Contents

This report is the collective work of all the members of the Task Force. Authors of the final draft of each chapter are given below.

Foreword xiv
Terms of Reference xvi
Task Force Membership xvii

1 Introduction to Early Life and Later Disease 1

Dr Siân Robinson

1.1 Environmental influences on development 1
1.1.1 Nutrition and the early environment 1
1.1.2 Variations in growth and development 2
1.2 Links between early life and adult disease 3
1.2.1 Animal studies 3
1.2.2 Evidence from human populations 3
1.2.3 The interaction of fetal and postnatal experience and adult disease 5
1.2.4 Vulnerability to stressors acting in adult life 6
1.3 Biological mechanisms 7
1.3.1 Fetal programming 7
1.3.2 Developmental plasticity 8
1.4 Nutrition of mothers and children 8
1.4.1 Observational studies of maternal diet 9
1.4.2 Supplementation studies 9
1.4.3 Maternal body composition 10
1.4.4 Postnatal nutrition 10
1.5 Nutrition of young women today 11
1.6 Key points 11
1.7 Key references 12

2 Normal Growth and Development 13

Professor J. Harry McArdle, Dr Laura A. Wyness and Dr Lorraine Gambling

2.1 Introduction 13
2.2 Prenatal development 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>Current practice and recommendations: breastfeeding</td>
<td>43</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Benefits of breastfeeding</td>
<td>43</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Recommendations for breastfeeding: historical perspective and evidence base</td>
<td>43</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Breastfeeding: current practice</td>
<td>45</td>
</tr>
<tr>
<td>3.8</td>
<td>Current practice and recommendations: formula feeding</td>
<td>50</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Composition of infant formulas</td>
<td>50</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Feeding infant formula</td>
<td>52</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Formula feeding: current practice</td>
<td>53</td>
</tr>
<tr>
<td>3.9</td>
<td>Current practice and recommendations: weaning/complementary feeding</td>
<td>53</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Recommendations: timing of introduction of complementary foods</td>
<td>53</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Current practice of timing of introduction of complementary foods</td>
<td>55</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Development of taste preferences and the importance of texture</td>
<td>58</td>
</tr>
<tr>
<td>3.9.4</td>
<td>Baby-led weaning</td>
<td>59</td>
</tr>
<tr>
<td>3.9.5</td>
<td>Recommendations: specific food types</td>
<td>60</td>
</tr>
<tr>
<td>3.9.6</td>
<td>Recommendations: important nutrients to include in the weaning diet</td>
<td>61</td>
</tr>
<tr>
<td>3.9.7</td>
<td>Current practice: types of food/drink introduced</td>
<td>62</td>
</tr>
<tr>
<td>3.9.8</td>
<td>Vegetarian diets</td>
<td>65</td>
</tr>
<tr>
<td>3.9.9</td>
<td>Vegan diets</td>
<td>66</td>
</tr>
<tr>
<td>3.9.10</td>
<td>Foods to avoid during introduction of solids</td>
<td>66</td>
</tr>
<tr>
<td>3.9.11</td>
<td>Current practice: foods avoided during introduction of solids</td>
<td>66</td>
</tr>
<tr>
<td>3.10</td>
<td>Allergy</td>
<td>67</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Development of allergies</td>
<td>67</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Peanut allergy</td>
<td>67</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Coeliac disease</td>
<td>67</td>
</tr>
<tr>
<td>3.10.4</td>
<td>Cows’ milk protein allergy</td>
<td>68</td>
</tr>
<tr>
<td>3.11</td>
<td>Conclusions</td>
<td>68</td>
</tr>
<tr>
<td>3.12</td>
<td>Key points</td>
<td>69</td>
</tr>
<tr>
<td>3.13</td>
<td>Recommendations for future research</td>
<td>70</td>
</tr>
<tr>
<td>3.14</td>
<td>Key references</td>
<td>70</td>
</tr>
<tr>
<td>Appendix 3.1</td>
<td>Historical perspective on breastfeeding and artificial feeding</td>
<td>71</td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Artificial infant formula</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

