Contents

Preface to the Technical Series
xvi
Preface to the Second Edition
xvii
Preface to the First Edition
xix
Contributors
xxi

1 The Quality of Milk for Cheese Manufacture 1
T.P. Guinee and B. O’Brien

1.1 Introduction 1

1.2 Overview of milk composition 2
1.2.1 Casein 3
1.2.2 Whey protein 6
1.2.3 Minerals 7
1.2.4 Milk lipids 8

1.3 Principles of cheese manufacture 9
1.3.1 Rennet-induced gelation 10
1.3.2 Acid-induced gelation 13

1.4 Quality definition of milk 15
1.4.1 Safety/public health (pathogens including *Mycobacterium tuberculosis*, *Brucella* spp., toxic residues, and contaminants) 16
1.4.2 Composition (protein, casein, fat, total solids, lactose, and mineral) 18
1.4.3 Microbiology (total bacterial count) 22
1.4.4 Sensory (appearance, colour, smell, and taste) 23
1.4.5 Authenticity (non-adulteration with residues or other milks/milk fractions) 23

1.5 Factors affecting the quality of milk for cheese manufacture 24
1.5.1 Milk composition 24
1.5.2 Microbial activity of milk 31
1.5.3 Somatic cell count 34
1.5.4 Enzymatic activity of milk 36
1.5.5 Chemical residues 43

1.6 Strategy for quality milk production 45

1.7 Conclusions 47

References 50
2 The Origins, Development and Basic Operations of Cheesemaking Technology
M. Johnson and B.A. Law

2.1 Introduction
2.2 The world market for cheese
2.3 The fundamentals of cheese technology
2.4 Basic cheese manufacture
2.5 The stages of cheesemaking
2.5.1 Standardisation of milk
2.5.2 Heat treatment of milk
2.5.3 Addition of the starter culture
2.5.4 Coagulation and cutting
2.5.5 Stirring, heating and syneresis (moisture control)
2.5.6 Whey removal, hooping and salting
2.5.7 Brining and/or dry surface salting
2.5.8 Pressing
2.6 Cheese ripening/maturation
2.6.1 Diversity arising from composition
2.6.2 Diversity arising from the starter cultures and the adventitious microflora in cheese
2.7 Reduced-fat versions of traditional cheeses
2.7.1 Background
2.7.2 Manufacture of reduced-fat cheese
2.8 Whey technology for cheesemakers
2.8.1 The composition of cheese whey
2.8.2 Membrane filtration technology
2.8.3 Whey pre-treatment
2.8.4 Production of WPC
2.8.5 Lactose recovery
2.9 The role of research and development in the future of cheese technology
2.10 Acknowledgements

3 The Production, Action and Application of Rennet and Coagulants
M. Harboe, M.L. Broe and K.B. Qvist

3.1 Historical background and nomenclature
3.2 Types of rennet and coagulants
3.2.1 Animal rennet and coagulants
3.2.2 Microbial coagulants
3.2.3 Fermentation-produced chymosin
3.2.4 Vegetable coagulants
3.3 Molecular aspects of the enzymes in rennet and coagulants
3.3.1 Introduction
3.3.2 Specific molecular aspects
3.4 Technology of enzymes production
 3.4.1 General background 103
 3.4.2 Production of enzymes 103
 3.4.3 Formulation, standardisation and quality control 106

3.5 Analysis of coagulants 107

3.6 Legislation and approvals 110

3.7 Physical chemistry and kinetics of enzymatic coagulation of milk
 3.7.1 Stability and destabilisation of the casein micelles 111
 3.7.2 Kinetics of enzymatic coagulation of milk 112

3.8 Application of rennet and coagulants 115
 3.8.1 Trends in use 115
 3.8.2 Handling and use of rennet and coagulants 116
 3.8.3 Milk quality, treatment and additives 116
 3.8.4 Controlling the curd firmness at cutting 119
 3.8.5 Performance of different rennet and coagulants available in the market 119
 3.8.6 Coagulants and cheese ripening 123
 3.8.7 Choice of coagulant 124

