Index

Page numbers in *italics* denote figures and tables.

<table>
<thead>
<tr>
<th>Abdominal problems</th>
<th>Antioxidants, 105–6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>BCAAs, 108</td>
</tr>
<tr>
<td>Colonic fermentation, 272</td>
<td>Blood flow, 106</td>
</tr>
<tr>
<td>Diarrhoea, 271–2</td>
<td>Buffer capacity, 107–8</td>
</tr>
<tr>
<td>Flatulence, 271</td>
<td>Colostrum, 109–10</td>
</tr>
<tr>
<td>Intestinal bleeding, 272</td>
<td>Conjugated linoleic acid (CLA), 111</td>
</tr>
<tr>
<td>Upper</td>
<td>Echinacea and melatonin, 111</td>
</tr>
<tr>
<td>Belching, 269–70</td>
<td>Glucosamine, 110</td>
</tr>
<tr>
<td>Bloating/distension, 270</td>
<td>Glutamine, 110–111</td>
</tr>
<tr>
<td>Nausea and vomiting, 270–271</td>
<td>L-carnitine, 106–7</td>
</tr>
<tr>
<td>Reflux and heartburn, 268–9</td>
<td>Medium-chain triglycerides (MCT), 111</td>
</tr>
<tr>
<td>Stomach pain and cramps, 271</td>
<td>Muscle growth and repair, 108</td>
</tr>
<tr>
<td>Adaptive immune response</td>
<td>Phospholipids and tyrosine, 109</td>
</tr>
<tr>
<td>Lymphatic system, 284</td>
<td>Resource, practitioners, 97, 98</td>
</tr>
<tr>
<td>Memory cells, 285</td>
<td>SDRT, 97</td>
</tr>
<tr>
<td>MHC molecules classification, 285</td>
<td>Supplement programme, 96</td>
</tr>
<tr>
<td>ADCC. See antibody-dependent cell cytotoxicity</td>
<td></td>
</tr>
<tr>
<td>Alcohol absolute volume (ABV), 4</td>
<td>Autonomic dysreflexia (AD), 194</td>
</tr>
<tr>
<td>Bone metabolism, 250</td>
<td>Bone health</td>
</tr>
<tr>
<td>Excessive intake, 208</td>
<td>Bone mineral density (BMD), 246</td>
</tr>
<tr>
<td>GI tract, 279</td>
<td>Calcium absorption and excretion, 247, 249–50</td>
</tr>
<tr>
<td>Negative effect, performance, 178</td>
<td>Dietary sources and supplements, 247–9</td>
</tr>
<tr>
<td>Amino acid availability, casein ingestion, 45–6</td>
<td>Hydroxyapatite, 246</td>
</tr>
<tr>
<td>Dietary, requirements vs. recommendations, 43</td>
<td>Intake, 247, 248</td>
</tr>
<tr>
<td>Glutamine, 110–111</td>
<td>Female athlete triad</td>
</tr>
<tr>
<td>Indispensable, 41–2, 42</td>
<td>Amenorrhoea, 254</td>
</tr>
<tr>
<td>Intake, 44–5</td>
<td>‘Disordered eating’, 256</td>
</tr>
<tr>
<td>Requirements, 193</td>
<td>Energy availability, 255, 256</td>
</tr>
<tr>
<td>TAA, 47</td>
<td>Leptin, 257</td>
</tr>
<tr>
<td>Tyrosine, 109</td>
<td>Luteinising hormone (LH) pulsatility, 255</td>
</tr>
<tr>
<td>AMP-activated protein kinase (AMPK), 29, 128, 129</td>
<td>Menstrual function terms, 254</td>
</tr>
<tr>
<td>Anorexia nervosa (AN), 234</td>
<td>Prevention, screening and treatment, 258–9</td>
</tr>
<tr>
<td>Antibody-dependent cell cytotoxicity (ADCC), 284</td>
<td>Spectrum, 255</td>
</tr>
<tr>
<td>APRID framework, dietary supplements ‘acceptable’ category</td>
<td></td>
</tr>
<tr>
<td>Caffeine, 100, 100–101</td>
<td>Metabolism</td>
</tr>
<tr>
<td>Creatine, 101–2</td>
<td>Alcohol, 250</td>
</tr>
<tr>
<td>Evidence level, 97, 99</td>
<td>Fluoride, 253</td>
</tr>
<tr>
<td>Fish oils, 105</td>
<td>Phosphorus, 251–2</td>
</tr>
<tr>
<td>Health supplements, 103–4, 104</td>
<td>Potassium, 252</td>
</tr>
<tr>
<td>Liquid meal supplements, 100</td>
<td>Protein, 250–251</td>
</tr>
<tr>
<td>Multivitamins and multiminerals, 104</td>
<td>Vegetarianism, 253</td>
</tr>
<tr>
<td>Performance supplements, 100</td>
<td>TAA, 47</td>
</tr>
<tr>
<td>Sodium bicarbonate, 102–3</td>
<td>Tyrosine, 109</td>
</tr>
<tr>
<td>Sodium citrate, 103</td>
<td>AMP-activated protein kinase (AMPK), 29, 128, 129</td>
</tr>
<tr>
<td>Sports foods, 99</td>
<td>Anorexia nervosa (AN), 234</td>
</tr>
<tr>
<td>Categories, 96</td>
<td>Antibody-dependent cell cytotoxicity (ADCC), 284</td>
</tr>
<tr>
<td>Decision making-process, 97</td>
<td>APRID framework, dietary supplements ‘acceptable’ category</td>
</tr>
<tr>
<td>‘ineffective’ and ‘disallowed’ categories, 111–12</td>
