of cane sugar, 2:368–369
of fats and oils, 1:449
of gelatin, 1:858
of sucrose, 2:367
of vanillin, 2:530, 531
vitamin classification by, 2:596t
Soluble coffee, 1:284
Soluble dietary fiber (SDF), 1:341, 342, 346
enzymatic gravimetric methods for analysis of, 1:348
sources of polysaccharides contributing to, 1:350–351
Soluble polysaccharides, 1:345–346
sources of, 1:351t
Solvent extraction
for aroma isolation, 1:607
in cottonseed processing, 2:293
in leaf protein concentrate production, 1:812
of oils, 1:443–444
in peanut processing, 2:294
in sunflower seed processing, 2:294
Solvent fractionation, 1:439
Solvents
as fermentation products, 1:503–504
in food processing, 1:742
in Type A microencapsulation, 2:24
Somogyi method, of sugar analysis, 2:421–422
Sorbestrin, as a fat replacer, 1:421–422
Sorbic acid, 2:263–281
chemical properties of, 2:263–266
discovery and isolation of, 2:263
health and safety factors related to, 2:276–277
as food additive, 1:734
in fruit juices, 1:840
molecular structure of, 2:263–266
physical properties of, 2:263, 264t, 265t
purification of, 2:268–269
regulation of, 2:275–276
synthesis and manufacture of, 2:266–268
uses of, 2:263, 269–275
D-Sorbitol
in ascorbic acid manufacture, 2:565, 567
in ascorbic acid synthesis, 2:562, 563
1,4-Sorbitan, 1:190
Sorbitan derivatives, uses of, 2:438
Sorbitan esters, 1:188
uses of, 2:438
Sorbitan monostearate, 1:188
Sorbitans, 2:430
Sorbitol, 1:187; 2:423t
analysis of, 2:434–435
anhydrization of, 2:429, 430
blood glucose and insulin response to, 2:435–436
as bulking agent, 2:464–465
dextrose use with, 2:481
esterification of, 2:430, 431
as food additive, 1:716
isomerization of, 2:432–433
manufacture of, 2:433
molecular structure of, 2:426
occurrence and preparation of, 2:426–427
oxidation of, 2:431–432
physical properties of, 2:425
pKₐ value of, 2:425t
polymorphism of, 2:422
reduction of, 2:432
toxicity of, 2:435t
uses of, 2:436, 437–438
Sorbitol-based nonionic surfactants, 1:188
Sorbitol hexanicotinate, 2:430
L-Sorbose
in ascorbic acid manufacture, 2:564, 565
in ascorbic acid synthesis, 2:562, 563
formation of, 2:431
Sorbus aucuparia, sorbic acid from, 2:263
Sorghum
sucrose in, 2:364
trade in, 2:648
Sorghum vulgare, sucrose in, 2:364
Sorghum wax, 2:626
Soriatene, 2:598
Sourdoughs, yeast in, 2:730
Sour mash, 1:146
fermentations, 1:150
Sour sensation/taste, 1:610, 655, 694–695
receptors for, 2:468
Sous-vide processing, of meat, 2:6–7
South America
corn in, 2:664
tea in, 2:502, 503
Southeast Asia, tea from, 2:502, 503–504
Soxhlet’s modification, in reducing-sugar determination, 2:403
Soya-based cheese, composition and processing of, 1:334
Soya-based infant formulations, 1:329
Soya milk, 1:328
Soya protein products, in dairy substitutes, 1:325
Soy-based vegetable proteins, 1:411
Soybean concentrate, 1:815
Soybean flakes, 2:304
Soybean lecithin, 1:886
Soybean meal, 1:462
Soybean oil, 1:98, 444
soy wax from, 2:626
Soybean products, in pet foods, 1:478
Soybeans, 2:282–310, 646
amino acids in, 2:287t
botanical classification of, 2:283t
chemical composition of, 2:284–290
edible protein products from 304–305
fatty acids in, 2:288t
food products from, 2:305–306
genistein from, 2:186
harvesting and storage of, 2:290
history of, 2:282
minor chemical constituents of, 2:289–290
oligosaccharides in, 2:289t
physical characteristics of, 2:284
processing of, 2:291–292
protein meal from, 2:303–304
proteins from, 2:300, 653
in ruminant feeds, 1:494
saponins in, 2:290
solvent-extracted, 1:444
sterols in, 2:288t
world production of, 2:294t, 297t, 298t, 299t
Soy flour, as meat extender, 2:3
Soymilk, manufacture of, 2:306
Soy protein, 1:334
concentrates, 1:815–816, 818
sulfur amino acid content of, 1:819
Soy sauce, 2:737
manufacture of, 2:306
Soy wax, 2:626
Sparger air filtration, 1:538
Spargers, 1:157, 536
Sparging process, 1:130
Sparkling wines, 2:679, 680
fermentation of, 2:692
processing flows for, 2:683, 685
production of, 2:693–694
Spawning aids, as registered aquaculture chemicals, 1:75
Special Committee on GRAS Substances (SCOGS), 1:260
Specialty foods, high fructose corn syrups in, 2:490
Specialty sugars, 2:412–416
large-grain, 2:410s
uses of, 2:411
Specialty sweeteners, 1:719
Specifications
for ascorbic acid, 2:568
for citric acid, 1:248, 260
for corn syrups, 2:482t, 493
for dextrose, 2:481
for egg products, 1:369–371
for fats and fatty oils, 1:451
for high fructose corn syrups, 2:490
for lecithin, 1:892–893
for meat processing, 2:7
for potassium sorbate, 2:268t
for sorbic acid, 2:268t
for succinic acid and anhydride, 2:357, 358t
for sugar, 2:399–401
for vanillin, 2:530–532
Specific heats, of fats and oils, 1:445–446
Spectrometric analysis, of amino acids, 1:47
Spectrophotometric assays, for sorbic acid, 2:268–269
Spectroscopy, in wax analysis, 2:638, 639.
 See also Near-infrared spectroscopy (nir)
Speed devices, in dairy equipment, 2:87
“Spent grain,” 1:126
Spermaceti, 2:622
Spice crops, 2:313
Spice equivalents, 1:668t
Spice industry, 2:312–313
Spices, 2:311–330
 adulteration of, 2:317–321
 cultivation of, 2:311–313
 defined, 2:311, 317
 disinfection of, 2:314
 harvesting of, 2:311
 history of, 2:311–312
 kinds of, 2:321–329
 as meat-processing ingredients, 2:3
 as plant-derived seasonings, 2:311
 processing of, 2:313–315
 provenance of, 2:312–313
 quality assurance for, 2:315–317
 safety factors related to, 2:317–321
 shelf stability of, 2:311
Spina bifida, folic acid deficiency and, 2:610
Spirits, 1:146. See also Distilled beverage spirits
Spirit vinegar, 2:539
 labeling standards for, 2:550
Spirulina, 1:802
 human consumption of, 1:804
SPLENDA, 2:457
Spoilage, of wine, 2:704–705
Sponge, mixing and fermentation of, 1:102–103
Sponge and dough system, for yeast-raised products, 1:102–105
Sponge fermentation time, 1:103
Spontaneous emulsification, 1:390
Sporulation, of yeasts, 2:718–719
Spray chilling, 1:639–640, 642
 in microencapsulation, 2:33, 38–39
Spray-drying
 of coffee, 1:279
 corn syrups in, 2:494
 in fluidized-bed encapsulation, 1:631
 in instant tea manufacture, 2:516
 in making dry milk, 2:100, 101–102
 of vitamins, 2:613
Spray-drying emulsion, 1:627
Spray drying encapsulation, 1:626–627
Spraying techniques
 in fluidized-bed encapsulation, 1:630
 of metal can coatings, 2:246–247
Spreads, market share of, 1:337
Spring wheats, 2:656
SRI oxime V, 2:463t, 464
Stability
 of ascorbic acid, 2:561
 of vitamins, 2:613, 614t
Stabilization, of wines, 2:695–696
Stabilizers/stabilizing agents, 1:727–730
 in beer, 1:135
 for emulsions, 1:379
 in ice cream, 2:107–108
 polysaccharide, 1:325–326, 331
Stachyose, 1:185
Stainless steel
 for dairy equipment, 2:84–86
 in food-processing equipment, 2:85t
Staling
 of amylose, 2:334–335
 of starch, 2:332
Standardization
 in chocolate processing, 1:238–239
 in milk processing, 2:69, 73
 in wine industry, 2:674
Standards. See also Labeling standards
 chocolate, 1:233, 225–226
 citric acid, 1:260
 cocoa, 1:225–226
 coffee-related, 1:283–284