4 Mechanisms and Pathways of Critical Windows of Development

Professor Harry J. McArdle and Dr Lorraine Gambling

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>Embryo stages</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>Development of placenta</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Nutritional programming: the effect of nutrition on fetal development</td>
<td>77</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Severe effects of micronutrient deprivation in pregnancy</td>
<td>77</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The effect of famine on fetal development</td>
<td>78</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Experimental models for the study of poor nutrition on fetal development</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>Potential mechanisms of nutritional programming</td>
<td>80</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Disruption of organ development</td>
<td>81</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Disruption of the endocrine environment</td>
<td>81</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Epigenetics</td>
<td>83</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Telomere length</td>
<td>84</td>
</tr>
<tr>
<td>4.5.5</td>
<td>The gatekeeper hypothesis</td>
<td>84</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusions</td>
<td>84</td>
</tr>
<tr>
<td>4.7</td>
<td>Key points</td>
<td>85</td>
</tr>
</tbody>
</table>
5 Perinatal Effects of Sex Hormones in Programming of Susceptibility to Disease

Professor Richard M. Sharpe

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>86</td>
</tr>
<tr>
<td>5.2 Timing of masculinisation and its body-wide effects</td>
<td>86</td>
</tr>
<tr>
<td>5.3 Disorders of masculinisation</td>
<td>87</td>
</tr>
<tr>
<td>5.4 Male–female differences in disease risk: the potential role of perinatal androgens</td>
<td>88</td>
</tr>
<tr>
<td>5.5 Fetal growth, susceptibility to intrauterine growth restriction and its long-term consequences, including timing of puberty</td>
<td>88</td>
</tr>
<tr>
<td>5.6 Growth hormone–insulin-like growth factor-I axis</td>
<td>90</td>
</tr>
<tr>
<td>5.7 Brain and behavioural effects</td>
<td>90</td>
</tr>
<tr>
<td>5.8 Sex differences in eating disorders, neuronal mechanisms and adipose tissue distribution</td>
<td>90</td>
</tr>
<tr>
<td>5.8.1 Eating disorders</td>
<td>90</td>
</tr>
<tr>
<td>5.8.2 Kisspeptin system</td>
<td>91</td>
</tr>
<tr>
<td>5.8.3 Dietary preferences</td>
<td>91</td>
</tr>
<tr>
<td>5.8.4 Body fat distribution</td>
<td>91</td>
</tr>
<tr>
<td>5.9 Cardiovascular disease/hypertension</td>
<td>92</td>
</tr>
<tr>
<td>5.10 Kidney disease/hypertension</td>
<td>92</td>
</tr>
<tr>
<td>5.11 The immune system</td>
<td>93</td>
</tr>
<tr>
<td>5.12 Lung development and disease risk</td>
<td>93</td>
</tr>
<tr>
<td>5.13 Effects of maternal diet/obesity and infant feeding choices</td>
<td>93</td>
</tr>
<tr>
<td>5.14 ‘Fetal programming’ and epigenetic mechanisms</td>
<td>95</td>
</tr>
<tr>
<td>5.15 Conclusions</td>
<td>95</td>
</tr>
<tr>
<td>5.16 Key points</td>
<td>95</td>
</tr>
<tr>
<td>5.17 Recommendations for future research</td>
<td>96</td>
</tr>
<tr>
<td>5.18 Key references</td>
<td>96</td>
</tr>
</tbody>
</table>

