Index

Bridges

Ashtabula River Valley Viaduct, Ashtabula, Ohio, 71–74, 78, 106, 107

A 27 Brockhampton Road Bridge, Hampshire, United Kingdom, 215, 246

Broad Road Viaduct, Bedford, Ohio, 76

Brookpark Viaduct, Cleveland, Ohio, 74

Cuyahoga River Valley Bridge, Brecksville, Ohio, 76, 106–107, 115

Doodong Bridge, Ham Yang Co., South Kyung Sang Prov., South Korea, 81, 246

General US Grant Suspension Bridge, Portsmouth, Ohio, 212

Golden Gate Bridge, San Francisco, California, 193

Happy Hollow Creek Bridge, Hickman County, Tennessee, 1, 8, 43, 57, 118, 245

John F. Kennedy Memorial Bridge, Louisville, Kentucky, 23, 25–27, 29

Long Island Bridge, Kingsport, Tennessee, 6

Mianus River Bridge, Greenwich, Connecticut, 213

Naibekoshinai River Bridge, Hokkaido, Japan, 59, 71, 78, 245

Ohio Bridge No. GEA – 422 – 0057, Geauga County, Ohio, 197

Ohio Bridge No. HIG – 28 – 0280, Highland County, Ohio, 191, 192

Ohio Bridge No. WAY – 585 – 0859, Wayne County, Ohio, 194, 195

Old North Hill Viaduct, Akron, Ohio, 103–106, 115, 118

Old Third Street Viaduct, Cincinnati, Ohio, 23–25, 29

Patterson-Riverside Great Miami River Bridge, Dayton, Ohio, 4, 5

Pecos River Bridge, Carlsbad, New Mexico, 23, 27–29

Price-Hillards Scioto Darby Creek Road Bridge, Franklin County, Ohio, 246

Rainbow Bridge National Monument, Utah/Arizona Border, 41, 245

Route 401, Franklyn Boulevard Underpass, Ontario, Canada, 243, 246

Route 401, Prospect Avenue Bridge, Toronto, Canada, 99, 246

Salginatobel Bridge, Schiers, Switzerland, 109

Schoharie Creek Bridge, Montgomery County, New York State, 213

Silver Bridge, Gallipolis, Ohio, 213

SR 21 Barberton Reservoir Inlet Bridge, Akron, Ohio, 35, 36

SR 21 West Fork Black River Bridge, Reynolds County, Missouri, 21, 245

SR 180 – USR 33 Bridge, Hocking County, Ohio, 91

SR 250 – 148th Avenue N. E. Bridge, King County, Washington State, 91, 92

SR 555 Muskingum River Bridge, Zanesville, Ohio, 137, 157, 246
SR 725 Sycamore Creek Bridge, Miami Twp., Montgomery County, Ohio, 245, 246
SR 771 Big Branch Creek Bridge, Highland County, Ohio, 89–90
Stanley Avenue – B&O Railroad Bridge, Dayton, Ohio, 230, 231
Teens Run Bridge, Gallia County, Ohio, xii, 71–72, 75, 76–77, 78, 139, 245
Tocoma Narrows Bridge, Tocoma, Washington State, 193
TR 45 – CSXT Railroad Bridge, Pickaway County, Ohio, 44, 95
Twisp River Bridge, Twisp, Okanogan County, Washington State, 11, 245
USR 23 – SR 32 Bridge, Pike County, Ohio, 121, 129–131, 246
USR 52 Little Scioto River Bridge, Portsmouth, Ohio, 33, 34
USR 62 Yankee Creek Bridge, Trumbull County, Ohio, 82, 83
USR 422 McFarland Creek Bridge, Geauga County, Ohio, 197–199
USR I-35W Mississippi River Bridge, Minneapolis, Minnesota, 213
USR I-76 – East Market Street Bridge, Akron, Ohio, 166, 167
USR I-77 – SR 18 Bridge, Summit County, Ohio, 97
USR I-90 – B. N. Railroad Bridge, Grant County, Washington State, 139, 197, 202, 246
USR I-90 – 140th Street Bridge, Cleveland, Ohio, 232, 233
USR I-271 – Wilson Mills Road Bridge, Cleveland, Ohio, 37
USR I-480 Cuyahoga River Valley Bridge, Cleveland, Ohio, 177, 179