 fruit juice, 1:826–828
 fruit preserves and jellies, 1:846
 gelatin, 1:861
 lecithin, 1:892–893
 organic food, 1:776
 sugar, 2:399–401
 sweetness, 2:371
 vinegar, 2:539
Standards of Identity, sorbates and, 2:272
Staphylococcus, in wines, 2:705
Staphylococcus aureus

in meat, 2:19
in meat processing, 2:6

Star anise, 2:321

Starch(es), 2:330–349. See also Corn starch; Hydrogenated starch hydrolysates (HSH)
acid-modified, 1:197
cationic, 2:342, 344
in cereal grains, 2:650–653
chemical modification of, 2:340–341
chemical properties of, 2:333–336
cold-water swelling, 1:199
in controlled release systems, 1:638–639
corn syrups and, 2:490, 492
cross-linked, 1:198
cyclization of, 2:198
depolymerization of, 2:336
dextrose (D-glucose) in, 2:473, 476
dietary fiber effects of, 1:343–344
enzyme technology and, 2:330
general properties of, 1:196–197
granules of, 2:330–332
history of, 2:330
maltose from, 2:415
manufacture of, 2:336–343
mechanical treatment of, 2:332
microscopy of, 2:331
molecular weight of, 2:335
new kinds of, 2:343
in nuts, 2:211
oxidized, 1:197
pastes of, 2:331–333
physical properties of, 2:330–333
polysaccharides of, 1:182
pregelatinized, 1:198
production/manufacture of dextrose from, 2:476–478
quasi-crystalline structure of, 2:330, 331, 332–333
swelling of, 2:331–332
uses for, 1:195–199; 2:343
vaccine made from, 2:539, 541–543
Starch acetates, 1:198; 2:342–343, 345
Starch-degrading enzymes, 2:334–335
Starch derivatives, 2:336, 343–345
as fat replacers, 1:407–408
Starch esters, 1:198
Starch ethers, 1:197
hydroxyalkyl, 2:341–342
Starch graft copolymers, 1:198–199
Starch gum candy, 2:340
Starch hydrolysis, 2:335–336, 473
in making vinegar, 2:541–543
Starch industry, 2:336–343
dextrose in, 2:473
Starch monophosphates, 2:344
Starch phosphate diesters, 2:344–345
Starch phosphates, 2:342–343, 344–345
Starch polysaccharides, 1:195
Starch sodium phosphate monoesters, 1:198
Starch succinates, 1:198
Starter cultures, in meat-processing, 2:4
States, wine regulation by, 2:707, 709
Static fishing gear, 1:559–568
Steam-chest expansion, in making semirigid food containers, 2:256
Steam distillation, in processing/manufacture of oilseed oils, 2:301
Steam, in green tea manufacture, 2:515
Steam injection pasteurization, 2:83
Steam supply, in fermentation, 1:546
Steam treatment, of spices, 2:315
Stearates, from sorbitol esterification, 2:430
Stearic acid, 1:429
Steel, in metal cans, 2:245, 246, 247
Steel roll mills, for coffee grinding, 1:275–276
Steeped corn, 2:338–339
Steeping, of barley, 1:117, 119
Stefen's waste, in MSG production, 2:154
Steffen process, in molasses manufacture, 2:496
Stellar, 1:408
Stem cell technology, 1:515
Stereochemistry, winemaking and, 2:678
Stereoisomers, in ascorbic acid molecule, 2:557–558
Steric stabilization, of emulsions, 1:384–385
Sterile filtration, 1:538
Sterilization. See also Pasteurization of evaporated milk, 2:98
in fermentation, 1:537–538
of milk, 2:69
of seafood, 1:574, 575–576
of vinegar, 2:548
Sterilization-in-place (SIP), 1:52
Sterilized broth, in MSG production, 2:156
Steroid hormones, 1:395
Sterol esters, waxes from, 2:617, 618
Sterols
in fats and fatty oils, 1:430–431
in oilseeds, 2:288
Sterulic acid, in cottonseed, 2:288
Steven’s power law, 1:685
Stevia, as food additive, 1:718
Stevia rebaudiana, stevioside from,
2:458–459
Steviol, 2:459
Stevioside, 2:459
occurrence of, 2:458–459
sweetness of, 2:459
Stiff jelly, 1:853
Stigmasterol, 2:188
Stillage, 1:146, 155

Stills
Scotch whisky, 1:148s
whiskey, 1:157
Still wines, 2:679–680
Stipa tenacissima, esparto wax from, 2:625
Stobbe condensation, of succinic acid/
anhydride, 2:353
Stochastic Sugar Delivery Projections
Model, 2:396–397, 398t
Stoll press, 1:836
Stomach compartmentalization, in
ruminants, 1:490
Stone belt, 2:132
Storage. See also Cold storage entries
chemical changes in nuts during,
2:217–219
of citric acid, 1:258
of eggs, 1:373–374
long-term, 1:754
of milk, 2:69, 89–92
of refined sugar, 2:381–382
of rice, 2:663
short-term, 1:752–754
of sucrose, 2:393–394
of sugar beets, 2:383–384, 391
of wines, 2:697–699
Straight dough method, 1:105
Straight whiskey, 1:150
Strain improvement, of yeasts, 2:719–720
Strain maintenance, for bakers’ yeast,
2:724
Strecker’s process, 1:38
Strecker degradation, 1:16
Strecker synthesis, 1:18
Streptococcus thermophilus, in making
yogurt, 2:106
Streptomycin, 1:511
Stretch blow molding, 2:258–259
Stroke, lycopene versus, 2:180
STRV (short tons, raw value), measuring
sugar trade in, 2:395, 397, 398
Strychnine, in nuts, 2:213
Strychnus nuxvomica, 2:213
Submerged-culture generators, in making
vinegar, 2:545–546, 548
Submerged penicillin process, 1:510
Substitute dairy foods, 1:319
Substituted amide waxes, 2:635
Substitution reactions, amino acid, 1:15
Succinamic acid, 2:355
Succinamide, 2:355
Succinic acid, 2:349–364
analytical methods for, 2:358
chemical properties of, 2:350–356
degradation of, 2:356
dehydration of, 2:350–351, 351–352
halogenation of, 2:353
health factors related to, 2:358–359
manufacture and processing of,
2:356–357
occurrence of, 2:349
oxidation of, 2:352
physical properties of, 2:350, 351t
radiolysis of, 2:356
reactions with sulfur compounds, 2:355
reactions with urea, 2:355
recovery of pure, 2:357
shipment of, 2:357
specifications of, 2:358t
uses of, 2:359
Succinic acid diesters, from succinic acid/
anhydride esterification, 2:352
Succinic anhydride, 2:349–364
analytical methods for, 2:358
chemical properties of, 2:350–356
degradation of, 2:356
eye irritation from, 2:359
Freidel-Crafts reactions of, 2:354
halogenation of, 2:353
health factors related to, 2:358–359
hydration of, 2:351–352
hydrogenation of, 2:352–353
isolation of, 2:349–350
manufacture and processing of,
2:356–357
physical properties of, 2:350, 351t
reactions with nitrogen compounds, 2:354–355
reactions with sulfur compounds, 2:355
shipment of, 2:357
specifications of, 2:358t
uses of, 2:359
Succinic esters, condensation with aldehydes and ketones, 2:353–354
Succinimides, 2:354, 355
Succinonitrile, 2:355
Succinyl chloride, 2:353
Sucralfate, 2:410
Sucralose, I:212; 2:456–458
decomposition of, 2:457
economic aspects of, 2:446
as food additive, I:718
health and safety factors related to, 2:457
physical properties of, 2:457
sweetness of, 2:457
synthesis of, 2:457–458
uses of, 2:409
Sucrononic acid, in tasting sweetness, 2:467
Sucrose, I:98, 185
in carbonated beverages, I:211
chemical properties of, 2:370–371
as chemical synthesis feedstock, 2:408–409
conditioning of, 2:393–394
continuous countercurrent extraction of, 2:386–387
crystallization of, 2:391–392, 392–393
dextrose (β-glucose) in, 2:473
dextrose use with, 2:481
in diet, 2:407
as fermentation feedstock, 2:409
as food additive, I:714
fructose and, 2:486
fructose as alternative to, 2:413
fructose from hydrolysis of, 2:412, 414
high fructose corn syrups replacing, 2:490
hydrolysis of, 2:390–391
in molasses manufacture, 2:496
molecular structure of, 2:365, 372