<td>physiological and research categories</td>
</tr>
</tbody>
</table>
bone health (cont’d)
 vitamin C, 252–3
 vitamin D, 251
nutrition care process
 ABCDE assessment, 259
 dietary records, 260
 environmental assessments, 260
 prepubescence, 260
 weight and height measurement, 259–60
physiology
 cortical and trabecular, 245
 loss, 246
 modelling and remodelling, 245
 tissue, functions, 245
 women and men, 245–6
quantitative computed tomography (QCT), 246
sport, exercise
 mechanical strain, 233
 over-training, 254
stress fractures
 definition, 257
 female athletes, 257
 low bone mass, 258
 prevention, screening and treatment, 258–9
 risk factors, 257–8
 training errors, 258
branched-chain amino acids (BCAAs)
 anabolic effect, protein metabolism, 164
 central nervous system effects, 108
 ingestion, prolonged exercise, 177
 muscle growth and repair, 108
branched-chain keto acid dehydrogenase (BCKADH), 25
bulimia nervosa (BN), 234–5
B vitamins
 performance capacity
 biochemical/blood markers, 69
 folate supplementation, 69
 riboflavin depletion, 69
 suboptimal intakes and deficiencies, 68
 thiamin deficiency, 68–9
caffeine
 adenosine receptors, 101
 antagonism, adenosine receptors, 299
 catecholamine, 300
 central nervous system, 178–9
 content, common drinks, 100
 endurance and ultra-endurance training, 171
 exercise, 100–101
 fat metabolism and glycogen utilisation, 101
 GI tract, supplement, 278
 level, urine, 100
 mild diuretic effect, 101
calcium
 BMD, 76
 bone health
 dietary, bioavailability, 78
 females, 77–8
 retention and balance, 77
 description, 76
 inadequate intake
 adolescent and young adult, 76
 and amenorrhoea, 76
 negative balance, 76–7
 recommendations and requirements, 77
carbohydrate (CHO)
 availability, 155
 blends, 208
 classification, 1–2
 dietary, 33
 dietary fibre, 2–3
 glycogen re-synthesis
 and diet, 38
 GLUT4 transporters, 37–8
 loading
 description, 159
 diet, 159–60
 rating of perceived exertion (RPE), 160
 untrained people, 160
metabolism
 availability, 23, 24
 blood glucose, 32–3
 glycogen breakdown, 22–3
 liver and muscle glycogen, 32
 skeletal muscle, 23
 muscle glycogen, training periods, 38–9
 nutrition and performance; intake
 during exercise, 35–7
 hour before, 35
 loading before exercise, 34
 pre-exercise, 34–5
 nutrition strategies, technical and skill-based training, 176
 performance recovery, 24 hours, 39
 requirements, altitude exercise, 362
 rich foods and fluids, competition, 204, 205
 short recovery periods
 carbohydrate-protein solution, 40
 muscle glycogen re-synthesis, 39
 placebo vs. carbohydrate group, 40
 sugars vs. starches, 2
 wound healing nutrients, 353–4
cardiovascular system, 18
cerebral palsy (CP), athletes
 athetosis, 191, 194
 lower bone density, 195
 movement problems, 189
 skinfold measures, 196
 stretch stature, 196
children
 balanced dietary intake, 316
 carbohydrate, 318
 dental caries, 321
 eating behaviours, 321
 energy requirements, 317–18
 factors, nutritional intake
 adolescents, 317
 growth, young athlete, 317
 fat, 318
 fluids, 320–321
 micronutrients
 calcium, 319
 dietary supplements, 319–20
 iron, 319
 zinc, 319
 nutrition strategies, 321–2
 performance-enhancing substances, 320
 protein, 318
CHO. See carbohydrate
 chromium, energy metabolism, 70
 colonic fermentation, 271, 272
colonic malfermentation, 276
colostrum, 109–10
competition nutrition
and fatigue
factors, 200–201, 201
physiological factors, 202
fluid intake, exercise
carbohydrate, 206–8
dehydration, 205
individual hydration issues, 206, 207
sweat, 205–6
pre-competition fuelling
carbohydrate-loading, 202–3, 203
muscle glycogen, 202
training taper, 203–4
pre-event meal
carbohydrate-rich foods and fluids, 204, 205
eating plan, 204
fine tuning, preparation, 204
recovery, events, 208
constipation, 276