abutment
backfill. See backfill
capped pile, 1, 2, 51, 198
continuity connection, 16, 48, 54, 62, 65
embankments. See embankments
flexible, 19, 72, 75, 76
flexible supports, 114
integral. See bridges, integral
non-integral, 7, 9, 169
pile cap, 97
pile foundations. See piles
semi-integral. See bridges, semi-integral
settlement, 2, 18, 60
stub-type, 2, 7, 42, 47, 52, 59, 69, 76, 82, 116, 169
wall-type, 7, 82, 166
wingwalls, 161
reinforcement, 9, 69, 117
turn-back, 12, 137, 151
American Iron and Steel Institute, 118
anchor bars, holes, 49–50
angle of internal friction, 62, 127
approach pavement, 170
asphalt (bituminous) concrete, 93
cement, 28
growth. See G/P phenomenon
jointed, 2, 21, 22, 23, 26, 55, 170
rigid, 6, 39, 55
approach slabs, 180
anchors, 2, 151
curbs, 69
cycle-control joints, 95, 133, 151, 244
compression seals, 96
curb inlets, 97
drainage troughs, 55, 97
fingerplates, 97, 162
pressure-relief joints, 45, 55, 56, 57, 117, 245
strip seals, 96
diagonal tie bars, 93, 116
full-width, 55, 94, 97, 102, 134
mechanical connectors, 54, 137
polyethylene sheets, 55, 88, 136
seats, 93
assumptions
realistic, 99
simplifying, 65–67, 100, 115
awareness, lack of, contributing reasons
economics, xii, 209, 212
habit, 209–210, 212,

General

AASHTO (American Association of State Highway and Transportation Officials), 22, 217, 243
AASHTO Standard Design Specifications for Highway Bridges, 37, 39, 112–113, 204, 217
language, 210, 212
preoccupation, 207, 212

awareness
of change, 186, 192–195, 212
of differences, 186, 196–197, 212
of reality, 185–186, 190, 208, 212, 213
of similarities, 197
of things, 186–192

backfill
compressible, 170, 197
compression, 56, 62, 125
consolidation, 55, 63
erosion, 12, 55, 134
expansion, 56
frictional resistance, 126
granular, 62, 69
placement procedures, 137
shearing resistance, 137
well-drained, select granular, 12, 69, 117

beams, uplift. See buoyancy
countermeasures

bearings
abutment, 113
anchor bars, 49–50
bolster, 23, 167, 177
compound, 168
elastomeric, 48, 94, 123, 133, 168, 170, 172, 173, 180, 181, 198–199, 204, 206
fixed, 25, 47, 177
guide, 93, 124, 125, 126, 129, 130–132, 144, 154, 181, 197, 244
accessible, 131, 197
replaceable, 197
movable, 2, 14, 22, 41, 42, 43, 44, 47, 49, 59, 65, 158, 159, 161, 169, 170, 173, 180, 181
rockers, 167
roller, 177, 178

blow-up
Allen Road, Toronto Canada, 229
approach slabs, 216
pavement, 31–32, 35, 215, 223
records, 225–228
stone-block streets, 31, 228

bridge, cast-in-place concrete, 103, 150, 168
characteristics
aesthetics, 109
durability, 109
economy, 109, 116
function, 109
safety, 116
collapsed, 46, 88
construction, foundations
integral, 52, 60
procedures, 10, 53, 57, 68
stage, 46, 192
continuous, concrete slab, 71, 72, 74
end-jointed, 14, 22, 32, 35
integral, 7–8, 35, 48
multiple-span, 3, 60, 72, 75, 137, 216
prestressed box-beam, 5, 16, 71, 72, 191, 192, 198, 205
steel stringer-type, 74
superstructures, 19

bridge, composite concrete
conversion techniques, 17
cost-effective, 2
deck-type, xii, 89, 94, 103, 112
deflections, 64, 87
durability, 183
functional, 183
foundation restraint, 10
foundations, old, 48
grade separation, 50, 107, 113
Inspector’s Training Manual, 37, 38