occurrence of, 2:364, 365
other sweeteners versus, 2:445–446
in pharmaceutical manufacture, 2:409–410
physical properties of, 2:365–367
purification of, 2:365
stability of, 2:391
storage of, 2:393–394
synthesis of, 2:365
uses for, I:192; 2:407–410
Sucrose acrylate derivatives, uses of, 2:408
Sucrose derivatives, I:185
Sucrose esters, uses of, 2:408
Sucrose fatty acid esters (SFEs) as fat replacers, I:421
Sucrose fatty acid polyester (SPE), I:419
Sucrose monoesters (SMEs) in pharmacology, 2:410
uses of, 2:408
Sucrose polyester, in pharmacology, 2:410
Sudan dyes, as spice adulterants, 2:320
Sugar(s), 2:364–421
for bakers’ yeast, 2:724
branched-chain, I:191
chemical properties of, 2:370–372
composition of, 2:371t, 378t
defined, 2:364
in dessert wines, 2:694–695
direct consumption, 2:378–379
economic aspects of, 2:395–399
health and safety factors related to, 2:406–407, 445
history of, 2:364–365
in making vinegar, 2:539
molasses from, 2:496
in MSG production, 2:155
in nuts, 2:211
other sweeteners versus, 2:445–446
phosphate esters of, 2:431
phosphate monoesters of, I:189
physical properties of, 2:365–370
production from sugarcane, 2:373–382
production from sugar beets, 2:382–395
product quality and requirements for, 2:400–401
refining of, 2:376, 379–382
replacement by sugar alcohols in foods, 2:436–437
specialty, 2:411, 412–416
specifications and standards for, 2:399–401
in stored nuts, 2:217
sugar alcohols from, 2:421–422
uses of, 2:407–412
vanillin and, 2:534, 535
in wine, 2:681, 688–689
in yeast-raised products, I:98
Sugar alcohols, I:714–716; 2:421–444
analytic methods for, 2:434–435
anticariogenicity of, 2:436
as bulking agents, 2:464–465
biological properties of, 2:435–436
blood glucose and insulin response to, 2:435–436
caloric values of, 2:436
chemical properties/reactions of, 2:429–433
laxation thresholds of, 2:435
manufacture/production of, 2:425–429, 433
molecular structure of, 2:421–422
occurrence of, 2:425–429
physical properties of, 2:422–425
pKₐ values of, 2:425
sweetness of, 2:436
toxicity of, 2:435
uses of, 2:436–437
Sugar analysis, 2:401–406
determination of reducing sugars, 2:403–404
physical methods of, 2:401–403
Sugar beets
cultivation of, 2:382–383
nonsucrose components from, 2:391
receiving, storage, and shipping of, 2:383–384
sucrose in, 2:364, 365
sugar production from, 2:382–395
Sugar cane
refining of, 2:376, 379–382
sucrose in, 2:364, 365
sugar production from, 2:373–382
Sugar cane mosaic virus, 2:374
Sugar cane wax, 2:625–626
Sugar, Coffee, and Cocoa Exchange, 1:229
Sugar-Containing Products Re-export Program, 2:395, 396–397t
Sugar cubes, 2:410
Sugar factories, 2:375–377, 378
Sugar-free foods, sugar alcohols in, 2:436–437
“Sugar fungus,” 1:132
Sugar maple
maple syrup from, 2:494
sucrose in, 2:364
Sugar pastes, sucrose in, 2:410
Sugar products, uses of, 2:411–412
Sugars Task Force (FDA), 2:407
Sugar vinegar
labeling standards for, 2:549
Sulfadimethoxine, 1:69
Sulfide waters, 1:100
Sulfitation, in sugar purification, 2:389, 390
Sulfitation sugar, 2:379
Sulfite liquors, vanillin from, 2:529
Sulfites, in wine labeling, 2:708
Sulfonated jojoba oil, 2:627
Sulfonic acid, in molasses desugarization, 2:394
Sulfur (S)
as essential to life, 2:115
foods rich in, 2:126t
as mineral nutrient, 2:125–128
in nuts, 2:211
Sulfur compounds, succinic acid/anhydride reactions with, 2:355
Sulfur dioxide
in corn syrup manufacture, 2:492
as food additive, 1:734
in fruit juices, 1:840
in sugarcane processing, 2:379
in sugar purification, 2:389, 390
in wet-milling of corn, 2:338
in wine analysis, 2:703
in wine production, 2:689–690
wine yeast and, 2:734
Sulfur disorders, 2:128
Sulfur trioxide, succinic acid/anhydride reactions with, 2:355
Sunlight, vitamin D and, 2:590
Sunflower oil, 1:444
Sunflower seeds
amino acids in, 2:287t
botanical classification of, 2:283t
chemical composition of, 2:284–290
fatty acids in, 2:288t
food products from, 2:305, 306
harvesting and storage of, 2:291
minor chemical constituents of, 2:289–290
as oilseeds, 2:282
oligosaccharides in, 2:289t
physical characteristics of, 2:284
processing of, 2:294
protein meal from, 2:303–304
proteins from, 2:301
sterols in, 2:288t
Supercritical carbon dioxide, in tea decaffeination, 2:517
Supercritical fluid (SCF) extraction, in reducing fat in meats, 2:10–11
Superior sugar, 2:378–379
Supermarket sales, of vinegar, 2:548–549
Superoxide dismutases (SODs), 2:115
manganese and, 2:142
Supertasters, 1:603
Supplements. See also Dietary supplements
fiber, 1:353
in ruminant feeds, 1:493–496
Support materials, in fluidized-bed encapsulation, 1:628
Surface coolers, for milk storage, 2:93
Surface fermentation, 1:255
Surface of nasal impact frequency (SNIF), 1:608, 609
Surface tension, of fats and oils, 1:447
Surfactants
amino acids in, 1:54
as food additives, 1:730–732
in yeast-raised products, 1:99
sorbitol-based nonionic, 1:188
Surimi-based seafood analogue products, 1:817
Surimi-like processes, in reducing fat in meats, 2:10
Surrogate markers, in nutraceutical testing, 2:166–167
Sustainable coffee farms, 1:269
Sweet chocolate, 1:235–240
formulations for, 1:236t
production of, 1:236–237
Sweetened condensed milk, 2:98–99
Sweeteners, 1:611; 2:445–472. See also Syrups
as bulking agents, 2:464–465
in carbonated beverages, 1:211–212
classification of, 1:713–714
corn-starch-based, 2:667
fructose and, 2:413
high intensity, 1:717–719
in ice cream, 2:107
maltose in, 2:415
nonnutritive, 2:445–446, 446–464
search for alternative, 2:445–446
specialty, 1:719
sucrose versus, 2:445–446
sweetness enhancers, inducers, and inhibitors, 2:465–466
sweet-taste transduction mechanisms of, 2:466–468
vanillin, 2:533
Sweetness
of acesulfame-K, 2:453
of alitame, 2:452
of corn syrups, 2:491–492
of cyclamate, 2:456
of dessert wines, 2:694
of D-tagatose, 2:465
of fructose, 2:365–366, 367, 413
glycyrrhizin, 2:460
of neoesthesperidin dihydrochalcone, 2:461
of neotame, 2:451
of oxidized wines, 2:695
of rebaudioside A, 2:459
of saccharin, 2:455
of stevioside, 2:459
of sucralose, 2:457
of sucrononic acid, 2:467
corn syrups, 2:491–492
cyclamate, 2:456
citric acid, 2:258
carnitine, 2:190
coenzyme Q10, 2:191
citrulline, 2:258
conjugated linoleic acid, 2:182–183
corn syrups, 2:491–492
of cyclamate, 2:456
citric acid, 2:258
carnitine, 2:190
coenzyme Q10, 2:191
conjugated linoleic acid, 2:182–183
of D-tagatose, 2:465
of fructose, 2:365–366, 367, 413
of glycyrrhizin, 2:460
of neoesthesperidin dihydrochalcone, 2:461
of neotame, 2:451
of oxidized wines, 2:695
of rebaudioside A, 2:459
of saccharin, 2:455
of stevioside, 2:459
of sucralose, 2:457
of sucrononic acid, 2:467
of sucrose, 2:365–366, 367, 371
of sugar alcohols, 2:436, 437–438
of thaumatin, 2:462
of wine, 2:681, 682
Sweetness enhancers, 2:465–466
Sweetness inducers, 2:465–466
Sweetness inhibitors, 2:465, 466
Sweetness potency, 2:445
Sweetness Triangle, sugar and, 2:367
Sweet taste, 1:654, 695
receptors for, 2:466–468
transduction mechanisms for, 2:466–468
