Contents

List of Contributors XV
Preface XIX
Personal Foreword XXI

Part One Natural Products as Sources of Potential Drugs and Systematic Compound Collections 1

1 Natural Products as Drugs and Leads to Drugs: An Introduction and Perspective as of the End of 2012 3

David J. Newman and Gordon M. Cragg

1.1 Introduction 3
1.2 The Sponge-Derived Nucleoside Link to Drugs 5
1.3 Initial Recognition of Microbial Secondary Metabolites as Antibacterial Drugs 8
1.4 β-Lactams of All Classes 9
1.5 Tetracycline Derivatives 12
1.6 Glycopeptide Antibacterials 13
1.7 Lipopeptide Antibacterials 16
1.8 Macrolide Antibiotics 18
1.9 Pleuromutilin Derivatives 19
1.10 Privileged Structures 21
1.11 The Origin of the Benzodiazepines 21
1.12 Benzopyrans: A Source of Unusual Antibacterial and Other Agents 22
1.13 Multiple Enzymatic Inhibitors from Relatively Simple Natural Product Secondary Metabolites 23
1.14 A Variation on BIOS: The “Inside–Out” Approach 26
1.15 Other Privileged Structures 26
1.16 Privileged Structures as Inhibitors of Protein–Protein Interactions 27
1.17 Underprivileged Scaffolds 30
1.18 So Where Should One Look in the Twenty-First Century for Novel Structures from Natural Sources? 31
1.19 Conclusions 33
References 33

2 Natural Product-Derived and Natural Product-Inspired Compound Collections 43
Stefano Rizzo, Vijay Wakchaure, and Herbert Waldmann
2.1 Introduction 43
2.2 Modern Approaches to Produce Natural Product Libraries 44
2.3 Prefractionated Natural Product Libraries 45
2.4 Libraries of Pure Natural Products 46
2.5 Semisynthetic Libraries of Natural Product-Derived Compounds 46
2.6 Synthetic Libraries of Natural Product-Inspired Compounds 47
2.6.1 Solid-Phase Techniques 48
2.6.2 Solution-Phase Techniques 50
2.6.3 Solid-Supported Reagents and Scavengers 55
2.6.4 Tagging Approach 58
2.7 Compound Collections with Carbocyclic Core Structures 60
2.7.1 Illudin-Inspired Compound Collection 60
2.7.2 Lapochol-Inspired Naphthoquinone Collection 61
2.7.3 A Compound Collection with Decalin Core Structure 62
2.8 Compound Collections with Oxa-Heterocyclic Scaffolds 63
2.8.1 Carpanone-Inspired Compound Collection 63
2.8.2 Calanolide-Inspired Compound Collection 64
2.8.3 Benzopyran-Inspired Compound Collection 65
2.9 Compound Collections with Aza-Heterocyclic Scaffolds 66
2.9.1 Solution-Phase Synthesis of (±) Marinopyrrole A and a Corresponding Library 66
2.9.2 Alkaloid/Terpenoid-Inspired Compound Collection 67
2.10 Macrocyclic Compound Collections 68
2.10.1 Macrosphelide A-Inspired Compound Collection 68
2.10.2 Solid-Phase Synthesis of Analogs of Erythromycin A 69
2.10.3 An Aldol-Based Build/Couple/Pair Strategy for the Synthesis of Macrocycles and Medium-Sized Rings 71
2.11 Outlook 72
References 73

Part Two From Marketed Drugs to Designed Analogs and Clinical Candidates 81

3 Chemistry and Biology of Epothilones 83
Karl-Heinz Altmann and Dieter Schinzer
3.1 Introduction: Discovery and Biological Activity 83
3.2 Synthesis of Natural Epothilones 86
3.3 Synthesis and Biological Activity of Non-natural Epothilones

3.3.1 Semisynthetic Derivatives 90
3.3.2 Fully Synthetic Analogs 92
3.3.2.1 Polyketide-Based Macrocycles 92
3.3.2.2 Aza-Epothilones (Azathilones) 109
3.3.2.3 Hybrid Structures and Acyclic Analogs 112
3.4 Conformational Studies and Pharmacophore Modeling 114
3.5 Conclusions 115