3.9 Conclusions 125

References 125

4 The Formation of Cheese Curd 130
 T. Janhøj and K.B. Qvist

4.1 Introduction 130

4.2 Chemistry and physics of curd formation 130
 4.2.1 Some factors affecting aggregation 130
 4.2.2 Formation of a gel 133
 4.2.3 Rheological properties of rennet gels 135
 4.2.4 Syneresis 138

4.3 Effect of milk composition on curd formation 140
 4.3.1 Variations in main components 140
 4.3.2 Casein micelle size 141
 4.3.3 Genetic polymorphism of milk proteins 141
 4.3.4 Lactational variation and somatic cell count 142

4.4 Effects of milk pre-treatment on curd formation 143
 4.4.1 Cooling 143
 4.4.2 High heat treatment 144
 4.4.3 Restoring the rennetability of high heat treated milk 145
 4.4.4 pH adjustment by carbon dioxide injection 146
 4.4.5 Homogenisation 147
 4.4.6 Phospholipase addition 147
 4.4.7 Microfiltration and microfiltration combined with heat treatment 148
5.10.2 Phage control in the dairy 184
5.10.3 Phage monitoring 185
5.11 Development of phage-resistant starters 186
 5.11.1 Isolation of spontaneous phage-resistant mutants 186
 5.11.2 Conjugal transfer of phage resistance plasmids 186
 5.11.3 Inhibition of phage adsorption 187
 5.11.4 Prevention of phage DNA injection 187
 5.11.5 Restriction and modification systems 187
 5.11.6 Abortive infection 187
 5.11.7 Additional routes to bacteriophage resistance 187
5.12 Future perspectives in starter culture development 188

References 189

6 Secondary Cheese Starter Cultures 193
 W. Bockelmann

 6.1 Introduction 193
 6.2 Surface-ripened cheeses 198
 6.2.1 Examples of some popular varieties 198
 6.2.2 Control of surface ripening 199
 6.3 Classification of secondary starter cultures 200
 6.3.1 Moulds and yeasts 200
 6.3.2 Staphylococci 201
 6.3.3 Coryneforms 202
 6.4 Commercially available secondary cheese starter cultures 203
 6.4.1 Moulds 203
 6.4.2 Yeasts 204
 6.4.3 Brevibacteria 205
 6.4.4 Staphylococci 205
 6.4.5 Coryneforms 205
 6.4.6 Mixed starter cultures 206
 6.5 Surface ripening 206
 6.5.1 Ripening strategies 206
 6.5.2 Yeasts and moulds 207
 6.5.3 Staphylococci 209
 6.5.4 Smear bacteria (coryneforms) 209
 6.5.5 Food safety 211
 6.5.6 Old–young smearing 211
 6.5.7 L. monocytogenes 213
 6.5.8 Mould spoilage 213
 6.5.9 Anti-listeria starter cultures 214
 6.6 Development of defined surface starter cultures 215
 6.6.1 Surface starter cultures for semi-soft cheeses 216
 6.6.2 Surface starter cultures for smeared soft cheeses 217
 6.6.3 Starter cultures for acid curd cheeses (yellow type) 218
7 Cheese-Ripening and Cheese Flavour Technology