Sweet wines, 2:680
Swine, nutrient requirements of, 1:464, 469–470t
Swine feed, 1:462–464
Swiss Federal Office of Public Health, on nutraceuticals, 2:164
Swiss Water decaffeination process, 1:280
Syagrus coronata,ouricouri wax from, 2:624
Synergy
between acesulfame-K and aspartame, 2:453
of nonnutritive sweeteners, 2:446
Synkavite, 2:603
Synthesis. See also Biosynthesis; Chemical synthesis
of alitame, 2:452
of ascorbic acid, 2:556, 561–564
of aspartame, 2:446, 449–450
carnitine, 2:190
citric acid, 1:258
coenzyme Q10, 2:191
conjugated linoleic acid, 2:182–183
of cyclamate, 2:456
of folic acid, 2:173
of genistein, 2:186, 187
of glucosamine, 2:191
of isoflavones, 2:186, 187
of (R)-(−)-lipoic acid, 2:190
of lutein, 2:173
of lycopene, 2:178
of mannitol, 2:426
of D-mannitol, 2:427
of L-mannitol, 2:427
of saccharin, 2:455
of sorbic acid, 2:266–268
of sorbitol, 2:426
of sucralose, 2:457–458
of sucrose, 2:365
of sugar alcohols, 2:425–429
of tocopherols and vitamin E, 2:170–171
of vanillin, 2:528
of vitamin K, 2:172–173
vitamin production via, 2:614t
of zeaxanthin, 2:174
Synthetic antioxidants, 1:735
Synthetic dairy products, 1:319
Synthetic ester waxes, 2:634
Synthetic iron oxide, as a food colorant, 1:314
Synthetic protein products, 1:818–819
Synthetic proteins, 1:819
Synthetic vanillin, 2:527
Synthetic vinegars, 2:539–540
Synthetic waxes, 2:617, 632–635
Syrup mixing, in carbonated beverage manufacture, 1:216–218
Syrups, 1:193; 2:473–502
commercially available, 2:473
composition of, 2:371t
corn, 2:473, 490–494
dextrose in, 2:473–485
high fructose corn, 2:473, 486–490
maltitol, 2:428
maltose in, 2:415
maple, 2:473, 494–495
from starch degradation, 2:343
uses of, 2:437
Syrup solids, 1:192
Syzygium aromaticum, 2:323–324
Szent-Györgyi, Albert, 2:555, 556, 557
Tazorac, 2:598
Tea, 2:502–526. See also Green tea
 blending of, 2:517
 composition of, 2:504–509
 cultivation of, 2:502, 503–504
 decaffeination of, 2:516–517
 economic aspects of, 2:518–519
 health factors related to, 2:519–522
 herbal, 2:519
 history of, 2:502–503
 packaging of, 2:517–518
 production/manufacture of, 2:509–516
 worldwide sales of, 2:519
Tea bags, 2:517–518
 U.S. use of, 2:519
Tea cream, in instant tea manufacture, 2:516
Tea estates, 2:503
Tea plantations, 2:502
Tea polyphenols, biosynthesis of, 2:504, 507t, 508–509
Technology, winemaking and, 2:675, 678–679. See also Biotechnology entries; Gene technology; Microwave technology; Recombinant technology; Stem cell technology; Thermal food preservation technology
Teeth. See also Tooth decay
calcium in, 2:118
phosphorus in, 2:123
Tegison, 2:598
Teichoic acids, 1:184
Tellicherry black pepper, 2:327
Tempeh, manufacture of, 2:306
Temperature. See also Heat entries; Low temperature process; Thermal entries in ascorbic acid degradation, 2:560
 in black tea manufacture, 2:514
 corn starch and, 2:666
 in corn syrup manufacture, 2:492
 in cottonseed storage, 2:291
 effect on stored nuts, 2:217
 of evaporated milk, 2:98
 in food deterioration, 2:239
 frozen foods and, 2:241–242
 in high fructose corn syrup manufacture, 2:487–488
 of ice cream, 2:108–109
 in making dry milk, 2:101
 in microencapsulation, 2:33, 35
microwave equipment damage due to, 2:57
 in microwave food heating, 2:47, 60
 in milk homogenization, 2:73–74
 in milk pasteurization, 2:74, 75, 76–78, 83, 84
 in milk processing, 2:69–70, 71
 for MSG production by fermentation, 2:156
 in peanut storage, 2:291
 in soybean storage, 2:290
 starch granules and, 2:331, 332
 in starch oxidation, 2:341
 in sucrose thermal degradation, 2:371
 in sugar beet storage, 2:384
 in sugar-beet sugar extraction, 2:386
 in thermoforming, 2:257
 in wine fermentation, 2:692
Temperature control, in fermentation, 1:540
Tempering
 of chocolate, 1:239–240
 in wheat milling, 2:658–659
Tenderization, in meat processing, 2:4
Tennessee whiskey, 1:150
Tequila, 1:152
 sales of, 1:166
Teratogenesis, vanillin as preventing, 2:538
Terpenes, waxes from, 2:617
Terpenoids
 waxes from, 2:618
 in wine, 2:682
Terramycin, 1:67
Testing. See also Clinical trials; Human intervention trials; Test methods of food colorants, 1:289
 future nutraceutical, 2:192
 of milk, 2:93–96
 in nutraceutical identification, 2:164–165, 165–167
 Test methods
 for citric acid, 1:260
 for lecithin, 1:893–894
 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), 1:774
 Tetraheteroglycans, 1:869
 Tetrahydrofolic (THF) acid polyglutamate, 2:609
 Tetrahydrofuran (THF), from succinic anhydride hydrogenation, 2:352
 Tetritol, 2:422, 423t
 analysis of, 2:434, 435
TETRITOLS 851
Texture, of food, 1:655
Thiamine, production/manufacture of, 2:614t
Thaumatin, 2:461–462
Thaumatin, as food additive, 1:718
economic aspects of, 2:446
Thaumatomococcus daniellii, 2:461
Theaflagallins, in tea manufacture, 2:512
Theaflavins, in tea manufacture, 2:512
Theafulvin, in tea manufacture, 2:507
Thearubigens, in tea manufacture, 2:512
Thiaminase, 1:787
Thiamine, production/manufacture of, 2:614t
Thiamine, 2:168t, 590, 604–605.

See also
Vitamin B_{1}
in milk, 2:68t
molecular structure of, 2:604
in nuts, 2:212
RDAs of, 2:594t
Thiamine deficiency, 2:605, 669–670
Thiamine hydrochloride, 1:69; 2:604
Thiamine mononitrate, 2:604
Thiamine pyrophosphate (TPP), 2:604
Thickener, 1:727–730
Thin-boiling starch, 2:340
Thin-layer chromatography (tlc), 1:45
in sugar analysis, 2:405
Thiobarbituric acid test (TBA), 1:453
Thiosuccinic anhydride, 2:355
Thiosugars, 1:190
Third molasses, 2:496
Three-boiling beet sugar crystallization, 2:392–393
Three-dimensional food packaging, 2:256–259
Three-piece cans, for food packaging, 2:245–246
D-Threitol, 2:422, 423t
D,L-Threitol, 2:423t
L-Threitol, 2:422, 423t
L-Threonic acid, 2:560
Threonine, in nuts, 2:209t
L-Threonine, fermentative production of, 1:31t
Threshold effects, 1:769
Thyme, 2:329
Thymus vulgaris, 2:329
Thyroid gland
iodine and, 2:141–142
silicon and, 2:139
Thyroid peroxidase, vanadium and, 2:145–146
Thyroid-stimulating hormone (TSH), iodine and, 2:142
Thyrotropin, iodine and, 2:142
Thyroxin, iodine and, 2:141–142
Time-of-flight mass spectrometry (TOFMS), in nutraceutical identification, 2:165
Timing pump, with HTST pasteurizers, 2:79–81
Tin (Sn)
toxicity of, 2:145
as trace nutrient, 2:145
Tip cap, of corn kernel, 2:337
Titanium dioxide, 1:297–298
as a food colorant, 1:315
Titration
of ascorbic acid, 2:568–569
in succinic acid/anhydride analysis, 2:358
Titrmetric assays, for sorbic acid and potassium sorbate, 2:268
\(\alpha\)-Tocopherol, 2:602–603
from wheat germ, 2:653
as nutraceutical, 2:170–171
production/manufacture of, 2:614t
Tocopherols, 2:168t. See also Vitamin E
as food additives, 1:736
as nutraceuticals, 2:169–171
in fats and fatty oils, 1:431
molecular structures of, 2:169
of chocolate, 1:244t
vitamin C and, 2:578
Tocopheroxy radical, vitamin C and, 2:578
\(\alpha\)-Tocotrienol, 2:602
\(\beta\)-Tocotrienol, 2:602
\(\gamma\)-Tocotrienol, 2:602
\(\delta\)-Tocotrienol, 2:602
Tocotrienols, 2:168t.