bridge, integral
abutment, 2, 4, 11, 12, 19, 86, 118, 169, 206, 207, 244
aesthetics, 116
attributes
broad span ratios, 50, 51
compressive resistant, xii, 230
cost-effective, 2
dry construction, 45
durable, 2, 43, 100, 116
load distribution, 113
pressure resistant, 22, 42
rapid construction. See Bridge,
integral, construction
safety, 116
simple design, 43–44
simple replacement, 51
simple widening, 51
concept, 93, 244
concrete, 7, 59
certification, 43, 53, 59
broad tolerances, 46, 47
embankments, 46
few parts, 27
no cofferdams, 46
small excavations, 46
simple beam seats, 47
simple forms, 47
vertical piles, 46
cost-effective, 2, 42
integrity, 2, 43, 100
limitations
alignment, xi
application range, 52, 68
approach guard rail connections, 53
approach slabs required, 12, 55, 56,
88
buoyant. See buoyancy,
countermeasures
continuity required, 117
curvature, 57, 112, 116, 118
cycle-control joints. See approach
slabs
flexible abutments, 9, 53, 59, 182
length, 7–8, 11, 43, 52, 57, 69, 116
overburden depth, 5, 57
pile length, 13
pile stresses, 10, 13, 51–52, 139
settlement control, 64–65
skew, 13, 43, 57, 69, 76, 112, 116, 118
uplift. See buoyancy
load capacity, 59
multiple-span continuous, 3, 43, 47, 59,
69, 216
pier. See piers
precast prestressed, 1
prestressed concrete, 10, 16
reinforced concrete slab, 3, 16, 113, 116,
194
replacement, 89
restraint, longitudinal
active earth pressure, 68
approach slab/subbase friction, 169
backfill compression, 56
bearing shear, 124
passive pressure, 11, 55, 59, 112
wingwall/backfill friction, 7
rolled steel beams, 3
bridge, semi-integral
attributes
aesthetics, 142
broad application range, 123
broad skew range, 91
compression resistant, xii, 124
durable, 140
earthquake resistant, 50, 124
jointless deck, 122, 132, 147, 152, 169,
239
length, 153
rigid foundations, 114, 121, 152, 196
concept, 121, 134, 140–142, 180, 205,
244
experience, 144
limitations
alignment, 153
application range, 140
approach slabs, 136, 141, 153
buoyant, 153
continuity required, 153
cycle-control joints, 141, 153, 154, 197
lateral force control, 153
length, 153
restricted settlement, 152
rigid foundations, 132, 141, 153
representative details, 147
seismic research, 200
use, 142
bridge, settlement, 2
Bugler, John W., 234, 241
buoyancy, countermeasures
counterweights, 67
drain holes, 132
floodwater clearance, 53
integral abutments, 86, 118, 197, 206,
207, 244
integral piers, 132
mechanical hold-down connections, 53,
88
vent holes, 53
cofferdams, 46
columns
flexible, 73, 196
slender, 196
composite structure. See structure
movement systems
concrete
closure placements, 86, 88, 97
crack sealers, 85, 87
curing blankets, 61, 84
diaphragms, 16
diaphragms, 84, 85, 87, 89, 91, 95,
136, 180
finishing, machines, 84, 85
forms, 61
high performance, 85
high strength, 85
placement, 16, 47
days, 54, 87, 88, 91
night placement, 85–86, 87
procedures, 84
rapid, 85
sequences, 84, 85
set-retarding admixtures, 85
water curing, continuous, 87
construction
accelerated, 82
all-weather, 82
cast-in-place, 10
continuous, 69, 116
jointless, 44–45
procedures, 53
specifications. See AASHTO Standard Design Specifications for Highway Bridges
stage, 89, 192, 194
continuity, connections
abutments, 54, 61, 62, 88
cast-in-place, 10, 50, 86, 116
moments, 3, 61, 65
reinforcement, 16, 65, 69, 191
superstructure/abutment, 44, 48, 67, 86,
superstructure/pier, 16, 44, 68
continuous, construction
deck slab, 73, 75, 112
frames, 3, 9
highway bridges, xi, xii, xiii, 3, 74
multiple span bridges, 69, 216
contraction, 9, 10, 103, 107–108, 175
conversions, integral, 15, 17, 82
corrosion, 7
counterweights. See buoyancy
cracking
diagonal, bridge deck, 82, 97
early age deck slab, 82, 83–85, 86, 87, 97
flexural, deck slab, 9, 85
sealant, 23
transverse, bridge deck, 83, 84, 85, 113
creep. See stresses, secondary
Cross, Hardy, 3, 99–100