References 115

4 Taxol, Taxoids, and Related Taxanes 127

Iwao Ojima, Anushree Kamath, and Joshua D. Seitz

4.1 Introduction and Historical Background 127
4.1.1 Discovery of Taxol (Paclitaxel): An Epoch-Making Anticancer Drug from Nature 127
4.1.2 Taxane Family 128
4.1.3 Sources and Methods of Production 129
4.1.3.1 Extraction from Yew Trees 129
4.1.3.2 Semisynthesis 129
4.1.3.3 Total Synthesis 130
4.1.3.4 Biotechnology Processes 131
4.1.4 Clinical Development of Taxol (Taxol®) 131
4.2 Mechanism of Action and Drug Resistance 132
4.2.1 Taxol, Cell Cycle Arrest, and Apoptosis 132
4.2.2 Drug Resistance to Taxol 133
4.3 Structure–Activity Relationships (SAR) of Taxol 133
4.3.1 SAR of Taxol 133
4.3.2 Chemical Modifications of Taxol: Taxol Derivatives and Taxoids 134
4.3.2.1 Modifications in the C13 Side Chain 134
4.3.2.2 Modification in the Baccatin Component 135
4.3.2.3 Prodrugs of Taxol 140
4.4 Structural and Chemical Biology of Taxol 141
4.4.1 Bioactive Conformation of Taxol 141
4.4.2 Microtubule-Binding Kinetics of Taxol 145
4.5 New-Generation Taxoids from 10-DAB 145
4.5.1 Taxoids from 10-DAB 145
4.5.2 Taxoids from 14β-Hydroxybaccatin III 148
4.5.3 Taxoids from 9-Dihydrobaccatin III 149
4.6 Taxoids in Clinical Development 150
4.6.1 Docetaxel (Taxotere®), RP 56976 150
4.6.2 Cabazitaxel (Jevtana®), RPR 116258A, XRP6258 153
4.6.3 Larotaxel (XRP9881, RPR109881) 153
4.6.4 Ortataxel (SB-T-101131, IDN5109, BAY59-8862, ISN 5109) 154
7.4 Resistance 257
7.5 Pseudomembranous Colitis 258
7.6 Next-Generation Lincosamides 259
7.7 Conclusions 264
References 264

8 Platensimycin and Platencin 271
Arun K. Ghosh and Kai Xi
8.1 Introduction and Historical Background 271
8.2 Discovery and Bioactivities of Platensimycin and Platencin 272
8.3 Total and Formal Syntheses of Platensimycin 278
8.4 Total and Formal Syntheses of Platencin 283
8.5 Analogs of Platensimycin and Platencin 287
8.6 Conclusions and Perspective 295
References 296

9 From Natural Product to New Diabetes Therapy: Phlorizin and the
Discovery of SGLT2 Inhibitor Clinical Candidates 301
Vincent Mascitti and Ralph P. Robinson
9.1 Introduction 301
9.2 Phlorizin: A Drug Lead from Apple Trees 302
9.3 Phlorizin: Mechanism of Action 304
9.4 Phlorizin, SGLTs, and Diabetes 306
9.5 Phlorizin Analogs: O-Glucosides 306
9.6 Phlorizin Analogs: C-Glucosides 309
9.7 C-Glucosides: Aglycone Modifications 314
9.8 C-Glucosides: Sugar Modifications 316
9.9 Conclusions 325
References 325

10 Aeruginosins as Thrombin Inhibitors 333
Juan R. Del Valle, Eric Therrien, and Stephen Hanessian
10.1 Introduction 333
10.2 Targeting the Blood Coagulation Cascade 333
10.3 Structure of Thrombin 335
10.4 The Aeruginosin Family 336
10.4.1 Aeruginosin 298A and Related Microcystis sp. Peptides 336
10.4.2 Oscillarin and Related Oscillatoria sp. Peptides 339
10.4.3 Dysinosin A and Related Peptides from Dysidaeae Sponges 340
10.4.4 Structurally Related Antithrombin Peptide Natural Products 342
10.4.5 Close Analogs of Antithrombotic Aeruginosins 344
10.5 Mimicking Nature 346
10.5.1 The 50-Year Challenge 348
10.5.2 Peptide Analogs 350
10.5.3 Peptidomimetics 352
Chapter 11