in fats and fatty oils, 1:431
as nutraceuticals, 2:169–171
Tofu, 1:334
production/manufacture of, 2:306, 335
Tolerable Daily Intake (TDI), 1:775
Tolerable Upper Intake Level (UL)
of vitamin E analogues, 2:170
of vitamins, 2:593, 595t
Toluene, in spice quality measurement, 2:316
Tomatoes, lycopene from, 2:178–179
Tooth decay. See also Teeth
sugar alcohols and, 2:436
sugar and, 2:445
Top spraying, in fluidized-bed encapsulation, 1:630
Top-spray units, in microencapsulation, 2:33
“Top” yeasts, 1:131
Torulaspora delbrueckii, 2:713t
wine yeast and, 2:734
Torula yeast, 1:799
Torulopsis
as fermentation agent, 2:712
in soy sauce production, 2:738
Torulopsis mannitofaciens, mannitol in, 2:427
Torulopsis stellata, wine yeast and, 2:734, 735
Total ash, in spice quality measurement, 2:316
Total dietary fiber (TDF), 1:342, 346
enzymatic gravimetric methods for analysis of, 1:348
Total Diet Study (FDA), 1:774, 775
Total milk protein/proteinates, in dairy substitutes, 1:324–325
Towed fishing gear, 1:568
Toxicants, 1:779. See also Food toxicants
Toxic Equivalency Factor (TEF), 1:775
Toxicity
of \(\alpha\)-amino acid, 1:49–50
of amino acids, 1:49t
of arsenic, 2:146
of gossypol, 2:300
homeostatic controls and, 2:146
of iron, 2:137
of manganese, 2:142
of minerals, 2:115
of molybdenum, 2:143
of MSG, 2:158
of neohesperidin dihydrochalcone, 2:461
of saccharin, 2:454
of selenium, 2:141
of sugar alcohols, 2:435
sugar’s lack of, 2:407–406
tin, 2:145
of vanillin, 2:538
of vitamin C, 2:581–582
Toxic metabolites, 1:791
Toxicodendron, Japan wax from, 2:624
Toxicology studies, acrylamide-related, 1:776
Toxic Substance Control Act (TSCA), on citric acid, 1:261
Toxins. See also Aflatoxin entries;
Hydrogen cyanide
elements of, 1:771–777
international regulation of, 1:767–768
in fats, 2:214
regulation of, 1:765–768
risk assessment of, 1:768–771
in soybean storage, 2:290
Trace component analysis, for fats and oils, 1:453–454
Trace elements
absorption and excretion of, 2:119t
fats rich in, 2:134–135t
in mineral nutrients, 2:133–146
potential toxicity of, 2:115
recommended daily allowances of, 2:116t
Transduction mechanisms
odor-related, 1:656n
sweet-taste, 2:466–468
Transduction method, 1:35
Transesterification, of fats and oils, 1:457
Transesterification, I:438
Trans fats, I:98, 436
Trans fatty acids, in oilseeds, 2:296
Transglucosidase, in dextrose manufacture, 2:478
Transglutaminase, in microencapsulation, 2:25
Transistors, as microwave instrumentation power source, 2:49
Transport, of vitamin C, 2:580
Transportation. See Shipment/shipping
Traps, fish and shellfish, I:559–568
Trash parts, in sugarcane harvesting, 2:374–375
Traveling tunnel ovens, I:104
Traveling wave tube (TWT), as microwave instrumentation power source, 2:51
Trawl net, I:568
Tree nuts, 2:202
U.S. production and consumption of, 2:223–225, 226–227t
world production and consumption of, 2:224t
Trees, mannitol in, 2:427
Trehalose, as food additive, I:719
Tretinoin, 2:598
Triacylglycerol oils, I:457
Triacylglycerols (TAGs), I:393, 414, 427, 444
 edible, I:429
 melting points of, I:438–439
 reactions of, I:450
Trialkoxyctaric acid (TAC), I:423
Trialkoxyglyceryl ether (TGE), I:423
Trialkoxytricarballylate (TATCA), I:423
Triangle test, I:600
 in wine tasting, 2:703–704
Triboluminescence, of sucrose crystals, 2:365
Tricaine methane sulfonate, I:71, 75
Tricalcium sucrate, in molasses manufacture, 2:496
Tricarboxylic acid (TCA) cycle, I:248
 MSG and, 2:153, 157
Trichinella spiralis, in meat, 2:19
Trichinosis, 2:19
Trichlorfon, I:75
Trifluoroacetic anhydride (TFAA), I:45
Trigeminal stimuli, chemical analysis of, I:612
Triglyceride composition, of fats and oils, I:451–452
Triglycerides, I:320, 427
 in bayberry wax, 2:625
 corn bran and, 2:666
 fatty acids found in, I:428t
 melting points and enthalpy values for, I:445t
 in milk, 2:66
 niacin versus, 2:606
 in oilseeds, 2:287
 in rice bran oil, 2:625
Trigonella foenum-graecum, 2:325
Trigonelline, in coffee, I:272
Triheteroglycans, I:869
TrimChoice, I:407
Trimethoprim, from vanillin, 2:536
Triphenylmethane dyes, I:726
Trisaccharides, from sugar beets, 2:391
Trisaturates, I:439
Trisodium citrate, I:253
Trisodium citrate salt, I:262
Triticale, I:492
 trade in, 2:648
Triticum, species of, 2:643
Troll-caught fish, quality of, I:569
Tropical fruit juices, I:841–842
Tropical rice, 2:663
TRQ (tariff rate quota) system, sugar trade under, 2:397–398
Tryptophan, 2:590
 determination of, I:44–45
 in nuts, 2:206, 209t
L-Tryptophan, I:2, 51
 enzymatic production of, I:43
 fermentative production of, I:32–33t
 production from anthranillic acid, I:35
Tubes, as microwave instrumentation power source, 2:49, 50–51, 51–52
Tubing, in dairy equipment, 2:86–87
Tumbling, in meat processing, 2:5
Turbidity, in sugar quality control, 2:400
Turbinado sugar, 2:411
Turkey
 hazelnuts (filberts) from, 2:225
 pistachio production in, 2:230
 spice industry in, 2:312
Turkeys
 nutrient requirements of, I:468t
 United States exports of, 2:14t
Turmeric, 2:329
 as a food colorant, I:313–314
 measuring quality of, 2:317
Turmeric oleoresin, as a food colorant, 1:313–314
Twin-screw extrusion process, 1:625
Two-fluid columns, in microencapsulation, 2:34
2,4-D aquacide, 1:72
Two-piece cans, for food packaging, 2:245
Two-row barleys, 1:116
Type A gelatin, 1:859, 860
Type A microencapsulation, 2:24–25, 25–26
Type B gelatin, 1:860–861
Type B microencapsulation, 2:24–25, 31–35
Tyrosinase, in tea, 2:507–508
Tyrosine, toxicity of, 1:782
L-Tyrosine enzymatic production of, 1:43
fermentative production of, 1:33t
Tyrosine kinases, vitamin K and, 2:603
L-Tyrosine metabolism, vitamin C in, 2:577–578

Ubiquinone, 2:191
Ulosonic acids, 1:189
Ultrafiltration
in carbonated beverage facilities, 1:211
in making cheese, 2:105
Ultrahigh hydrostatic pressure, food preservation via, 1:762–763
Ultrahigh temperature (UHT) pasteurization/treatment for dairy products, 2:241
in milk processing, 2:75, 83
Ultrahigh temperature (UHT)-processed substitute products, 1:326
Ultranarines, as food colorants, 1:315
Ultrasonic techniques, for characterizing emulsions, 1:390–391
Ultratrace elements absorption and excretion of, 2:119t
foods rich in, 2:134–135t
in mineral nutrients, 2:133–146
recommended daily allowances of, 2:116t
Ultraviolet (UV; uv) irradiation, of milk, 2:66
Ultraviolet light, as a disinfectant, 1:81–82
Ultraviolet protection, vanillin as, 2:537
Umami taste, 1:611, 654, 695
of MSG, 2:157
receptor for, 2:468
Unilamellar vesicles (ULV), 1:885
United Kingdom (UK). See British entries; English entries; Great Britain
United Nations (UN)
dairy sterilization standards of, 2:98
on sugar standards, 2:399
United States. See also American entries; Department entries; Federal entries; National entries; U.S. entries
acesulfame-K in, 2:453
allowable aflatoxin levels in, 2:219
amino acid demand by, 1:44t
aquaculture chemical regulation in, 1:66–67
aspartame use in, 2:447
bakery product trade by, 1:110t
black tea consumption in, 2:518
cane sugar products in, 2:410–411
carbonated soft drinks in, 1:220t
cat and dog food sales in, 1:485t
cereal grains in diet in, 2:668
corn sweetener/dextrose trade in, 2:481, 482t, 483t, 484–485t