6 Neurological Development

Professor Julian G. Mercer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>97</td>
</tr>
<tr>
<td>6.1.1 The vulnerability of the developing brain</td>
<td>97</td>
</tr>
<tr>
<td>6.1.2 Mechanistic studies in animal models</td>
<td>97</td>
</tr>
<tr>
<td>6.1.3 Levels of nutritional effect</td>
<td>98</td>
</tr>
<tr>
<td>6.1.4 Environments</td>
<td>98</td>
</tr>
<tr>
<td>6.2 The developing brain</td>
<td>99</td>
</tr>
<tr>
<td>6.2.1 Timing</td>
<td>99</td>
</tr>
<tr>
<td>6.2.2 Human brain development</td>
<td>99</td>
</tr>
<tr>
<td>6.2.3 Pregnancy outcome</td>
<td>100</td>
</tr>
<tr>
<td>6.3 Brain energy balance circuits and peripheral feedback signals</td>
<td>101</td>
</tr>
<tr>
<td>6.3.1 Background</td>
<td>101</td>
</tr>
<tr>
<td>6.3.2 Structures and development</td>
<td>101</td>
</tr>
<tr>
<td>6.3.3 Hormonal feedback</td>
<td>104</td>
</tr>
<tr>
<td>6.4 Nutritional influences on the developing brain</td>
<td>106</td>
</tr>
<tr>
<td>6.4.1 Risk factors</td>
<td>106</td>
</tr>
<tr>
<td>6.4.2 Global over-nutrition</td>
<td>107</td>
</tr>
<tr>
<td>6.4.3 Global under-nutrition</td>
<td>108</td>
</tr>
<tr>
<td>6.4.4 Micronutrient deficiency</td>
<td>109</td>
</tr>
<tr>
<td>6.4.5 Long-chain fatty acid deficiency</td>
<td>110</td>
</tr>
</tbody>
</table>
6.5 Programming mechanisms 110
 6.5.1 Glucocorticoids 110
 6.5.2 Epigenetics 111
6.6 Nutritional interventions 112
6.7 Conclusions 113
6.8 Key points 114
6.9 Recommendations for future research 115
6.10 Key references 115

7 Establishing of Gut Microbiota and Bacterial Colonisation of the Gut in Early Life 116
 Dr Anne L. McCartney
 7.1 Introduction 116
 7.1.1 Investigating gut microbiota 116
 7.1.2 Human gut microbiota 117
 7.2 Acquisition of the gut microbiota 117
 7.3 Factors affecting the infant gut microbiota (acquisition and development) 118
 7.3.1 Gestational age 118
 7.3.2 Mode of delivery 119
 7.3.3 Host genetics 119
 7.3.4 Geography and/or lifestyles 119
 7.3.5 Diet 120
 7.4 The gut microbiota of exclusively milk-fed infants 120
 7.5 The effects of weaning on the infant gut microbiota 123
 7.6 Potential long-term effects: implications for obesity 128
 7.7 Conclusions 128
 7.8 Key points 128
 7.9 Recommendations for future research 129
 7.10 Key references 129

8 Nutrition and Development: Obesity 130
 Professor Lucilla Poston
 8.1 Introduction 130
 8.2 Inadequate in utero nutrition: a risk factor for obesity in later life? 130
 8.2.1 Evidence from human population studies 130
 8.2.2 Early postnatal ‘catch-up’ growth and obesity risk 131
 8.2.3 Exposure to famine during gestation 132
 8.3 Breastfeeding and risk of obesity in later life 132
 8.4 Maternal diabetes and obesity: early life determinants of offspring obesity? 132
 8.4.1 Association of higher birthweight with offspring adiposity 133
 8.4.2 Maternal diabetes 133
 8.4.3 Maternal obesity: a determinant of offspring obesity? 134
 8.4.4 Gestational weight gain and offspring adiposity 135
 8.5 Interventions to reduce offspring obesity? 135
 8.5.1 Reducing low birthweight 135
 8.5.2 Reducing infant postnatal weight gain 135
 8.5.3 Formula feed composition 136
 8.6 Interventions in pregnant diabetic women 136
 8.7 Interventions in obese pregnant women 137
 8.7.1 Other modifiable factors which may contribute to offspring obesity 137
 8.8 Mechanisms underlying the early life origins of obesity; role of animal studies 138
 8.8.1 Maternal under-nutrition 138
 8.8.2 Maternal diabetes 138
8.8.3 Maternal obesity 139
8.8.4 Neonatal overfeeding 139
8.9 A central role for disturbance in pathways of appetite regulation 139
8.9.1 Fetal and neonatal hyperinsulinaemia 139
8.9.2 Fetal and neonatal hyperleptinaemia 140
8.9.3 Maternal obesity 140
8.9.4 Cellular pathways of energy metabolism 140
8.9.5 Mechanisms underlying persistent modification of gene expression 140
8.10 Conclusions 141
8.11 Key points 141
8.12 Recommendations for future research 142
8.13 Key references 142