cycle-control joints, 2, 55, 57, 95, 151, 243
debris, infiltration, roadway, compression resistant, 30, 93, 102, 221, 237, 240
deck, drainage
curb inlets, 102
downspouts, 102
hinges, 17
horizontal conductors, 102
joints. See joints
scuppers, 102
deck slab
closure placements, 89, 90, 91
concrete placement procedures, 84, 86, 162
sequences, 84, 86, 112
speed, 112
machine finishing, 84, 85, 87
transverse cracking, 83, 84, 86, 87, 224
de-icing chemical deterioration, xii, 7, 8,
113, 122, 152
design
intuition, 182
prudent judgment, 19
simplified assumptions, 62
design, specifications. See AASHTO Standard Design Specifications for Highway Bridges
deterioration, environmental, 194
diaphragm
cement end, 141, 204
concrete placement, 135–136
transverse, end, 83
drainage, deck, 7, 102, 151
earthquake
North Ridge, 147
resistance, 200
elastomeric
compression seals, 7, 96, 133
errection devices
bearings, 48, 50, 51, 122, 123, 124, 133,
145, 180, 181, 198–199, 203,
206–207
strips, 48–49, 206–207
joint seals, 7, 47, 96, 97, 124, 133, 181
membrane. See deck slab
elementalism, 157, 159, 163–165, 166, 243
elementalistic, approach, 157, 159, 175
embankment
benches, 63, 69, 117
consolidating, approach, 93–94, 116, 158
consolidation, 82, 94, 117, 129, 165, 170,
175, 182, 198
construction, 44, 53–54
erosion, 82, 97
mechanical stabilized, 169
placement procedure, 84, 137
scour, 170
settlement, 165
side-slope drainage flumes, 97, 102, 134, 154
spill-around slopes, 63
stable, 169
waiting period, 69
end diaphragms
concrete, 85, 180, 243
cement placement, 87, 89, 135–136, 180
factors
distribution, 65, 164
stiffness, 43, 65
fatigue design
categories, 114
procedures, 114
specifications, 114
Federal Highway Administration, 14, 235
forces
lateral, 112
longitudinal, 13, 31, 39, 64, 118, 124, 152, 162, 165
foundations, abutment
flexibility, 72
flexible, end-bearing flexible piles, 74, 121, 181
flexible capped piles, 68, 75, 82, 197
rigid
battered piles, 82, 196
bedrock, 75
drilled shafts, 121, 181, 196
pedestals on bedrock, 75, 82, 121, 122, 181, 196
semi-rigid, 12, 19
G/P generation factors
concrete strength, 223
de-icing chemicals applications, 7, 16, 30, 77, 103, 219, 224
joint design and spacing, 223
joint spacing, 228, 237
pavement age, 16–17, 25, 28, 229–230
rainfall, 223
sealant maintenance, 224
sealant quality, 223
subgrade composition, 223
subgrade drainage, 223
temperature range, 54, 223
traffic volume, 31, 224
G/P phenomenon, xi, xii, 11, 21–39, 43, 45, 112, 123, 133, 215–242, 243
General Structures Committee, 157
guard rail connections, 53
Hindman, William S., 76–77
hinges, plastic. See piles
holes
drain. See buoyancy
vent. See buoyancy
holism, 157, 244
holistic, approach, 157
evaluation, 174
views, 159, 162, 163–165, 166, 167, 168, 180
view boundaries, 175, 176, 177
integral construction. See bridges, integral
integrated superstructure system, 18–19, 166
interface
abutment backfill, 170, 197
approach-slab/aggregate-base, 93
approach-slab/approach-pavement, 2, 53, 132, 133, 197
approach-slab/approach-sidewalk, 96
approach-slab/superstructure, 93
bridge/embankment, 50, 96
diaphragm/backfill, 126, 129, 135, 151, 180
polystyrene/concrete, 20
joint
closed, 45
contraction
sealed or unsealed, 240
spacing, 237
cycle-control. See approach slabs, 2
debris infiltration, 30–31, 233
elastomeric, seal, 7, 47
expansion, 8, 9, 73, 74, 106
fillers
compressible, 133
polyethylene, 25
movable, deck, 2, 14, 22, 41, 42, 45, 59, 67, 71, 73, 82, 86, 94, 96, 103, 106, 107, 114, 122, 158, 159, 161, 162, 168, 171–172, 173, 177, 182, 215, 233, 239, 244
longitudinal, 2, 23, 82, 91, 132, 181
transverse, 1, 95
open, 109
pavement expansion, 233, 239
pressure relief, 25, 26, 27, 29, 34, 35, 38, 39, 45, 56, 60, 96, 117, 134, 233, 235, 236, 239
saw-cut, 219
sealed, 7, 45, 221, 235
sliding plate, 7, 96, 162
transverse deck, 1
unsealed, 30, 221, 234–235