DE. See disordered eating
dehydration
definition, 60
dehydration, endurance exercise, 60–61
muscle strength reductions, 61
sodium, 63
diarrhoea, 103, 271–2
dietary intake assessment methods
qualitative
FFQ, 9
history/interview, 8–9
quantitative
food records and diaries, 6–7
translation, food intake-nutrient intake, 7–8
dietary reference intakes (DRIs)
calcium retention, 77
iron intakes, 73
macrominerals, 66
dietary supplements (DS)
APRID framework
'acceptable' category, 97, 99–105
categories, 96
decision making-process, 97
'ineffective' and 'disallowed' categories, 111–12
physiological and research categories, 105–11
resource, practitioners, 97, 98
SORT, 97
supplement programme, 96
assessment and monitoring, practice
APRID framework, 112
athletes guidance, 112
contamination, fake and doping
anabolic and designer steroids, 115
elite athletes, 113
inadvertent doping cases, 114
prohormones, 114
WADA, 113, 115
definition, 90
efficacy proof, performance
disadvantages, 96
measurement, 95
race, winning and losing, 95–6
evaluation
evidence levels, 94–5
research paper assessment, 94, 95
work, 95
'food supplement', 90
health risks
dosages, 113
UL, defined, 113
vitamins and minerals, 112–13
market
range, 91
split, supplement subgroups, 90–91
placebo effect
athletes, 115
double-blind treatments, 116
Latin square design, 116
negative influence, 116
superoxygenated water, 116
prevalence
fat-soluble vitamins and iron, 92
gender difference, 92
sports, 91
Target Group Index survey, 91
UK athletes, 91–2
recommendations, 94
sports nutrition supplements
forms and guises, 92–3
magnesium, 93
multivitamins, 93
'tag-cloud', 93
usage
athletes, 94
efficacy, safety and legality/ethics, 93
dieting
athletes, 236–7
coach, 240
weight loss and
class, 240
DE/ED, 240
recommendations, 240–241
disability athletes
body composition assessment
DEXA and skinfold, 196
dwarfs, 196
SCI, 196–7
stretch stature, 196
carbohydrate requirements
physiological demands, exercise, 192
visually impaired vs. able-bodied athletes, 192
wheelchair users, 192
daily life
cookery sessions, 197
eating methods, 197–8
energy requirements
ablebodied sport, 190
CP and amputations, 191
dietary intakes, 191–2
SCI, 191
fat, 193
fluid and electrolytes
AD, 194
electrolyte intakes, 194
SCI, wheelchair users, 193
thermal regulation, 194
USG and euhydration, 193
micronutrients and other nutrients
Index

disability athletes (cont’d)
 bone density and vitamin D, 195
description, 194
iron and dietary fibre, 195
protein and amino acid requirements, 193
sport
classification, 189–90
Paralympic Games, 188–9, 189
supplements and ergogenic aids
cautions, 196
energy and CHO requirements, 195
sports drinks, 195
vitamin and mineral, 195
tavel, 198

disordered eating (DE). See also eating disorders (EDs)
 health and performance consequences, 237
 identification, athletes, 237–8
 prevalence, 235
 prevention, 239–41
 risk factors, 235–6
DRIs. See dietary reference intakes
DS. See dietary supplements