9 Nutrition and Development: Type 2 Diabetes 143
 Dr Susan E. Ozanne
9.1 Introduction 143
9.2 Relationships between birthweight and type 2 diabetes 144
 9.2.1 Low birthweight and type 2 diabetes 144
 9.2.2 High birthweight and type 2 diabetes 144
9.3 Postnatal growth 144
9.4 Evidence for the role of early nutrition in humans influencing type 2 diabetes risk 145
 9.4.1 During pregnancy 145
 9.4.2 During lactation 145
9.5 Evidence for the role of early nutrition in animal models influencing type 2 diabetes risk 145
 9.5.1 Models of under-nutrition 145
 9.5.2 Models of over-nutrition 146
 9.5.3 Underlying mechanisms 147
9.6 Conclusions 148
9.7 Key points 148
9.8 Recommendations for future research 149
9.9 Key references 149

10 Nutrition and Development: Cardiovascular Disease 150
 Dr Paul D. Taylor and Professor Thomas A. B. Sanders
10.1 Introduction 150
10.2 Evidence-based on clinical endpoints 151
10.3 Postnatal growth 152
10.4 Programming of atherosclerosis 153
10.5 Programming of blood pressure 157
10.6 Animal models of nutritional manipulation in early life 158
 10.6.1 Mechanisms of hypertension in animal models of under-nutrition 159
 10.6.2 Cardiovascular dysfunction in animal models of over-nutrition 160
 10.6.3 Developmental programming of cardiac function 161
10.7 Conclusions 162
10.8 Key points 162
10.9 Recommendations for future research 162
10.10 Key references 163

11 Nutrition and Development: Cancer 164
 Professor Paul Haggarty and Professor Steven Darryll Heys
11.1 Cancer incidence and trends 164
11.2 Cancer biology 165
11.3 Evidence linking early nutrition to cancer 166
11.3.1 Interventions 166
11.3.2 Breast versus bottle feeding 167
11.3.3 Famine 167
11.3.4 Birth anthropometry 167
11.3.5 Childhood anthropometry and growth 168
11.3.6 Adult stature and body composition 168
11.4 Possible mechanisms linking early nutrition to cancer risk 168
11.4.1 Genotype 168
11.4.2 Epigenotype 170
11.4.3 Phenotype 172
11.5 Conclusions 174
11.6 Key points 175
11.7 Recommendations for future research 175
11.8 Key references 176

12 Nutrition and Development: Bone Health 177
Dr Vicki Quincey, Professor Elaine Dennison, Professor Cyrus Cooper and Dr Nicholas C. Harvey
12.1 Early life origins of osteoporosis 177
12.1.1 Osteoporosis epidemiology 177
12.1.2 Normal development of bone size and volumetric density 177
12.1.3 Tracking of growth 178
12.1.4 Peak bone mass and risk of fracture 180
12.1.5 Early influences on bone development 180
12.2 Maternal nutrition in pregnancy 180
12.2.1 The role of maternal vitamin D 180
12.2.2 Vitamin D intervention studies in pregnancy 181
12.2.3 Safety of vitamin D supplementation in pregnancy 182
12.2.4 Calcium nutrition in pregnancy 183
12.2.5 Polyunsaturated fatty acids and bone metabolism 184
12.3 Postnatal calcium and vitamin D nutrition 184
12.3.1 Calcium nutrition in infancy 184
12.3.2 Vitamin D nutrition in infancy 185
12.4 Calcium and vitamin D nutrition in older children 186
12.5 Vitamin D: problems with defining normality 186
12.6 Physical activity and bone health in childhood 188
12.7 Conclusions 189
12.8 Key points 189
12.9 Recommendations for future research 190
12.10 Key references 190

13 Nutrition and Development: Asthma and Allergic Disease 191
Professor Graham S. Devereux and Dr Nanda Prabhu
13.1 Introduction 191
13.2 Pathogenesis 191
13.3 Increasing prevalence of asthma and allergic disease 193
13.4 Impact of asthma and allergic disease 193
Contents

13.5 Importance of antenatal and early life influences on asthma and allergic disease 194
 13.5.1 Birth anthropometry 194
 13.5.2 Neonatal lung function and asthma 194
 13.5.3 Neonatal immunology 195