Land of No Special Computations, xiii, 12, 108, 109, 111, 115, 116, 118
loads
dead, 60
horizontal, 68
lateral, 118
live
distribution, 113
surcharge, 55
longitudinal, 118
ultimate capacity, 60

mechanical connectors, 88
modulus, elastic, 60, 94
moments
continuity connection, 16, 61, 62
negative, 15, 61, 62
positive, 16, 50, 61, 62, 65
movement systems. See structure movement systems
movements
abnormal rotations, 167
differential, 86
horizontal, 93
longitudinal, 87
rotational, 87

National Bridge Inventory, 118
Naval facilities command, 70, 138
nouns
apparition type, 210
ethereal type, 210
process type, 210
singular, 210–211
static type, 210

Odd Albert’s Method, 115

pavement
approach
blow-up, 31–32, 35, 215, 225, 235, 236
compressive stresses, 31, 225
contraction joints, 30, 219
distribution, 63
expansion joints, 38, 96, 106, 133, 240
forces. See pressure
growth. See G/P phenomenon
restrained, 21, 37, 64
jointed concrete, 2, 22, 23, 31, 32, 35, 45, 60, 170
pressure, 6, 34, 45
pressure relief joints. See pressure relief joints
pumping, 96
PCI manual, 197
PCI Precast/Prestressed Integral Bridges, 16, 197, 205

piers
cap-and-column, 175, 188, 200
capped pile, 1, 51, 198
cap-and-column, 175, 188, 200
capped pile, 1, 51, 198
continuity connections, 43, 44, 47
fixed, 44, 68, 160
flexible capped pile, 68, 75
flexible integral, 2, 42, 43, 44, 49
self-supporting, 2, 43, 49, 50, 59, 65, 68
self-supporting, 2, 43, 49, 50, 59, 65, 68
semi-rigid, 2, 42, 65, 68

piles
battered, 46, 68, 196
cap, connection reinforcement, 9, 44
capped piles. See piers
cast-in-place, 10, 52
driving constraints, 199
elastic range, 52
flexible, 42, 59, 65, 69, 82, 116, 169, 197, 206
flexural resistance, 52, 63
flexural stresses, 9, 52
plastic hinges, 13, 52
prebored holes with granular material, 13, 52, 53, 63, 117
precast concrete, 52
 prestressed reinforced concrete, 16, 52
 single row, 8, 52
 steel H, 8, 9, 13, 34, 52, 116
test research, 52
vertically driven, 2, 116, 196
weak axis, 116
polyethylene, sheets, 88, 136, 203
polystyrene, expanded, 94, 142, 145, 201, 204