EAR. See estimated average requirement
eating disorders (EDs)
 athlete and healthcare team
 controlled treatment, 238
 relationship, professionals, 238–9
DE continuum
 AN and BN, 234–5
 EDNOS category, 234, 235
 energy balance and healthy body image, 233
dieting, athletes
 causes, 236
 energy demands, 236–7
health and performance consequences, 237
identification, athletes, 237–8
prevalence, 235
prevention
 de-emphasise weight, 240
 information and guidelines, 240
 recognition, DE, 241
 weight loss and dieting, 240–241
risk factors
 categories, 236
 predisposing factors, 235–6
“eatwell plate” model, 9, 10
ED not otherwise specified (EDNOS)
category, 234
diagnostic criteria, 235
EDs. See eating disorders
endurance and ultra-endurance training
 carbohydrate
cortisol concentration, 161
glycaemic index, 161
high-concentration diet, 161–2
ingestion, 162–3, 165–6
loading, 159–60
types, muscle glycogen restoration, 161
challenges
 physique and health issues, 159
 training load, 159
energy systems
 heavy training, 159
muscle glycogen, 158
gastrointestinal problems, 169
glycaemic index, 161
immunity enhancement
 antioxidant supplements, 168–9
 illness risk, 168
 nutritional strategies, 168
 nutrition-related disturbances, 167–8
URTIs, 167
iron deficiency, 169
low body fat mass, 166–7, 167
protein
 ingestion, 164–6
 requirements, training, 163–4
supplements
 broad-spectrum multivitamin and mineral, 169
 caffeine, 171
 high-carbohydrate, 170
 high-protein, 171
 liquid meal replacements, 169–70
 prebiotics and probiotics, 171
 single-nutrient supplements, 169
energy availability, definition, 234
estimated average requirement (EAR), 11–12, 69–70, 329
ethnic groups
 athletes, 340
classification, Southeast Asia, 336–8
dress codes, 340
eating habits, 335
food taboos, 338
language, 340
meal, 338–9
muslim cultural backgrounds, 340, 345
nutrition, 338
Ramadan fasting and performance
 coincidence, sporting, 341
 endogenous muscle fuel, 342
 energy intake, 342
 fluid intake, 342
 meal timings, 342
 menu planning, football team, 343–5
 nutrition recommendations, 342–3
 skills, practitioners, 341
utensils, 340
euhydration
 definition, 60
 sodium intake, 63
exercise biochemistry
 ATP re-synthesis, duration and intensity, 20–21, 21
metabolism
 carbohydrate, 22–3
 cellular/molecular drivers, skeletal muscle, 28–9
 control and regulation, reactions, 22
 environmental stress, responses, 26
 fat, 23–4
 protein, 24–6
 training adaptations, 27–8
exercise-induced hypoxaemia, 360
exercise-induced leucocyte redistribution, 292
exercise-oxidative stress (EXOS) paradox, 80
exercise physiology
 acute responses
 cardiovascular system, 18
 muscle, 17
 respiratory system, 17–18
thermoregulation, 18–19
homeostasis, 16–17
training, adaptations, 19