Macrolides and Antifungals via Biotransformation

Aaron E. May and Chaitan Khosla

11.1 Introduction to Polyketides and Their Activity 367
11.2 Mechanism of Polyketide Biosynthesis 367
11.2.1 Erythromycin 371
11.2.2 Avermectin/Doramectin 377
11.2.3 Tetracyclines 381
11.2.4 Salinosporamides 385
11.3 Conclusions 391
References 392

Chapter 12

Unnatural Nucleoside Analogs for Antisense Therapy

Punit P. Seth and Eric E. Swayze

12.1 Nature Uses Nucleic Acid Polymers for Storage, Transfer, Synthesis, and Regulation of Genetic Information 403
12.2 The Antisense Approach to Drug Discovery 404
12.3 The Medicinal Chemistry Approach to Oligonucleotide Drugs 406
12.4 Structural Features of DNA and RNA Duplexes 407
12.5 Improving Binding Affinity of Oligonucleotides by Structural Mimicry of RNA 410
12.5.1 2'-Modified RNA 411
12.5.1.1 2'-O-Me RNA 411
12.5.1.2 2'-O-Methoxyethyl RNA 412
12.5.1.3 2'-Fluoro RNA 413
12.5.2 2',4'-Bridged Nucleic Acids 414
12.5.2.1 2',4'-Constrained MOE and 2',4'-Constrained Ethyl BNA 415
12.5.2.2 5'-Me-LNA 416
12.5.2.3 Carbocyclic LNA Analogs 417
12.5.2.4 Ring-Expanded BNA Analogs 417
12.5.2.5 α-β-Bridged Nucleic Acids 418
12.5.3 Hexitol Nucleic Acids 420
12.6 Improving Binding Affinity of Oligonucleotides by Conformational Restraint of DNA – the Bicyclo- and Tricyclo-DNA Class of Nucleic Acid Analogs 421
12.7 Improving Binding Affinity of Oligonucleotides by Conformational Restraint of the Phosphodiester Backbone – α,β-Constrained Nucleic Acids 423
12.8 Naturally Occurring Backbone Modifications 424
12.8.1 The Phosphorothioate Modification 425
12.9 Naturally Occurring Heterocycle Modifications 426
12.9.1 5-Substituted Pyrimidine Analogs 427
12.10 Outlook 428
References 429

13 Hybrid Natural Products 441
Keisuke Suzuki and Yoshizumi Yasui
13.1 Introduction 441
13.2 Staurosporines (Amino Acid–Sugar Hybrids) 444
13.2.1 Occurrence 444
13.2.2 Bioactivity 445
13.2.3 Biosynthesis 446
13.2.4 Synthesis 446
13.2.5 Medicinal Chemistry 447
13.3 Lincomycins (Amino Acid–Sugar Hybrids) 448
13.3.1 Occurrence 448
13.3.2 Bioactivity 448
13.3.3 Biosynthesis 448
13.3.4 Medicinal Chemistry 449
13.4 Madindolines (Amino Acid–Polyketide Hybrids) 449
13.4.1 Occurrence 449
13.4.2 Bioactivity 450
13.4.3 Synthesis 451
13.5 Kainoids (Amino Acid–Terpene Hybrids) 451
13.5.1 Occurrence 451
13.5.2 Bioactivity 451
13.5.3 Biosynthesis 453
13.5.4 Synthesis 453
13.5.5 Medicinal Chemistry 453
13.6 Benanomicin–Pradimicin Antibiotics (Sugar–Polyketide Hybrids) 455
13.6.1 Occurrence 455
13.6.2 Bioactivity 455
13.6.3 Medicinal Chemistry 456
13.6.4 Synthesis 457
13.7 Angucyclines (Sugar–Polyketide Hybrids) 457
13.7.1 Occurrence and Biosynthesis 457
13.7.2 Bioactivity 459
13.7.3 Synthesis 460
13.8 Furaquinocins (Polyketide–Terpene Hybrids) 462
13.8.1 Occurrence 462
13.8.2 Biosynthesis 464
13.8.3 Synthesis 464
13.9 Conclusions 467
References 467
Part Four: Natural Products as Pharmacological Tools