corn syrup production in, 2:490
cottonseed harvesting and storage in, 2:291
cottonseed processing in, 2:292–293
dietary phytosterols in, 2:188
dietary sugar in, 2:407
egg production and consumption in, 1:371t
FDA registered/allowed aquaculture chemicals in, 1:68–74
food packaging in, 2:238, 239
fuel alcohol production in, 2:651–653
generator process for making vinegar in, 2:545
green tea consumption in, 2:518
high fructose corn syrups in, 2:486, 488, 489t
household meat expenditures in, 2:15t
improving meat supply safety in, 2:20
instant tea manufacture in, 2:515
jojoba oil in, 2:627
lycopene studies in, 2:180
magnesium deficiency disorder in, 2:132
maple syrup production in, 2:494, 495t
meat trade in, 2:12, 13–14t
metal food packaging in, 2:245
MGS production in, 2:154
microwave exposure hazards in, 2:57–59
microwave frequency allocations in, 2:42–44
milk consumption in, 2:89, 91t
milk production in, 2:88–89, 90t
molasses desugarization in, 2:394
molasses trade by, 2:498t, 499t
montan wax in, 2:627
neohesperidin dihydrochalcone blocked from, 2:461
nonnutritive sweetener regulation in, 2:446
nut production and consumption in, 2:223–225, 226–230, 231
nutraceutical trends in, 2:162–163, 164
organic milk sales in, 2:89, 92t
pesticide regulation in, 1:772–774
petroleum wax standards in, 2:632
production/manufacture of dextrose in, 2:476
registered aquaculture chemicals in, 1:67–75
shipping containers in, 2:245
sorbate regulation in, 2:275–276
sorbate use in, 2:272–275
sorbic acid production in, 2:267–268
soybean and oilseed use in, 2:282
soybean crop in, 2:290
soybean processing in, 2:291–292
soybean production and exports by, 2:294–295, 297t, 298t, 299t
soy sauce production in, 2:306
specialty sugars in, 2:411
specification for dry whey in, 2:104t
spice adulteration in, 2:317–321
spice disinfection and irradiation in, 2:314–315
spices imported by, 2:312
starch industry in, 2:473
stevioside blocked from, 2:459–460
stored nut decontamination in, 2:220
sugar beet cultivation in, 2:382–383
sugar beet processing in, 2:392–393
sugarcane harvesting in, 2:374, 375
sugarcane pests in, 2:373–374
sugarcane processing in, 2:373
sugar refining capacity of, 2:395t
sugar standards in, 2:399–400
sugar trade in, 2:395–397, 398t, 399t
sunflower seed harvesting and storage in, 2:291
sunflower seed processing in, 2:294
synthetic waxes in, 2:632
tea decaffeination in, 2:516, 517
tea packaging in, 2:517–518
tea sales in, 2:519
vinegar sales in, 2:548–549
vinegar standards in, 2:539
vineyard management in, 2:688
vitamin C RDA in, 2:581
vitamin labeling standards in, 2:593, 595t
on vitamin levels, 2:591
viticultural areas in, 2:680–681
wheat production in, 2:655t
wine analysis in, 2:703
wine consumption in, 2:699, 701, 702
wine exports from 702
wine labeling standards in, 2:680–681, 687, 706, 708–709
winemaking in, 2:674
wine production in, 2:701, 702t
wine regulation in, 2:707–710
wine stabilization in, 2:695
wine yeast in, 2:734
yogurt consumption in, 2:106
United States spirits, 1:149–151
United States Standard (USS) screen sizes, in spice quality measurement, 2:316
Unit operations, in sugar purification, 2:388–390
Unmodified corn starch, 1:728
marketing of, 2:339–340
uses of, 2:343
Unoriented polypropylene film, in plastic food packaging, 2:249t, 250
Unpasteurized juices, 1:832
Unsaturated acids, in milk fat, 2:71t
Unsaturated sugars, 1:191
Unsaturation, measurement of, 1:452
Urea in microencapsulation, 2:29–30
reactions with succinic acid, 2:355
Urea enzymatic dialysis method, for dietary fiber analysis, 1:348
Urethane, 1:794
Urine, vitamin C in, 2:580
Urocanic acid, 1:54
Uronic acids, 1:189
U.S. Chocolate Standards, 1:233. See also United States
USDA Food Safety and Inspection Service (FSIS), meat labeling guidelines of, 2:14–16, 17
U.S. Department of Agriculture (USDA), 1:709
on cereal grains, 2:668
on citrus-derived chemicals, 2:460
food guidelines of, 1:393; 2:1
meat labeling guidelines of, 2:14–16, 17
on sorbates, 2:274
on sugar beet production, 2:274
U.S. Fish and Wildlife Service (USFWS), 1:80, 81
aquaculture guidelines of, 1:67
U.S. fishery, 1:558–559
U.S. Food and Drug Administration (USFDA). See Food and Drug Administration (FDA)
U.S. Geological Survey Upper Midwest Environmental Sciences Center (UMESC), 1:80, 81
U.S. Phamacopeia (U.S.P.), vitamin nomenclature and classification in, 2:593, 596t
U.S. Public Health Service Pasteurized Milk Ordinance (PMO), 2:75, 97
Ustilago scitaminea, as sugarcane pest, 2:373–374
Utilities
for HTST pasteurizers, 2:81
in fermentation, 1:546–548
Vaccines, 1:506–507
cell cultivation processes for, 1:512
Vacuoles, of yeasts, 2:717
Vacuum drying encapsulation, 1:628
Vacuum fumigation, versus weevil infestations, 2:218
Vacuum meat processing, 2:6–7
Vacuum-packed coffee, 1:276
Vacuum pans, in sugarcane processing, 2:377
Vacuum treatment, in milk processing, 2:83
Vacuum tubes, in microwave technology, 2:41
Valine, in nuts, 2:209t
L-Valine, fermentative production of, 1:32t
Value-added nut products, 2:231–232
Vanadium (V), as trace nutrient, 2:145–146
van der Waals attraction, 1:382, 383
Vanilla, 2:329
Vanilla beans, 2:527
Vanilla camphor, 2:527
Vanilla planifolia, 2:329, 526
Vanilla tahitensis, 2:329
Vanillic acid, 2:532
Vanillin, 2:526–538
in agrochemicals, 2:536–537
analysis of, 2:537
in animal feed, 2:535
applications of, 2:533–537
chemical properties of, 2:532–533
determination of, 2:537
discovery of, 2:527
extraction of, 2:526–527
health and safety factors related to, 2:537–538
hydrazones of, 2:536
identification of, 2:537
industrial applications of, 2:537
molecular structure of, 2:527
occurrence of, 2:526
in perfumes and cosmetics, 2:535–536
in pharmaceuticals, 2:536
preparation from guaiacol, 2:527, 528, 529
preparation from ortho-chloronitrobenzene, 2:528–529
preparation from waste sulfite liquors, 2:529
production by biotechnology, 2:529–530
production/manufacture of, 2:527–530
as ripening agent, 2:537
specifications for, 2:530–532
synthetic, 2:527
toxicity of, 2:538
Vanillin β-D-glucoside, 2:526
Vanillin sugar, 2:535
Vaniltek, 2:536
Varietal labeling, of wines, 2:687
Vaseline, 2:629
Vasopressin, 2:126
Vegemite, 2:712, 723
Vegetable fats
in margarine, 1:335
processing, 1:432
Vegetable gums, 1:353
Vegetable juice, as a food colorant, 1:317
Vegetable oil gels, from leaf protein concentrates, 1:814
Vegetable oils from corn, 2:667
from oilseeds, 2:303
in pet foods, 1:479
production of, 1:444
world consumption of, 2:295t
Vegetable products, sorbates in, 2:274
Vegetable protein as a fat replacer, 1:411
products from, 1:816
Vegetables packaging for, 2:240
succinic acid in, 2:349

Vitamin C in, 2:573–574, 676t
Vegetal waxes, 2:617, 620, 623–627
Vegetative propagation, of tea, 2:503
Vepex process, 1:813
Verazide, from vanillin, 2:536
Verification procedures, in meat processing, 2:8
Vertical extrusion encapsulation process, 1:624
Vertical rotary molds, 2:258
Vessels fermentation, 1:533–537
sterilization of, 1:537
Vietnam, spice industry in, 2:312, 313
Vilsmeier reagent, in sucralose synthesis, 2:457–458
Vinegar, 2:539–554
analysis of, 2:550
composition of, 2:539, 540
culinary uses of, 2:550
defined, 2:539