fast proteins, 122
fat, 5
fat metabolism
CHO, 51–2
diet and exercise, interaction, 51
energy source, skeletal muscle contraction
adipose tissue lipid pool, 52–3
endurance trained athlete, 52, 53
FA uptake, 53
lipid-based fuels, 52
VLDL-TG degradation, 53
exercise biochemistry, 52
fatty acid
feeding, before exercise, 53
high-fat low-carbohydrate diets, 54–6
long- and medium-chain triglyceride ingestion, 53–4
oxidation limitation, 24
short-term ‘adaptation’, high-fat diet, 56–7
intramuscular triglyceride, mobilization, 23–4
sparing, muscle glycogen stores, 57–8
fatty acid metabolism
fat feeding, before exercise, 53
high-fat low-carbohydrate diets
athletic performance, 55
endurance, 55
insulin resistance, 55–6
physical tests, 55
substrate utilisation, 54–5
long- and medium-chain triglyceride ingestion
gastrointestinal distress, 54
MCFA vs. LCFA, 53–4
moderate-intensity exercise, 54
oxidation, MCFA, 54
short-term ‘adaptation’, high-fat diet, 56–7
female athletes
carbohydrates, 324
energy
doubly-labelled water (DLW) technique, 323, 324
male athletes, 324
TDEE, 323–4
fat, 325
female athlete triad, 326–7
gender differences, metabolism and performance, 323
menstrual cycle, 326
micronutrients
B vitamins, 325–6
calcium, 325
iron, 325
low intake, 325
marginal intakes, 326
vitamin D deficiency, 325
protein, 324
Female Athlete Triad. See also bone health
description, 234
high peak bone mass, 326
low EA, 326–7
FFQ. See food frequency questionnaire
fluids and electrolytes
body water
adipose tissue, 59
distribution, 60
ICF and ECF, 59
ion concentration, 60
loss of, 60
sweat loss, 60
drinking, exercise
during exercise, 63
post-exercise rehydration, 63–5
pre-exercise hydration, 62–3
hydration changes, exercise
endurance, 60–61
sports, skill components, 62
strength, power and sprint exercise, 61–2
terminology, 60
food frequency questionnaire (FFQ), 9
food intolerance
dairy products, 274
diagnosis, 274
fructose, 275
gluten, 274–5
IgE antibodies, 274
food labelling
GDAs, 13
nutrition claim, 12–13
‘traffic light’ system, 13–14
gastrointestinal (GI) tract
absorption, food, 265–6
bile, 265
blood, 266
comfort
alcohol, 279
buffers, 278
carbonated beverages, 278
glycerol, 278
iron supplementation, 279
NSAIDs, 279
description, 265
discomfort, 264
distress, 279
exercise
appetite and hunger, 267
belching, 269–70
bloating, 270
blood supply, reduction, 267
colic fermentation, 272
diarrhoea, 271–2
flatulence, 271
food intolerances/food allergy, 274–5
gastric emptying and transit time, 267–8
IBS, 275–7
intestinal bleeding, 272
intestinal/lower abdominal cramp, 271
mechanical factors, 268
menstrual cycle, 273
moderate and vigorous, 267
nausea and vomiting, 270–271
prevalence and frequency, 272–3
reflux and heartburn, 268–9
stomach pain and cramps, 271
symptoms, 268
tavel, 273–4
low-residue diets
guidelines, 277–8
weight loss, 277
gastrointestinal (GI) tract (cont’d)
moderate and vigorous exercise, 267
saliva, 265
small and large intestine, 266
stomach, 265
stools, 266–7
swallowing, 265
gastro-oesophageal reflux, 268–9, 271
GDAs. See guideline daily amounts
 gluconeogenesis, 32
glycaemic index (GI), 176
guideline daily amounts (GDAs), 13
gym week, requirements
easy, 185
hard
dietary, 185–6
physical, 185
high glycaemic index (HGI), 33–5, 38–9
homeostasis, 16–17
hydration
endurance
body water loss, 60–61
warm and hot environment, 61
during exercise, 63
monitoring, 363
pre-exercise
fluid replacement, 62
urine output, 63
sports, skill components, 62
strength, power and sprint exercise
hypohydration, 61–2
muscle strength, 61
hyperhydration
definition, 60
pre-exercise, 62
sweat loss, 64
hypohydration
body mass, 61
definition, 60
exercise performance, 61
muscular strength, 62
hypothalamic–pituitary–adrenal (HPA) axis stress hormones,
291, 293–5
hypothermia, definition, 369
hypoxia, 358
hypoxic drive, 358
IBS. See irritable bowel syndrome
immunity
defined, 281
exercise
acute and chronic effects, 289–90
animal models, 289
immunodepression, 291
low salivary IgA, 288
psychological stress, 290
URTIs, 288
viral reactivation, 290–291
exercise and infection models, 282
nutrition
antioxidants, 297–9
caffeine, 299–300
carbohydrate, 293–5
and dietary intake, 292–3
fat, 296
fluids, 299
glutamine, 295–6
‘immune-enhancing’ supplements, 300–302
micronutrients, 296–7
minerals, 299
protein, 295
total energy intake, 293
‘open-window’ hypothesis, 282
potential monitoring, athletes, 302
system and functions
adaptive response, 284–5
CD antigens, surface expression, 286
cell migration, 287
cytotoxic T-cell activity, 286
ELISA, 287
innate response, 283–4
leucocytes, identification and counting, 286
lymphocyte activation and proliferation, 286–7
macrophage, 283
mucosal immunity, 285–7
natural killer cell activity, 286
neutrophil OBA and degranulation, 287
phagocytosis, 287
response, 282
viral reactivation, 287
URTIs, 281
injured athlete, surgery and rehabilitation
exercise-induced muscle damage, 354
fasting, 354
injury
fibrin mesh, 351
penetrating trauma, 351
response, 351
sepsis and haemorrhage, 351–2
vasoconstriction, 351
trauma and malnutrition
enteral nutrition (EN) and parenteral nutrition (PN), 352
proteins and amino acids, 352
wound healing nutrients
carbohydrate, 353
fluid and electrolytes, 353–4
micronutrients, 353
protein and fat, 353
innate immune response
anatomical/chemical barriers, 283
soluble factors
antimicrobial factors, 283
cellular defences, 283–4
complements, 283
iron
athletes
absorption, 73–4
depletion/deficiency, 71–2
inadequate intake, 73
iron-rich foods, 73
low status, risk factors, 72
non-athletes, 73
supplements, 74–5
blood health, 71
depletion and performance, 74
energy metabolism, 70–71
irritable bowel syndrome (IBS)
Index

air swallowing and anxiety, 276
colonic malfermentation, 276
constipation, 276
men and women, 275
menstrual-related, 276
musculoskeletal problems, 277
overload and overflow, 276

jet lag
bright light, use, 307
caffeine, 307
description, 306
factors, adaptation, 306
melatonin, 306