pressure
active, 128
distribution, 63
generation curve, 31, 222, 233, 240
generation of, 6, 31, 237
pressure relief joints
asphalt (bituminous) concrete, 56, 93, 239
polymer foam filled, 236
sleeper slabs, 56, 96
subbase drains, 56
problems
elimination, 100, 101–102
ignore nonproblems, 100, 101–102
recognizing, 100–101
redefining, 100, 102–103
simplifying, 100, 103–110
solving, 100
reinforcement, negative moment, 62
research
creep studies, 56, 62
half-scale model, 61
integral-bridge, 8
passive pressure, 56, 62
pile test, 52
seismic, 94, 200
shrinkage, xii, 16, 56, 62
soil/structure interaction, 154
restraint, foundation
lateral, 123, 124
longitudinal, 123–124
rotational, 125
roads, interstate
primary system, 43, 179
secondary system, 43
roadway shoulders
curb inlets, 102
drainage, 95
erosion, 95
side-slope flumes, 154
subsidence, 94
underdrains, 97, 134
rock mechanics, techniques, 215, 222
rotation
abnormal, 167
horizontal, 93, 129
superstructure, 197
seals
deck joint, 67, 82
elastomeric compression, 7
elastomeric joint, 97, 159
elastomeric sheet, 133
joint, 67, 82
secondary effects. See stresses
settlement
differential, 174
post-construction, 175
vertical, 181
shrinkage, xii, 9, 30, 44, 51, 60–61, 87, 103,
107–108, 175, 176
skew, xii, 43, 76, 91, 112, 118, 125, 130, 144,
165, 196
skew limitations, 5, 11, 43, 150
snow plows, 67
span
continuous, 15
simply supported, 14, 89
width ratio, 113
stage reconstruction, 89
strength
fatigue, 90
ultimate, 90
stresses
primary
buoyancy, xii
dead load, 51, 60, 66, 67, 68, 85
earthquakes, xii, 50, 67, 124, 199, 217
flexural, 9
live load, 51, 55, 60, 66, 67, 68, 75, 112
pavement pressure, 7, 16–17, 31, 34,
38, 43, 112, 218–224
secondary
creep, 44, 51, 60, 61–62, 65, 66, 67, 68,
176
passive pressure, xii, 11, 44, 52, 55, 57,
60, 61, 65, 66, 68, 139, 180
settlement, xii, 60
shrinkage, xii, 10, 16, 44, 51, 60–61, 66,
67, 68, 75, 87, 107–108, 175
stream flow, 68, 113
temperature, 87
thermal gradients, xii, 52, 60, 61, 65,
67, 68, 75, 84, 176
wind, 68, 113
stringer support bolts, 88
structure
durability, 106
integrity, 106
movement subsystems
movement systems, xii, 1–2, 93, 97, 157,
159, 161, 162, 165, 168–171, 172,
173, 175, 176, 179, 180, 182, 183,
197, 198, 200, 244
movement systems, 140, 144
primary, 170
secondary, 170
tertiary, 170
structures
continuous, 168
grade separation, 50
Study Tour of North America, 8
subsoil
consolidation and translation, 69, 158
stability, 53, 57
stable, 50
surcharged, 69, 116–117, 158, 175, 179
substructure, 170
capped pile, 200
flexibility, 2, 51
superstructure, 197
superstructure
restraint, longitudinal, 123–124
active earth pressure, 68, 124
approach-slab/subbase friction, 124, 127, 129, 169
backfill compression, 56, 62, 125
bearing shear, 124
passive pressure, 11, 55, 60, 124, 125–126, 127, 128, 180
wingwall/backfill friction, 7, 124
temperature
ambient, 54, 93, 160, 219
changes, 29
levels, 65
movement coefficient, thermal. See stresses
range, 54
thermal gradients, xii, 65, 176
traffic
maintained, 89, 193, 194
vehicular, 31, 35, 50, 55, 166, 167, 224
Transportation Research Board (TRB), 157, 244
TRB Structure Movement Systems
Subcommittee, 158
uplift. See integral and semi-integral bridge limitations
buoyancy. See buoyancy
deck placement, 54
mechanical hold-down connections, 53, 88
vehicular traffic. See traffic
views
elementalistic. See elementalism
holistic. See holism
multidimensional, 179
welder pre-qualification tests, 3
welding, butt
beams, 3
field, 3
fillet, moment plates, 3
splices, 3