economic aspects of, 2:548–549
as food additive, 1:722
history of, 2:539, 541, 543, 545
labeling standards for, 2:549–550
occurrence of, 2:539
processing/preparation for marketing, 2:547–548
production/manufacture of, 2:541–547
properties of, 2:540–541
types of, 2:539, 540–541
uses of, 2:539–540, 550–551
Vinegar eels, 2:547
Vines, in winemaking, 2:676–677, 688
Vineyard management, 2:688
Vineyard sites, in winemaking, 2:688
Vintage, in winemaking, 2:674
Vinyl organosol coatings, 2:246
Viral vaccines, 1:507
Viruses, as sugarcane pests, 2:373–374
Viscolizer, in milk processing, 2:73
Viscometers, in chocolate processing, 1:239
Viscosity of cane sugar, 2:368, 369
of corn syrups, 2:491
of deodorized oils and fats, 1:447t
of fats and oils, 1:447
of gelatin, 1:859
in wax analysis, 2:637
Vision problems, wines as alleviating, 2:706
Vitamin A, 2:168t, 597–599. See also
Retinol
β-carotene and, 2:167–168
history of, 2:590, 591t
in evaporated milk, 2:99
metabolic functions of, 2:597
in milk, 2:68t
milk fortification with, 2:66
nomenclature and classification of, 2:596t
in nuts, 2:212, 215
production/manufacture of, 2:614t
RDAs of, 2:594t
tolerable upper limits of, 2:595t
toxicity of, 1:788
waxes from, 2:618
zinc and, 2:138
Vitamin A deficiency, 2:597
Vitamin B discovery of, 2:169
nomenclature and classification of, 2:596t
Vitamin B1, 2:168t, 604–605. See also
Thiamine entries
history of, 2:590, 591t
in nuts, 2:212
Vitamin B2, 2:168t, 605–606. See also
Riboflavin
history of, 2:591t
Vitamin B6, 2:168t, 606–607. See also
Pyridoxine
history of, 2:591t
in milk, 2:68t
Vitamin B12, 2:611–612. See also
Cyanocobalamin
cobalt in, 2:144–145
history of, 2:591t
in milk, 2:68t
Vitamin B₆ deficiency, 2:145
Vitamin B₁₂ as pseudovitamin, 2:615
Vitamin C. See also Ascorbic acid (vitamin C)
 history of, 2:590, 591t
 nomenclature and classification of, 2:596

Vitamin C redox system, 2:555
Vitamin D, 2:168t. See also Cholecalciferol; Ergocalciferol
calcium ion and, 2:121, 122
commercial forms of, 2:600
in evaporated milk, 2:99
fluorine and, 2:137
history of, 2:590, 591t
metabolic functions of, 2:600
milk fortification with, 2:66
 nomenclature and classification, 2:596t
 RDAs of, 2:594t
 tolerable upper limits of, 2:595t
 toxicity of, 1:788
Vitamin D₂, 2:599–602. See also Ergocalciferol
molecular structure of, 2:600
Vitamin D₃, 2:590, 599–602. See also Cholecalciferol
molecular structure of, 2:600
Vitamin D deficiency, 2:601
Vitamin D receptor (VDR), 2:600
Vitamin E, 1:745; 2:168t, 602–603. See also Tocopherols
 history of, 2:591t
 nomenclature and classification, 2:596t
 as nutraceutical, 2:171–173
 health factors related to, 2:173
 history of, 2:591t
 molecular structure of, 2:172
 nomenclature and classification, 2:596t
 toxicity of, 1:788
Vitamin K₁, as nutraceutical, 2:171–173
Vitamin K₂, as nutraceutical, 2:171
Vitamin K₁(2,3), 2:603, 604
Vitamin K₃, 2:603
Vitamin K deficiency, 2:172, 604
Vitamins, 2:168t, 590–616
 analysis of, 2:615
 for bakers’ yeast, 2:724
 in cereal grains, 2:668
defined, 2:590
Dietary Reference Intakes of, 2:591–593
economics of, 2:169
 as food additives, 1:743–745
 functions of various, 2:596t, 597–613
 history to 1900, 2:590
 history 1880–1905, 2:590–591
 history 1900–1972, 2:591
 history 1933–present, 2:591
 history 1955–present, 2:591, 592t
 microencapsulation of, 2:38
 in milk, 2:66, 68t
 Nobel prizes related to, 2:591, 592t
 nomenclature and classification of, 2:593, 596t
 in nonruminant feeds, 1:463
 as nutraceuticals, 2:167–173
 in nutrition labeling, 2:593, 595t
 in nuts, 2:212
 production/manufacture of, 2:614
 properties of, 2:613–614
 pseudovitamins, 2:615
 RDAs of, 2:593, 594t
 in ruminant feeds, 1:495–496
 sulfur in, 2:125
 in tea, 2:519, 520
 tolerable upper limits of, 2:593, 595t
 toxicity of, 1:788–789
 for young animals, 1:500
Viticulture, 2:674
Vitis labrusca, cultivation of, 2:686
Vodka, 2:735
 flavored, 1:172
 sales of, 1:164
U.S., 1:149
Voland-Stevens LFRA texture analyzer, 1:847–848
Volatile aroma compounds, 1:616
Volatile compounds, in foods, 1:691
Volatile fatty acids (VFA), 1:493
in ruminant feeds, 1:499
Volatile oils
as spice quality measure, 2:315, 316
in spices, 2:313, 314
Volatile organic compounds (VOCs),
extracting from spices, 2:313
Volatiles
in tea, 2:507
in wine, 2:683
Voltage breakdown, in microwave equipment, 2:56–57
Vulcanizing agents, amino acids as, 1:55
Wakamatsu reaction, 1:21
Waldhof fermentor, 1:799
Walnut kernels, seasonal compositional changes in, 2:216t
Walnuts
chemical changes during storage of,
2:217
oil from, 2:233
processing of, 2:221
U.S. production and consumption of,
2:225, 226t
world production and consumption of,
2:224t
Warehouses, for cottonseed storage, 2:291
Warfarin, 2:603, 604
Wash, 1:146
Waste disposal, in winemaking, 2:696–697
Waste sulfite liquors, vanillin from, 2:529
Water. See also Moisture
in brewing, 1:124–125
in carbonated beverages, 1:210–211
food deterioration via, 2:239
as meat-processing ingredient, 2:2
in microencapsulation, 2:25–26, 28,
29–30, 30–31, 32, 38
microwaves and, 2:46
in nuts, 2:207t
physical properties of starch in,
2:331–332
in processing/manufacture of oilseed oils,
2:301
in reducing fat in meats, 2:9
succinic acid in, 2:349, 350, 351t
succinic acid loss of, 2:350–351
from sugar alcohol anhydridization,
2:429
in sugar beet processing, 2:384, 385,
386–387
in sugarcane processing, 2:377
vanillin solubility in, 2:530
in vinegar, 2:539
in wet-milling of corn, 2:338, 339, 340
in winemaking waste disposal, 2:697
in yeast-raised products, 1:100
Water activity
in food processing, 1:751–752
in foods, 1:585t
Water cooling, in fermentation, 1:547
Water-correcting agents, in the beverage industries, 1:742–743
Water-holding capacity (WHC), of dietary fiber, 1:344, 346
Water-in-oil (W/O) emulsion, 2:640
Waterproofing, wool grease in, 2:623
Water quality, in fermentation, 1:546
Water solubility, taste and, 1:655
Water-soluble gums/hydrocolloids,
1:199–207
Water treatment compounds, as registered aquaculture chemicals, 1:75
Wave oscillators, as microwave instrumentation power source, 2:49
Wax component separation, in wax analysis, 2:637–638
Waxes, 2:617–640
analysis of, 2:635–639
animal, 2:620–623
chemically modified, 2:634
constituents of, 2:618–620
defined, 2:617
history of, 2:617
hydrogenated, 2:632
microbial, 2:617
mineral, 2:617, 627–632
petroleum, 2:628–632
polymerized α-olefins as, 2:633, 635
substituted amide, 2:635
synthetic, 2:617, 632–635
types of, 2:617
uses of, 2:617
vegetal, 2:629, 623–627
Wax esters, 1:427, 457; 2:617, 618–619
Wax polyesters, 2:618–619
Waxy starches, 2:333, 335
Weber-Fechner law, 1:686
Weber ratio, 1:685–686
Web offset printing, on flexible food packaging, 2:253–254
Websites, flavor information in, 1:699
Weeds, as sugarcane pests, 2:374
Weeping jelly, 1:853
Weevils, infestations of nuts by, 2:218
Weibul-type curing silos, for sucrose, 2:394
Weizmann process, 1:509
Welan, 1:874
Welded side-seam cans, for food packaging, 2:246
Western Hemisphere, early sugar production in, 2:364
West Indies, nutmeg from, 2:325–326
Wet coffee processing, 1:268
Wet macular degeneration, 2:176
Wet milling
of corn, 2:665–666
of corn starch, 2:336–340, 342