Latin square design, DS placebo effect, 116
LGI. See low glycaemic index
liver glycogen, carbohydrate metabolism, 32
long-chain fatty acids (LCFA), 53, 54
low glycaemic index (LGI)
and HGI carbohydrates, 33
pre-exercise meal, fat oxidation, 35
recovery diet, 39

macro-cycle phases, training and nutrition
competition, 182
preparation, 182
transition, 181–2

macro-minerals
adverse effects, 86
body functions, 68
DRIs, 66

magnesium
energy metabolism
biochemical indices and dietary surveys, 70
EAR, 69–70
performance capacity, 70
strenuous exercise, 69
post-exercise rehydration, 64

mammalian target of rapamycin complex 1 (mTORC1)
activation
amino acids, 126
resistance exercise, 126, 127
Rheb, 127

muscle hypertrophy, 126
phosphorylase, 126
signalling, 128

medium chain fatty acids (MCFA), 53, 54
meso-cycle, 182–4

metabolism
cellular/molecular drivers, skeletal muscle
AMPK, 29
ATP homeostasis, 28
signal transduction pathways, 28
control and regulation, reactions
phosphocreatine (PCr) degradation, 22
skeletal muscle contraction, 22
environmental stress, responses, 26

training adaptations
energy expenditure, substrate sources, 27
skeletal muscle metabolism, 28

training-induced change, 27

micro-cycle, 182–4
micronutrients
adverse effects
iron and zinc supplements, 85–6
iron and zinc supplements, misuse, 85
misuse, vitamin supplements, 84
multivitamins/multiminerals, 85–6
prolonged use, 83
quality control testing, 87
upper intake level (UL), 85
water-soluble and fat-soluble vitamins, 85

antioxidants
athletes, 80
non-athletes, 83
oxidative defence systems, 83
sources, 80–81
vitamin C, 81
vitamin E, 81–2
zinc, 82–3

athletes, 67
blood health
folate, 75
iron, 71–5
vitamin B12, 75
body functions
minerals, 68
vitamins, 67

bone health
BMD, 75–6
calcium, 76–8
vitamin D, 78–80
categories, 66
energy metabolism and muscle function
B vitamins, 68–9
chromium, 70
iron, 70–71
magnesium, 69–70
human systems, 67

middle-distance and speed-endurance training
body composition requirements
low body fat, 152
negative energy balance, 152–3
performance, 152
buffering
extracellular, 154–5
intracellular, 153–4
carbohydrate availability, 155

energy systems
aerobic and anaerobic, 146
ATP production, 147
carbohydrate (CHO), 147
differences, anaerobic-based sporting events, 147
percentage energy contribution, 147
periodised nutrition
energy intake, 148–50
individual variability, 148
training phases, 148
post-training nutritional recovery
glycogen re-synthesis, 150
protein synthesis, 150–152
monounsaturated fatty acid (MUFA), 5
MPB. See muscle protein breakdown
MPS. See muscle protein synthesis
multiple-sprint exercise, 57