B.A. Law

7.1 Introduction

7.2 The breakdown of milk proteins to flavour compounds in cheese

7.2.1 Proteinase and peptidase enzymes (proteolytic systems)

7.2.2 Amino acid catabolism

7.3 Breakdown of milk lipids in cheese

7.4 Lactose and citrate metabolism in cheese

7.5 The commercial drive for cheese-ripening and flavour technology

7.6 Commercial opportunities created by cheese-ripening and flavour technologies

7.7 Methods for the controlled and accelerated ripening of cheese

7.7.1 Elevated storage temperatures

7.7.2 Ultra-high-pressure technology

7.7.3 Enzyme additions

7.7.4 Attenuated starter cultures

7.7.5 Non-starter adjunct cultures

7.7.6 Genetically modified LAB

7.7.7 Rules and regulations for GMOs in foods

7.8 EMCs and cheese flavour products

7.9 Acknowledgements

References

8 Control and Prediction of Quality Characteristics in the Manufacture and Ripening of Cheese

T.P. Guinee and D.J. O’Callaghan

8.1 Introduction

8.2 Principles of cheese manufacture

8.3 Cheese quality characteristics

8.3.1 Definition of cheese quality

8.3.2 Assessment of cheese quality

8.3.3 Sensory tests

8.3.4 Rheology and texture of cheese

8.3.5 Colorimetry

8.3.6 Image analysis

8.4 Cheese quality: influence of chemical composition of milk
8.5 Cheese quality: effect of milk pre-treatments and manufacturing operations
8.5.1 Cold storage of milk prior to pasteurisation at the cheese factory 271
8.5.2 Thermisation 273
8.5.3 Milk pasteurisation and incorporation of in situ denatured whey proteins 273
8.5.4 Bactofugation 279
8.5.5 Clarification 280
8.5.6 Standardisation of protein-to-fat ratio 280
8.5.7 Homogenisation 286
8.5.8 Addition of calcium chloride 289
8.5.9 Milk gelation 290
8.5.10 Curd-cutting programmes 291
8.5.11 Stirring and cooking 294
8.5.12 Curd washing: standardisation of lactose level in the moisture phase of the curd 295
8.5.13 Whey drainage and remaining operations 298
8.6 Cheese quality: effect of cheese composition 299
8.7 Cheese quality: effect of ripening
8.7.1 Overview of the ripening process 301
8.7.2 Factors affecting ripening 303
8.8 Quality assurance in cheese manufacture
8.8.1 Background 304
8.8.2 Key concepts in quality assurance 305
8.8.3 Control and prediction of quality characteristics of curd and cheese 310
8.8.4 Robots in cheese manufacturing 313
8.9 Conclusions 313
References 314

9 Technology, Biochemistry and Functionality of Pasta Filata/Pizza Cheese 330
P.S. Kindstedt, A.J. Hillier and J.J. Mayes
9.1 Introduction 330
9.2 Measuring functional properties of pizza cheese
9.2.1 Background 330
9.2.2 Measurement of functionality 331
9.3 Manufacture of pizza cheese
9.3.1 Treatment of milk 332
9.3.2 Starter culture 334
9.3.3 Coagulant 337
9.3.4 Cooking and cheddaring 338
9.3.5 Stretching and moulding 339
9.3.6 Brining/salting 342
Contents

9.3.7 Process control in pizza cheese manufacture 344
9.3.8 Factors affecting cheese yield 345
9.4 Microbiological, proteolytic and physicochemical properties 345
 9.4.1 Microbiological properties 345
 9.4.2 Proteolytic properties 347
 9.4.3 Physicochemical properties 347
 9.4.4 Functionality changes during storage 349
9.5 Non-traditional methods of manufacture 349
 9.5.1 Direct acidification 349
 9.5.2 Cheese blends 350
 9.5.3 Low-fat pizza cheese 350
 9.5.4 Imitation (analogue) pizza cheese 351
 9.5.5 Processed pizza cheese 352
References 352

10 Eye Formation and Swiss-Type Cheeses 360
A. Thierry, F. Berthier, V. Gagnaire, J.R. Kerjean, C. Lopez and Y. Noël
10.1 Introduction 360
 10.1.1 Which kinds of cheese? 360
 10.1.2 Manufacture and chemical composition 361
 10.1.3 Scope of the present chapter 361
10.2 Open texture and eye formation 363
 10.2.1 Gas production – a sign of quality 363
 10.2.2 Eye formation 365
 10.2.3 Cheese cohesion 366
10.3 Gas formation through propionic fermentation 366
 10.3.1 Main sources of gas in Swiss-type cheeses 366
 10.3.2 Taxonomy, ecology and presence of PAB in cheese 367
 10.3.3 Metabolism of PAB 368
 10.3.4 Influence of LAB on propionibacteria 370
 10.3.5 Relationship between eye formation and flavour development 371
10.4 Cheese structure and eye formation 372
 10.4.1 Mechanical properties and eye formation of cheese 372
 10.4.2 Changes during ripening and eye formation 374
 10.4.3 Eye formation and slit development 376
10.5 Conclusions 377
References 378

