Contents

About the Author xxi
Preface xxiii
Acknowledgements xxv
About the Companion Website xxvii

1 Why Industrial Environmental Management? 1
1.1 Introduction 1
1.1.1 ISO in Brief 2
1.1.2 ISO and the Environment 2
1.1.3 Benefits 2
1.2 Environmental Management in Industries 3
1.2.1 Environmental Challenges 3
1.3 Waste as Pollution 4
1.4 Defining Pollution Prevention 4
1.4.1 Resource Efficiency 5
1.5 The ZDZE Paradigm 5
1.6 Zero Discharge Industries 5
1.7 Sustainability, Industrial Ecology, and Zero Discharge (Emissions) 6
1.8 Why Zero Discharge Is Critical to Sustainability 8
1.9 The New Role of Process Engineers and Engineering Firms 9
1.10 Zero Discharge (Emissions) Methodology 10
1.10.1 Analyze Throughput 10
1.10.2 Inventory Inputs and Outputs 10
1.10.3 Build Industrial Clusters 10
1.10.4 Develop Conversion Technologies 11
1.10.5 Designer Wastes 11
1.10.6 Reinvent Regulatory Policies 11
1.11 Making the Transition 12
1.11.1 Recycling of Materials and Reuse of Products 12
1.11.2 Dematerilization 13
1.11.3 Investment Recovery 14
1.11.4 New Technologies and Materials 14
1.11.5 New Mindset 15
1.11.6 In the Full ZD (Emission) Paradigm 16
1.12 Constraints and Challenges 17
1.12.1 The Challenges in Industrial Environmental Management 18
1.12.2 Codes of Ethics in Engineering 18
1.13 The Structure of the Book 18
1.13.1 What Is in the Book? 18
Problems 21
References 22
2.12.8 Canada 45
2.12.9 China 45
2.12.10 Ecuador 45
2.12.11 Egypt 46
2.12.12 Germany 46
2.12.13 India 46
2.13 The Legal and Regulatory Framework for Environmental Protection in India 47
2.13.1 Introduction 47
2.13.2 Legislation for Environmental Protection in India 47
2.13.3 General 48
2.13.4 Hazardous Wastes 50
2.13.5 International Agreements on Environmental Issues 51
2.13.6 An Assessment of the Legal and Regulatory Framework for Environmental Protection in India 52
2.13.7 Emerging Environmental Challenges 53
2.14 United States Environmental Law 55
2.14.1 Scope 55
2.14.2 History 55
2.14.3 Legal Sources 55
2.14.4 Federal Regulation 55
2.14.5 Judicial Decisions 56
2.14.6 Common Law 56
2.14.7 Administration 56
2.14.8 Enforcement 56
2.14.9 Education and Training 56
2.14.10 Vietnam 57
2.15 ISO 9000 and 14000 57
2.15.1 Green Accounting Practices and Other Quality Manufacturing and Business Management Paradigms 57
2.16 Current Environmental Regulatory Development in the United States: From End-of-Pipe Laws and Regulations to Pollution Prevention 60
2.16.1 Introduction 60
2.17 Greenhouse Gases 60
2.17.1 Nine Prominent Federal Environmental Statutes 61
Examples (Multiple Choice) 64
Problems 65
References 65

3 Industrial Pollution Sources, Its Characterization, Estimation, and Treatment 71
3.1 Introduction 71
3.2 Wastewater Sources 71
3.2.1 Point Source 71
3.2.2 Nonpoint Source 71
3.3 Wastewater Characteristics 71
3.3.1 Physical Characteristics 72
3.3.2 Total Suspended Solids 72
3.3.3 Color 72
3.3.4 Odor 72
3.3.5 Temperature 72
3.4 Chemical Characteristics 73
3.4.1 Inorganic Chemicals 73
3.4.2 Organic Chemicals 73
3.4.3 Volatile Organic Compounds 73
3.4.4 Heavy Metal Discharges 73
3.4.5 Some Inorganic Pollutants of Concern 74
Industrial Wastewater, Air Pollution, and Solid and Hazardous Wastes: Monitoring, Permitting, Sample Collections and Analyses, QA/QC, Compliance with State Regulations and Federal Standards