muscle, 17
muscle glycogen, carbohydrate metabolism, 32
muscle protein breakdown (MPB)
exercise-induced rise, 128
muscle protein synthesis (MPS) (cont’d)
fluctuations, 121
insulin release, 45
and MPS, 120, 121
muscle protein synthesis (MPS)
 amino acid
 leucine, 44
 levels, 127
 endurance exercise, 128
 fluctuations, 121
mitogen-activated protein kinase, 128
MPB, resistance exercise, 120, 121
mTORC1 activation, 126
power-type exercises
 maximal fibre activation, 139
 myofibrillar protein synthesis, 139
protein intake, 45
sprint-type exercises
 endurance-like adaptations, 139
 muscle size, 139
 myofibrillar–force protein synthetic relationship, 141
 resistance exercise, 140
 sensitising effect, skeletal muscle, 140
 size principle, muscle fibres, 140
stimulation, 122
My Pyramid Food Guidance System, 9–10
negative energy balance, 234
nutrient basics
 alcohol, 4
 carbohydrates, 1–3
dietary intake assessment, methods
 nutrient inadequacy progression, 6
 qualitative, 8–9
 quantitative, 6–8
 fat, 5
 food labelling, 12–14
 protein, 3–4
qualitative dietary guidelines, 9–10
quantitative reference intakes
 EAR, 11–12
 nutritional adequacy, 10–11
 UK DRVs and US DRIs, 11, 12
osteoporosis, defined, 246
oxidative burst activity (OBA), 287
periodised nutrition
energy intake
 caloric intake, 149
 carbohydrate, 149
 fat, 149–50
 female endurance athletes, 148
 protein, 150
individual variability, 148
training phases, 148
phosphorus
bone metabolism
 absorption, 251
 calcitriol, 252
 plasma concentration, 251–2
 matrix, 246, 247
sources, 251
physique
 assessment, 227–9
attributes, athletic performance, 211–13
optimisation, 213–15
PMS. See pre-menstrual syndrome
polyunsaturated fatty acid (PUFA), 5
population groups
 children, 316–22
 ethnic, 335–45
 female athletes, 322–7
 injured athlete, 350–354
 masters, 328–32
 vegetarian/vegan athletes, 345–50
potassium
 bone metabolism, 252
 post-exercise rehydration, 64
power and sprint training
 creatine supplementation
 human muscle, 141
 performance enhancement, 141
 strength and hypertrophy, 142
dietary carbohydrate recommendations, 138–9
MPS
 power-type exercises, 139
 regulation, 135
 sprint-type exercises, 139–41
muscle protein subfractions, human skeletal muscle, 135
NPB, 134
protein
 ingestion, MPS, 137
 macronutrients addition, 137–8
 requirements, 136–7
pre-menstrual syndrome (PMS), 273
protein
 amino acids, 3
 bone metabolism
 protein–mineral matrix, 250
 urinary calcium, 251
 complete and incomplete foods, 42
dietary types
 casein ingestion, 45–6
 chocolate milk, 46, 47
 TAA net arterial-venous balance area, 47
 vegetable, 47
feeding and resistance exercise
 action mechanism, 125–6
 dose, 122
 ingestion timing, 123–5
 mTORC1 activation and signalling, 126–8
 type, 122–3
metabolism
 amino acid oxidation, 24–5
 ATP re-synthesis, 25–6
 TCA cycle and respiratory chain, 25
needs, athletes
dietary recommendations, 43
high-intakes, 44
performance-enhancing drug use, 43–4
post-training nutritional recovery
 amount, 151–2
 synthesis, 150–151
 timing, ingestion, 152
 type, 151
quality, 42
requirements vs. recommendations, dietary
determination, 43
expression, 43
sprint and power-trained athletes
dietary carbohydrate, 138–9
ingestion, MPS, 137
macronutrients addition, 137–8
requirements, 136–7
timing, dietary
intake, before and during exercise, 45
post-exercise intake, 44–5
vegetarian and vegan diets, 3–4
wound healing nutrient, 352
protein digestibility corrected amino acid score (PDCAAs), 42, 123
psychological stress, 290
recommended dietary allowance (RDA), 11, 84, 85, 251, 252, 297
reference nutrient intake (RNI), 11, 12, 329
rehydration
definition, 60
post-exercise
beverage palatability and voluntary fluid intake, 65
drink volume, 64
food and fluid consumption, 64–5
potassium and magnesium, 64
sodium, 63–4
volume and composition, 63
respiratory system, 17–18
Rome II Criteria, IBS, 275
skeletal integrity. See bone health
skeletal muscle, metabolism, 28–9
slow proteins, 122–3
sodium, post-exercise rehydration
euhydration, 63
ICF, 59
intestinal absorption, 63–4
plasma volume, 63
spinal cord injury (SCI), athletes
AD, 194
bowel function, 195
energy expenditure, 191
fluid needs, wheelchair users, 193
lower bone density, 195
skinfold measures, 196
stretch stature, 196
sweat rate, 193–4
sprint and power-trained athletes
dietary carbohydrate recommendations, 138–9
ingestion, protein, 137
macronutrients addition, 137–8
protein requirements
amino acids, 136
high lean body mass, 136
low-fat dairy, 137
resistance training, 136
strength-training programme, 136
squash player
dehydration, 177
energy and macronutrient intake, 185
planner
day, 184
month and week, 183
year, 181
training diary, 180
squash week
easy
dietary, 185
physical, 184
hard, 186
stress hormones, 291–2
submaximal exercise, carbohydrate consumption, 35–6
glucose and fructose, 36
metabolism, 33
mouth rinse, 36–7
super-compensation cycle
recovery, mind and body, 179–80
training diary, 180–181
supplements and ergogenic aids. See dietary supplements (DS)
TAA net arterial-venous balance area, 47
taper, 186
TD. See travellers’ diarrhoea
technical and skill-based training, nutrition strategies
adaptation
alcohol, 178
body composition, skill and technique, 175–6
caffeine, 178–9
carbohydrate, 176
fluid, 177–8
glycaemic index and load, 176
motor and cognitive training, 175
protein, 177
sport, technical aspects, 175
‘train-low, compete-high’ regimen, 174–5
vitamins, minerals and herbals, 179
periodisation principles
competition, 186
definition/terminologies, 179
easy gym week, 185
easy squash week, 184–5
hard gym week, 185–6
hard squash week, 186
light week, 183–4
macro cycle, 181–2
meso- and micro-cycles, 182–5
recovery, 186–7
super-compensation, 179–81, 180
taper, 186
training cycles, 181
thermoregulation
definition, 364
heat stress, 18–19
sweat evaporation, 19
time to exhaustion (TTE) trial, 95
training and competition environments
altitude
acclimatisation, 360
carbohydrate requirements, 362
CHO, 360
exercise-induced hypoxaemia, 360
fluid balance, 362
hydration status, 363
maximum oxygen uptake, 359–60
nutritional strategies, 363
physiological challenge, 358–9
weight loss and altitude exposure, 360–362
cold
energy requirements, 372
hydration status, 373
nutritional strategies, 373
physiological challenge, 369–70
training and competition environments (cont'd)
 regular meals and hearty snacks, 373
 REM and NREM, 372
 unsaturated fats, 372