11 Microbiological Surveillance and Control in Cheese Manufacture 384
P. Neaves and A.P. Williams
11.1 Introduction 384
11.2 Milk for cheese manufacture 386
11.3 Heat treatment 389
Contents

11.4 Cheesemaking 391
11.5 Maturation of the curd 393
11.6 Specialist cheeses and cheese products 394
 11.6.1 Cheeses made from unpasteurised milk 395
 11.6.2 Grated cheese for manufacture 395
 11.6.3 Cheese with additives 396
 11.6.4 Processed cheeses 396
11.7 Cheese defects 397
11.8 Prevention and control 399
11.9 End-product testing and environmental monitoring 401
 11.9.1 End-product testing 401
 11.9.2 Environmental monitoring 404
11.10 Microbiological techniques 406
11.11 Conclusions 408
References 409

12 Packaging Materials and Equipment 413
Y. Schneider, C. Kluge, U. Weiβ and H. Rohm
12.1 Introduction 413
12.2 Cutting of the cheese 415
 12.2.1 Characteristics and features of food cutting 415
 12.2.2 Parameters affecting cutting performance 416
 12.2.3 Cutting velocity 417
12.3 Applications of cutting 419
 12.3.1 Partitioning and segmentation 419
 12.3.2 Slicing 420
 12.3.3 Dicing 420
 12.3.4 Shredding 421
12.4 Packaging of cheeses 421
 12.4.1 Specific requirements 421
 12.4.2 Packaging materials 422
 12.4.3 Packaging of hard and semi-hard cheeses 425
 12.4.4 Packaging of soft cheeses 428
12.5 Packaging machines 428
 12.5.1 Control of the packaging process 428
 12.5.2 Machinery for cheese packaging 430
 12.5.3 Miscellaneous methods of cheese packaging 436
12.6 Conclusion 437
References 438

13 The Grading and Sensory Profiling of Cheese 440
D.D. Muir
13.1 Introduction to cheese-grading systems 440
13.2 Fundamentals of sensory processing 440
13.2.1 The three dimensions of sensory experience 440
13.2.2 Integration versus selection of sensory information 441

13.3 Grading systems: defect versus attribute grading 442
13.3.1 The Australian grading system 442
13.3.2 The UK grading system 443
13.3.3 The US grading system 443
13.3.4 The Canadian grading system 443
13.3.5 The International Dairy Federation grading system 443
13.3.6 The New Zealand grading system 444

13.4 The direct link: cheesemaking to consumer 444
13.4.1 The link between cheesemaking, grading and the consumer 444
13.4.2 The link between grading and consumer 445
13.4.3 The cheesemaking – grading link 446

13.5 Introduction to sensory profiling of cheese 446

13.6 Sensory vocabulary 447
13.6.1 A working vocabulary for cheese 448
13.6.2 Evolution of the vocabulary 448

13.7 Sample preparation and presentation 448
13.7.1 Environment 448
13.7.2 Isolation 449
13.7.3 Rating of samples 449
13.7.4 Presentation order 449

13.8 Assessor selection 450
13.8.1 Internal versus external panels 450
13.8.2 Pre-selection procedure 450
13.8.3 Initial testing 451
13.8.4 Acclimatisation and confirmation 451
13.8.5 Monitoring assessors’ performance 452

13.9 Integrated design and analysis of data 452
13.9.1 The design, data capture and analysis of the sensory-profiling protocol 452
13.9.2 Preliminary treatment 453
13.9.3 Sensory space maps 454
13.9.4 Principal Component Analysis 455
13.9.5 Interpretation of sensory dimensions 456
13.9.6 Generalised Procrustes Analysis (GPA) 458
13.9.7 Interpretation of sensory space maps 459
13.9.8 Multivariate prediction 459
13.9.9 Measurement of assessors’ performance 461

13.10 Sensory character of commercial cheese 467
13.10.1 Comparison of maturity declaration on cheese packaging with sensory panel ratings 467
13.10.2 Discrimination amongst cheese types 468

13.11 Development of flavour lexicons 469
Contents

13.12 Overview 471
13.13 Acknowledgements 472
References 472

Index 475