Contents

Preface XV

Disclaimer XVII

1 Principles of Industry Immersion Learning 1

Lisbeth Borbye

1.1 Introduction 2
1.2 Building a University – Industry Alliance 3
1.2.1 Educational Needs Assessment 3
1.2.2 Establishing Contact 3
1.2.3 Marketing Incentives 5
1.2.4 Obtaining Commitment 5
1.2.5 Alliance Dynamics 5
1.3 Design, Format, and Model Examples of Case Studies 6
1.3.1 Example 1: Technology Development 6
1.3.2 Example 2: Product Assessment 7
1.3.3 Example 3: Business Development 7
1.4 Basics of Industry Immersion Learning 8
1.4.1 Definition and Characterization 8
1.4.2 The Immersion Environment 8
1.4.3 Sample Work Flow of an Immersion Case Study 8
1.4.4 Interactive Agents 8
1.5 Predicted Learning Outcomes 9
1.6 Assessment of Actual Learning Outcomes 10
1.7 Overview of Selected Case Studies 10
1.8 Logistics of Industry Immersion Teaching 11
1.8.1 Topic Selection 11
1.8.2 Instructor and Instructor Affiliation 11
1.8.3 Timeline 13
1.8.4 Location 13
1.8.5 Teaching Format 14
1.8.6 Student Deliverables 14
2 Integration of Pharmaceutical and Diagnostic Co-Development
and Commercialization: Adding Value to Therapeutics
by Applying Biomarkers 17

Michael Stocum

2.1 Mission 18

2.2 Goals 18

2.3 Predicted Learning Outcomes 19

2.4 Introduction 19

2.4.1 Current Environment for Pharmaceutical and Diagnostic
Product Development 21

2.4.2 Potential Solutions to the Challenges Confronting Pharma 25
2.4.2.1 Genomics and Proteomics, Metabolomics, and “Other -omics” 25
2.4.2.2 Translational Research 26
2.4.2.3 Biomarkers 26

2.4.3 Drug Development for Targeted Cancer Therapies 27

2.4.3.1 Tamoxifen in Estrogen-Receptor-Positive Breast Cancer 27
2.4.3.2 Trastuzumab (Herceptin) in Breast Cancers Overexpressing
Her2 28

2.4.3.3 Imatinib (Gleevec) in Chronic Myelogenous Leukemia
and Gastrointestinal Stromal Tumors 29

2.4.3.4 Other Targeted Therapies 30

2.4.4 Specific Example of Lapatinib (Tykerb) 30

2.4.4.1 Leveraging Biomarkers and Diagnostics to Accelerate
Drug Development 30

2.4.4.2 Potential to Enhance Commercial Success with
Companion Diagnostics 32

2.4.5 Personalized Medicine 33

2.5 Case Scenario 33

2.6 Timeline 34

2.7 Study Plan and Assignments 34

2.7.1 Session 1 34

2.7.2 Session 2 35

2.7.3 Session 3 35

2.7.4 Session 4 36

2.7.5 Session 5 39

2.7.6 Session 6 39

Acknowledgment 39

Resources 39
Product Portfolio Planning and Management in the Pharmaceutical Industry

Alan Woodall

3.1 Mission 42
3.2 Goals 42
3.3 Predicted Learning Outcomes 43
3.4 Introduction 43
Preclinical Phase 44
Phase I 44
Phase II 44
Phase III 44
Marketing Application 44
Phase IV 44
3.5 Case Scenario 46
3.6 Timeline 47
3.7 Study Plan and Assignments 47
3.7.1 Session 1 47
3.7.2 Session 2 49
3.7.3 Session 3 51
3.7.4 Session 4 52
3.7.5 Session 5 55
3.7.6 Session 6 55
3.7.7 Session 7 55
3.7.8 Session 8 55

Appendix A: Method for Net Present Value Calculations 58
Appendix B: Glossary of Abbreviations and Terms 59

Entrepreneurship: Establishing a New Biotechnology Venture

Cedric Pearce

4.1 Mission 62
4.2 Goals 62
4.3 Predicted Learning Outcomes 62
4.4 Introduction 62
4.4.1 Characteristics of an Entrepreneur 63
4.4.2 Twenty Questions to Determine How Entrepreneurial You Are 64
4.4.3 From Idea to Concept Evaluation 65
4.4.4 Assessing Opportunity and Writing a Business Plan 68
4.4.5 Organizing the Venture 71
4.4.6 Financing the Business 72
4.4.7 Start-Up Dynamics 74
4.5 Timeline 75
4.6 Study Plan and Assignments 75
4.6.1 Session 1 75
4.6.2 Session 2 76
Contents

<table>
<thead>
<tr>
<th>Session</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>77</td>
</tr>
<tr>
<td>8</td>
<td>77</td>
</tr>
</tbody>
</table>