14. Rethinking the Role of Natural Products: Function-Oriented Synthesis, Bryostatin, and Bryologs

Paul A. Wender, Alison C. Donnelly, Brian A. Loy, Katherine E. Near, and Daryl Staveness

14.1 Introduction

14.2 Introduction to Function-Oriented Synthesis

14.2.1 Representative Examples of Function-Oriented Synthesis

14.3 Introduction to Bryostatin

14.4 Bryostatin Total Syntheses

14.4.1 Total Syntheses of Bryostatins 2, 3, and 7 (1990–2000)

14.4.2 Total Synthesis of Bryostatin 16 (2008)

14.4.3 Total Synthesis of Bryostatin 1 (2011)

14.4.4 Total Synthesis of Bryostatin 9 (2011)

14.4.5 Total Synthesis of Bryostatin 7 (2011)

14.5 Application of FOS to the Bryostatin Scaffold

14.5.1 Initial Pharmacophoric Investigations on the Bryostatin Scaffold

14.5.2 Design of the First Synthetically Accessible Functional Bryostatin Analogs

14.5.3 Initial Preclinical Investigations of Functional Bryostatin Analogs

14.5.4 Des-A-Ring Analogs

14.5.5 C13-Functionalized Analogs

14.5.6 B-Ring Dioxolane Analog

14.5.7 C20 Analogs

14.5.8 C7 Analogs

14.5.9 A-Ring Functionalized Bryostatin Analogs

14.5.10 New Methodology: Prins-Driven Macrocyclization Toward B-Ring Pyran Analogs

14.5.11 A-Ring Functionalized Analogs and Induction of Latent HIV Expression

14.6 Conclusions

References

15. Cyclopamine and Congeners

Philipp Heretsch and Athanassios Giannis

15.1 Introduction

15.2 The Discovery of Cyclopamine

15.3 Accessibility of Cyclopamine

15.4 The Hedgehog Signaling Pathway

15.5 Medical Relevance of Cyclopamine and the Hedgehog Signaling Pathway

15.5.1 Models of Cancer Involving the Hedgehog Signaling Pathway

15.5.2 Hedgehog Signaling Pathway Inhibitors for the Treatment of Pancreatic Cancer, Myelofibrosis, and Chondrosarcoma

References
15.5.3 Prodrugs of Cyclopamine 555
15.6 Further Modulators of the Hedgehog Signaling Pathway 556
15.7 Summary and Outlook 558
References 558

Part Five Nature: The Provider, the Enticer, and the Healer 565

16 Hybrids, Congeners, Mimics, and Constrained Variants Spanning 30 Years of Natural Products Chemistry: A Personal Retrospective 567

Stephen Hanessian

16.1 Introduction 567
16.2 Structure-Based Organic Synthesis 570
16.3 Nucleosides 572
16.3.1 Quantamycin 572
16.3.2 Malayamycin A 573
16.3.3 Hydantocidin 573
16.4 β-Lactams 576
16.4.1 Analog Design 576
16.4.2 Unnatural β-Lactams 577
16.5 Morphinomimetics 579
16.6 Histone Deacetylase Inhibitors 580
16.6.1 Acyclic Inhibitors 581
16.6.2 Macrocyclic Inhibitors 582
16.7 Pactamycin Analogs 583
16.8 Aeruginosins: From Natural Products to Achiral Analogs 586
16.8.1 Structure-Based Hybrids and Truncated Analogs 586
16.8.2 Constrained Peptidomimetics 589
16.8.3 Achiral Inhibitors 589
16.9 Avermectin B_{1a} and Bafilomycin A_{1} 591
16.10 Bafilomycin A_{1} 592
16.11 3-N,N-Dimethylamino Lincomycin 594
16.12 Oxazolidinone Ketolide Mimetics 595
16.13 Epilogue 596
References 598

Index 611