Wet mills, 1:126
Wheat, 2:640, 641t, 642, 647, 654–662. See also Cereal grains
air classification of, 2:660–661
flour from, 2:653, 657, 659–660, 661–662
history of, 2:643–644
milling of, 2:658–660
morphology of, 2:648, 649, 650, 651, 652
nutritional content of, 2:668
production of, 2:647–648, 654–657
protein content of, 2:654
starch in, 2:651, 652
trade in, 2:648
varieties of, 2:656–657
during World War I, 2:645, 646, 647
worldwide annual yield of, 2:655t
Wheat brans, 1:350
Wheat breeding, 2:657
Wheat germ
oils from, 2:653
in wheat milling, 2:659
Wheat gluten, as meat extender, 2:3
Whey
biomass from, 2:739
dry, 2:104t
in making cheese, 2:103–105
Whey protein concentrates/isolates, 1:411
in dairy substitutes, 1:323–324
Whipped toppings, composition and processing of, 1:331–332
Whipping cream, 2:102–103
imitation, 1:331–332
Whirlpool, in brewhouse operations, 1:131
Whiskeys, 1:141, 143; 2:735
alcohol reduction in, 1:161–163
cloudiness in, 1:160
distillation of, 1:157
flavored, 1:172
maturation of, 1:159–161
production of, 1:143–144
U.S., 1:149
wood compounds in, 1:161
White chocolate, 1:226
Whitening, of rice, 2:663–664
White pan bread, yeast in, 2:727–728
White pepper, 2:311, 327–328
adulteration of, 2:319–320
measuring quality of, 2:316
White tea, manufacture of, 2:510
White vinegar, 2:540
White wines, 2:680
fermentation of, 2:692
processing flows for, 2:683, 684–685
production of, 2:689–690
Whitney, Eli, 2:282
Whole-bean roasted coffee, 1:277
Whole-cell biocatalysts, 1:505–506
Whole-grain rice, 2:663
Whole-wheat flours, 2:661
Wild rice, 2:662–664
Wiley melting point, 1:452
Wilson's disease, 2:139
Wine appreciation, 2:703–704
Wine Aroma Wheel, 2:704
Wine exports, 2:700, 701t
Wine gallon, 1:146
“Wine headache,” 2:708
Wine imports, 2:702
Wine industry, 2:674
history of, 2:675–679, 705–706
Winemaking, 2:673, 674, 683–695
fermentation in, 2:691–693
history of, 2:675–679, 705–706
specific processes in, 2:689–691, 693–695
variety selection, fruit production, and harvest in, 2:683–689
vineyard sites in, 2:688
Wine-producing countries, 2:700t
Wineries, 2:674, 702
Wines, 1:113; 2:673–711
aging of, 2:697–699
analysis of, 2:702–705
blending of, 2:697–699
classification of, 2:679–681, 709t
composition of, 2:681–683
defined, 2:673–674
economic aspects of, 2:699–702
as food products, 2:674–675
health and safety factors related to, 2:705–707
history of, 2:675–679, 705–706
maturation of, 2:697–699
processing of, 2:695–696
production/manufacture of, 2:683–699
production waste disposal, 2:696–697
quality control of, 2:702–705
recordkeeping for, 2:710
regional names for, 2:680–681, 790–710
regulation of, 2:707–710
sorbates in, 2:273, 276
spoilage of, 2:704–705
storage of, 2:697–699
Wine tasting, 2:703–704
Wine vinegar, 2:539, 541
labeling standards for, 2:549
manufacture of, 2:543, 544, 547
Wine yeast, 2:673, 678, 691–693, 733–735
Winnowing
in black tea manufacture, 2:514
in cocoa processing, 1:231
Winterization, 1:439
of corn oil, 2:667
Winter wheats, 2:656
Withering, in black tea manufacture, 2:513
Withering modification, in black tea manufacture, 2:514–515
Wool grease, 2:622–623
Wool grease derivatives, 2:623
World Administrative Radio Conference (WARC), microwave frequency allocations by, 2:42–43
World Health Organization (WHO). See also Joint FAO/WHO Expert Committee on Food Additives (JECFA)
on chocolate and cocoa, 1:225
dairy standards of, 2:98, 100
on sugar standards, 2:399
World meat markets, 2:12t
World oilseed production and consumption, 2:295t
long-term projections of, 2:297t, 298t, 299t
World soybean trade, 2:294t, 295–296
long-term projections in, 2:297t, 298t
World War I, cereal grains during, 2:645, 646, 647
World War II, biomass production after, 2:727
World wine consumption, 2:700, 701t
World wine production, 2:699–700
World Wine Trade Group, 2:708
Wort, 1:116, 126, 146
boiling, 1:121, 130–131
separation of, 1:130
Wort kettle, 1:131
Wound healing, vitamin C in, 2:577
Wurster coating, in fluidized-bed encapsulation, 1:630
Wurster units, in microencapsulation, 2:33–34
Xanthan, 1:190, 205–206, 874–875
Xanthan gum, 1:405
as food additive, 1:730
Xanthan solutions, 1:206
Xanthine oxidase, molybdenum and, 2:143
Xanthines, in tea, 2:506
Xanthophylls, 1:432
in corn, 2:665
X-ray diffraction, of starch, 2:331
Xylitol, 1:187; 2:422, 423t
analysis of, 2:434
anhydridation of, 2:429
blood glucose and insulin response to, 2:435–436
as bulking agent, 2:464–465
esterification of, 2:431
as food additive, 1:716
manufacture of, 2:433
occurrence and preparation of, 2:425–426
pKa value of, 2:425t
toxicity of, 2:435
uses of, 2:437
d-Xyloascorbic acid, 2:557–558
l-Xylnitrite, in ascorbic acid synthesis, 2:561
Xylose, xylitol from, 2:433
l-Xylose, in ascorbic acid synthesis, 2:561
l-Xylose osazone, in ascorbic acid synthesis, 2:561
l-Xylosone, in ascorbic acid synthesis, 2:561
Yarrowia lipolytica, 2:716t
Yeast colonies, 2:715
Yeasted peanut butter, uses of, 2:231
Yeast expression levels, 1:525
Yeast foods, 1:97–98
Yeast goods, sweet, 1:107
Yeast-leavened products. See also Yeast-raised products
categories of, 1:107–109
nutritionally modified, 1:108–109
Yeast-leavened sweet doughs, 1:99
Yeast products, 2:741–742
Yeast-raised products, 1:95–113. See also Yeast-leavened products
economic aspects of, 1:109–110
ingredients in, 1:96–101
procedures and equipment for, 1:101–107
Yeast recycling, 1:132
Yeasts, 1:97; 2:711–744. See also Bakers’ yeast; Brewers’ yeasts; Wine yeast
beneficial, 2:712
in biomass production, 2:737–740
in brewing, 2:730–733
composition of, 2:721, 722t
distilled beverages and, 2:735–737
dry weight yields of, 1:808
economically important, 2:711–712
in food industry, 2:726–730
foods and beverages fermented with,
2:723
growth rate of, 2:721, 723t
history of, 2:711
life cycle of, 2:711, 714–719
in making vinegar, 2:540, 541, 543
metabolism of, 2:721
morphology of, 2:714–719
mutations among, 2:720
nutrients for, 2:721
outlook for, 2:742
pathogenic, 2:741–742
reproduction of, 2:711, 714–719
sorbic acid versus, 2:269, 270–271t
in sourdoughs, 2:730
species of, 2:713t
strain improvement and development
among, 2:719–720
in wine spoilage, 2:705
Yellow oxides, 1:314
Yellow tea, manufacture of, 2:510
Yogurts, 2:106–107
nondairy, 1:331
Young animals, ruminant feeds for,
1:499–501
Ze a mays, 2:664
starch production from, 2:336–340
Zeaxanthin
macular degeneration and, 2:177–178
molecular structure of, 2:174, 175
as nutraceutical, 2:162, 173–176
in plants, 2:174t
Zein coatings, of nuts, 2:218
Zemplar, 2:601
Zeranol, as meat health hazard, 2:18
Zeta potential, 1:383
Zinc (Zn)
as essential to life, 2:115
foods rich in, 2:134t
in nuts, 2:211
as trace nutrient, 2:138
Zinc deficiency, 2:138, 670
Zinc ion (Zn$^{2+}$), cobalt ion and, 2:144
Zinc supplements, 2:138
Zinfandel, 2:690
Zingiber officinale, 2:325
Zizania aquatica, wild rice from,
2:662–663
Ziziphin, as sweetness inhibitor, 2:466
Zooplankton, waxes from, 2:618–619
Z-Trim, 1:404
Zulauf process, in bakers’ yeast fermentation, 2:725
Zygosaccharomyces, in vinegar manufacture, 2:544
Zygosaccharomyces rouxii, 2:713t
cytoplasm of, 2:717
in soy sauce production, 2:738
sporulation by, 2:719
Zymolyase, 2:718