5 Introduction to US Patent Law
Elaine T. Sale

5.1 Mission 80
5.2 Goals 80
5.3 Predicted Learning Outcomes 80
5.4 Introduction 81
5.4.1 Brief Description of US Patents 81
5.4.2 Patentable Subject Matter 83
5.4.3 Utility 84
5.4.4 Novelty 85
5.4.5 Nonobviousness 88
5.4.6 Enablement 90
5.4.7 Written Description 91
5.4.8 Best Mode 92
5.4.9 Claim Drafting 92
5.4.10 Invention and Inventorship 96
5.4.12 Patent Infringement 106
5.4.13 Patent Ownership and Intellectual Property Agreements 110
5.5 Timeline 113
5.6 Study Plan and Assignments 113
5.6.1 Session 1 113
5.6.2 Session 2 113
5.6.3 Session 3 113
5.6.4 Session 4 114
5.6.5 Session 5 114
5.6.6 Session 6 114
5.6.7 Session 7 114
5.6.8 Session 8 115

6 Intellectual Property Management
William Barrett

6.1 Mission 118
6.2 Goals 118
6.3 Predicted Learning Outcomes 119
6.4 Introduction 119
6.4.1 Economics of IP 120
6.4.2 Globalization of Innovation 121
6.4.3 Creating an IP Strategy 122
6.4.3.1 IP Vision 123
6.4.3.2 IP Plan 124
6.4.3.3 IP Team 124
6.4.4 Invention Assessment 125
6.4.4.1 Novelty 125
6.4.4.2 Probability of Technological Success (Technology Risk) 126
6.4.4.3 Invention Type 126
6.4.5 Mapping the Competitive Patent Landscape 127
6.4.5.1 Conducting a Search 128
6.4.5.2 Identification of Relevant Patent Documents 129
6.4.5.3 Mapping of Relevant Patent Documents 129
6.4.5.4 Screening Out Clearly Noninfringing Patents 132
6.4.5.5 Analyzing Potentially Infringing Patents 132
6.4.5.6 Analyzing Clearly Infringing Patents 134
6.4.6 Conclusion 135
6.5 Timeline 135
6.6 Study Plan and Assignments 135
6.6.1 Session 1 135
6.6.2 Session 2 136
6.6.3 Session 3 137
6.6.4 Session 4 138
6.6.5 Session 5 139
6.6.6 Session 6 140
6.6.7 Session 7 140
6.6.8 Session 8 140

7 Operational Excellence in Pharmaceutical Manufacturing 141
Lucia Clontz
7.1 Mission 143
7.2 Goals 143
7.3 Introduction 143
7.3.1 Overview of the Drug Manufacturing Process 143
7.3.2 A Change in Paradigm for the Pharmaceutical Industry 144
7.4 Part I – Operational Excellence: Implementing Process Improvements 145
7.4.1 Introduction to Lean Manufacturing 145
7.5 Predicted Learning Outcomes 148
7.6 Case Scenario 149
7.7 Timeline 149
7.8 Study Plan and Assignments 150
8 Aligning Behaviors and Standards in a Regulated Industry: Design and Implementation of a Job Observation Program

Amy Peterson and John Shaeffer

8.1 Mission 176
8.2 Goals 176
8.3 Predicted Learning Outcome 177
8.4 Introduction 177
8.4.1 Human Error and Human Error Prevention by Job Observation 177
8.4.2 Procedural Adherence and Human Behavior 178
8.4.3 The Necessity for Job Observation 178
8.5 Case Scenario 179
8.6 Timeline 181
8.7 Study Plan and Assignments 181
8.7.1 Session 1 181
8.7.1.1 Assignment #1 181
8.7.2 Session 2 181
8.7.2.1 Presentations 181
8.7.2.2 Assignment #2 181
8.7.3 Session 3 182
8.7.3.1 Assignment #3 182
8.7.4 Session 4 182
8.7.4.1 Assignment #4 182
8.7.5 Session 5 182
8.7.5.1 Assignment #5 182
8.7.6 Session 6 182
8.7.6.1 Assignment #6 182
8.7.7 Session 7 182
8.7.7.1 Assignment #7 182
8.7.8 Session 8 183
8.7.8.1 Presentations 183
8.8 Items Needed for a Widely Applicable Job Observation Program 183
8.9 Job Observation Program Evaluation 184
Appendix A: Job Observation Program for a Commercial Kitchen 184
A1 Behavior Standards 185
A2 Metrics 185
A3 Example Form: Job Observation – Commercial Cooking 186
A4 Items for the basis of an observation program 187
Appendix B: Job Observation Program for GMP Documentation in a Manufacturing Facility 190
B1 Behavior Standards 190
B2 Metrics 190
B3 Example Form: Job Observation for GMP Documentation in a Manufacturing Facility 191
B4 Comparison: Manufacturing Observation Program vs. Standards 191
B4.1 Items for the basis of an observation program 191
Appendix C: Test 195
Test and Test Answers 195
Resources 196

Subject Index 197