heat
 acclimatisation, 365, 369
 cardiovascular system challenges, 365
 energy expenditure, metabolism and intake, 366–7
 fluid balance, 367–8
 gastrointestinal function, 368
 hydromeiosis, 365
 nutritional strategies, 369
 passive exposure, 365
 physiological adaptations, exposure, 366
 physiological challenge, 364–5

polllutants, 373

travel
 acclimatisation, 312
 athletes, tips, 312
 GI problems, 273–4

meal service
 allowances, 309
 food access, 307
 larger-scale dining halls, 309
 restaurant/buffet/large dining hall, 308
 self-catering, 308–9

nutrition, 309–10

planning
 climate, 305
 eating, 304
 jet lag, 306–7
 long-haul flights, 305–6
 short-duration, 305

TD, 310–312

team
 breakfast, 313
 competition plan, 314–15
 dinner, 314
 guidelines, 313
 lunch, 313–14
 pre-training snacks, 314
 snacks, 314

travellers' diarrhoea (TD)
 defined, 310
 dietary management, 312
 personal hygiene, 312
 probiotics and prebiotics, 311–12
 prophylactic antibiotics, 311

vegetarian/vegan athletes
 calcium and vitamin D, 349
 creatine, 349
 diet types, 346
 energy, 346
 fat, 347–8
 iron, 348
 micronutrients, 347
 performance, 350
 proteins, 346–7
 riboflavin, 349
 vitamin B12, 349
 zinc, 348

vitamin C
 description, 81
 supplements

 performance capacity, 81
 URTIs, 81

vitamin D
 activated, 78–9
 athletes, 79
 bone health and performance, 79
 deficiency, 78–9
 supplements
 - menstrual cycles, 79–80
 - prevention and treatment, deficiency, 79

vitamin E
 athletes, 82
 description, 81
 supplements and performance, 82

vitamins
 vitamin C, 81
 vitamin D, 78–80
 vitamin E, 81–2

WADA. See World Anti-Doping Agency

weight
 and fat loss
 - dairy and higher calcium diets, 218–19
 - energy intake manipulation, 215–16
 - exercise-related strategies, 219–20
 - low GI and high-fibre diets, 218
 - macronutrient intake and energy density, 216–18
 - meal replacements, 219
 - reduced carbohydrate diets, 218
 - risks, 224–5

lean mass gain
 adjunctive agents, 229–30
 co-ingestion, nutrients, 226–7
 energy intake, 227
 protein intake, 225–6
 training, optimisation, 225

loss
 carbohydrate range, 184
 dehydration, 212
 dietary adjustments, 223
 and dieting, 240–241
 high-protein diet, 129
 lean athletes, 152
 low GI, 218
 macronutrient distribution, 217
 performance decrement, 220
 pharmacological agents, 229
 positive doping case, 115
 programmes, 219
 supplements, dietary, 229
 training and competition, altitude, 360–362
 under-feeding, 213
 young athletes, 214

making
 competition limits, 220
 performance and health implications, 220–222
 pre-competition body mass management guidelines, 222–3
 recovery, weigh-in, 223–4
 sport-specific considerations, 224

physique
 assessment, 227–9
 attributes, athletic performance, 211–13
 optimisation, 213–15
 recovery, weigh-in, 223–4
 sport-specific considerations, 224
weight and resistance training
athletes, 129
body mass (BM), 130
carbohydrate, 129, 130
energy intake (EI) and energy expenditure (EE), 130
milk proteins, 128
MPS and MPB, 120–121
muscle mass accrual and strength gains, 128
nutritional strategies, 129–30
protein balance, 120, 121
protein feeding
action mechanism, 125–6
dose, 122
mTORC1 activation and signalling, 126–8
timing, ingestion, 123–5
type, 122–3
stimulation, MPS, 128
whole protein foods, 130
World Anti-Doping Agency (WADA)
androgenic steroids, 114
caffeine, 100
code, 115, 117
glycerol, 278
insulin-like growth factor
(IGF)-1, 110
prohibited substances, 96, 111, 114, 115
zinc, 82–3