4

4.1 Introduction 115

4.2 Industrial Process Water 115

4.3 Common Elements, Radicals, and Chemicals in Water Analysis 115

4.4 Purposes and Objectives for Inspecting and Sampling 116

4.4.1 Analytical Methods 118

4.4.2 State Waste Discharge Permit 119

4.4.3 NPDES Wastewater Discharge Permit 119

4.4.4 General Wastewater Discharge Permit 120

4.5 Sampling and QA/QC Plan 120

4.5.1 QA/QC Procedures 121

4.5.2 QA Procedures for Sampling 121

4.5.3 QC Procedures for Sampling 122

4.5.4 Laboratory QA/QC 123

4.5.5 Sampling Location 124

4.5.6 Type of Sample 124

4.5.7 Continuous Monitoring 126

4.5.8 Sample Preservation and Holding Times 127

4.5.9 Sample Documentation 127

4.5.10 General Documentation Procedures 127

4.5.11 COC Procedures 128

4.5.12 Sample Identification and Labeling 129

4.5.13 Sample Packaging and Shipping 129

4.6 Whole Effluent Toxicity Testing 130

4.6.1 Introduction 130

4.6.2 The WET Testing 130

4.6.3 Toxicity Testing and Evaluation of Toxicity Test Results 130

4.6.4 Toxic Units 131

4.6.5 Application of Toxicity Test Results 132

4.6.6 Protection Against Acute Toxicity 132

4.6.7 Protection Against Chronic Toxicity 132

4.7 Flow Measurements 133

4.7.1 Open Channel Flow 133

4.7.2 Closed Channel Flow 137

4.7.3 Pitot Tube 138

4.7.4 Electromagnetic Flow Meter 139

4.8 The Point of Compliance with the Water Quality Standards 139

4.8.1 Mixing Zones 139
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8.2</td>
<td>Streeter–Phelps Equation and DO Sag Curve in a River</td>
<td>141</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Mixing of Wastewater in Rivers: Mass-Balance Approach</td>
<td>141</td>
</tr>
<tr>
<td>4.9</td>
<td>Water Quality Modeling</td>
<td>142</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Formulations and Associated Constants</td>
<td>142</td>
</tr>
<tr>
<td>4.9.2</td>
<td>WWTP BOD, SS, and Fecal Coliform Removal Efficiencies:</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Meet Water Quality Standards</td>
<td></td>
</tr>
<tr>
<td>4.9.3</td>
<td>NPDES Wastewater Discharge Permits for Point Sources</td>
<td>143</td>
</tr>
<tr>
<td>4.10</td>
<td>Example NPDES Permits (for Refinery and Aluminum</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Smelter are shown in Section D.1)</td>
<td></td>
</tr>
<tr>
<td>4.10.1</td>
<td>Total Maximum Daily Load (TMDL) Rule</td>
<td>145</td>
</tr>
<tr>
<td>4.11</td>
<td>Air Pollution Perspective</td>
<td>146</td>
</tr>
<tr>
<td>4.11.1</td>
<td>Causes, Sources, and Effects</td>
<td>146</td>
</tr>
<tr>
<td>4.11.2</td>
<td>Air Toxics: Toxic Air Pollutants</td>
<td>147</td>
</tr>
<tr>
<td>4.12</td>
<td>Prevention of Significant Deterioration (PSD)</td>
<td>149</td>
</tr>
<tr>
<td>4.12.1</td>
<td>Introduction</td>
<td>149</td>
</tr>
<tr>
<td>4.12.2</td>