13.6 Maternal dietary food allergen intake during pregnancy and breastfeeding 195
 13.6.1 Fetal allergen exposure 196
 13.6.2 Cord blood mononuclear cell responses and maternal exposure to allergen 196
 13.6.3 Cord blood mononuclear cell responses and subsequent allergic disease 197
 13.6.4 Observational and intervention studies of maternal diet during pregnancy and lactation 197

13.7 Breastfeeding and childhood atopic dermatitis and asthma 198

13.8 Infant dietary food allergen intake 198

13.9 Early life nutrient intake 199
 13.9.1 Antioxidant hypothesis 199
 13.9.2 Polyunsaturated fatty acids hypothesis 200
 13.9.3 Vitamin D hypotheses 200
 13.9.4 Maternal antioxidant status during pregnancy and childhood asthma and allergy 201
 13.9.5 Early life polyunsaturated fatty acid status and childhood asthma and allergy 201
 13.9.6 Early life vitamin D status and childhood asthma and allergy 202
 13.9.7 Early life nutrient intake and childhood asthma and allergic disease 202

13.10 Obesity and childhood asthma and allergic disease 203

13.11 Conclusions 203

13.12 Key points 204

13.13 Recommendations for future research 204

13.14 Key references 205

14 Nutrition and Development: Early Nutrition, Mental Development and Mental Ageing 206
 Professor Marcus Richards, Dr Alan Dangour and Professor Ricardo Uauy

14.1 The importance of mental development and ageing 206

14.2 Maternal diet during pregnancy 207

14.3 Breastfeeding 209
 14.3.1 Breastfeeding and cognitive development 209
 14.3.2 Long-term cognitive effects of breastfeeding 210
 14.3.3 Breastfeeding and cognitive development: a caveat 211
 14.3.4 Infant feeding and the central nervous system 211
 14.3.5 Breastfeeding and behavioural development 211
 14.3.6 Optimal duration of breastfeeding 212

14.4 Post-weaning diet 212
 14.4.1 Dietary patterns at the macro level 213
 14.4.2 Iron status in childhood 213
 14.4.3 Food intolerance and mental development: additives and preservatives 213

14.5 Conclusions 213

14.6 Key points 214

14.7 Recommendations for future research 215

14.8 Key references 215

15 Putting the Science into Practice: Public Health Implications 216
 Professor Judith L. Buttriss, Sara A. Stanner and Professor Thomas A. B. Sanders

15.1 Introduction 216
 15.1.1 Critical windows 216
 15.1.2 Endocrine system development 217
17 Recommendations of the Task Force

17.1 Priorities for future research on current practice in relation to early life development 265
17.2 Priorities for future research on mechanisms and pathways of early life development 265
 17.2.1 Normal growth and development 265
 17.2.2 Mechanisms and pathways of critical windows of development 266
 17.2.3 Perinatal effects of sex hormones in programming of disease susceptibility 266
 17.2.4 Cognitive and neurological development 266
 17.2.5 Establishing gut microbiota and bacterial colonisation of the gut in early life 266
17.3 Priorities for future research: specific diseases 267
 17.3.1 Obesity 267
 17.3.2 Diabetes 267
 17.3.3 Cardiovascular disease 267
 17.3.4 Cancer 267
 17.3.5 Bone health 268
 17.3.6 Allergic disease and asthma 268
 17.3.7 Cognitive function 268
17.4 Recommendations to key stakeholders 268
 17.4.1 Recommendations to policy makers 268
 17.4.2 Recommendations to health professionals and other educators 270
 17.4.3 Recommendations to the food industry 272

18 Nutrition and Development: Answers to Common Questions

18.1 Nutrition and development 273
18.2 Developmental programming hypotheses 273
18.3 Normal growth 273
18.4 How development occurs and factors that can affect it 274
18.5 Influences of perinatal sex hormone exposure on programming of disease susceptibility 275
18.6 Cognitive and neurological development 276
18.7 Influences of gut microbiota on programming of disease susceptibility 276
18.8 Obesity 277
18.9 Diabetes 278
18.10 Cardiovascular disease 278
18.11 Cancer 279
18.12 Bone health 280
18.13 Allergic diseases and asthma 281
18.14 Mental health and cognitive behaviour 282
18.15 Dietary and lifestyle advice for early life 282
18.16 Policies relating to early life nutrition and development 286

Glossary 287
References 294
Index 342