<td>The PSD Program Goals</td>
<td>149</td>
</tr>
<tr>
<td>4.13</td>
<td>An Overall Permitting Process</td>
<td>150</td>
</tr>
<tr>
<td>4.13.1</td>
<td>Who Needs a PSD Permit?</td>
<td>151</td>
</tr>
<tr>
<td>4.13.2</td>
<td>What Does the PSD Program Require of the Applicant?</td>
<td>151</td>
</tr>
<tr>
<td>4.14</td>
<td>Best Available Control Technology</td>
<td>152</td>
</tr>
<tr>
<td>4.14.1</td>
<td>Introduction</td>
<td>152</td>
</tr>
<tr>
<td>4.14.2</td>
<td>Control Technology Requirement Definitions</td>
<td>153</td>
</tr>
<tr>
<td>4.14.3</td>
<td>BACT Selection Strategy</td>
<td>154</td>
</tr>
<tr>
<td>4.14.4</td>
<td>Top-Down BACT Analysis</td>
<td>155</td>
</tr>
<tr>
<td>4.14.5</td>
<td>Identify Technologies</td>
<td>155</td>
</tr>
<tr>
<td>4.14.6</td>
<td>Determine Technical Feasibility</td>
<td>156</td>
</tr>
<tr>
<td>4.14.7</td>
<td>Rank Technically Feasible Alternatives</td>
<td>156</td>
</tr>
<tr>
<td>4.14.8</td>
<td>Evaluate Impacts of Technology</td>
<td>156</td>
</tr>
<tr>
<td>4.14.9</td>
<td>Plant-Wide Applicability Limitation</td>
<td>157</td>
</tr>
<tr>
<td>4.15</td>
<td>Atmospheric Dispersion Modeling</td>
<td>157</td>
</tr>
<tr>
<td>4.15.1</td>
<td>Atmospheric Layers</td>
<td>158</td>
</tr>
<tr>
<td>4.16</td>
<td>Dispersion Models: Indoor Concentrations</td>
<td>159</td>
</tr>
<tr>
<td>4.16.1</td>
<td>Gaussian Dispersion Model</td>
<td>160</td>
</tr>
<tr>
<td>4.16.2</td>
<td>Modeling Protocol</td>
<td>161</td>
</tr>
<tr>
<td>4.16.3</td>
<td>Dispersion Model Selection</td>
<td>161</td>
</tr>
<tr>
<td>4.16.4</td>
<td>CALPUFF</td>
<td>162</td>
</tr>
<tr>
<td>4.16.5</td>
<td>Attainment and Non-Attainment Areas</td>
<td>162</td>
</tr>
<tr>
<td>4.17</td>
<td>State Implementation Plan</td>
<td>162</td>
</tr>
<tr>
<td>4.17.1</td>
<td>What National Standards must SIPs Meet?</td>
<td>162</td>
</tr>
<tr>
<td>4.17.2</td>
<td>What Is Included in a SIP?</td>
<td>163</td>
</tr>
<tr>
<td>4.17.3</td>
<td>Who Is Responsible for Enforcing a SIP?</td>
<td>163</td>
</tr>
<tr>
<td>4.18</td>
<td>Compliance</td>
<td>164</td>
</tr>
<tr>
<td>4.18.1</td>
<td>Compliance Requirements</td>
<td>164</td>
</tr>
<tr>
<td>4.19</td>
<td>CAA Enforcement Provisions</td>
<td>168</td>
</tr>
<tr>
<td>4.19.1</td>
<td>Administrative Penalty Orders</td>
<td>169</td>
</tr>
<tr>
<td>4.19.2</td>
<td>Issuing an Order Requiring Compliance or Prohibition</td>
<td>169</td>
</tr>
<tr>
<td>4.19.3</td>
<td>Bringing Civil Action in Court</td>
<td>169</td>
</tr>
<tr>
<td>4.19.4</td>
<td>Requesting the Attorney General to Bring Criminal Action</td>
<td>169</td>
</tr>
<tr>
<td>4.19.5</td>
<td>Emergency as a Defense</td>
<td>169</td>
</tr>
<tr>
<td>4.19.6</td>
<td>Section 114: Fact-Finding</td>
<td>170</td>
</tr>
<tr>
<td>4.19.7</td>
<td>Inspection Protocol</td>
<td>170</td>
</tr>
<tr>
<td>4.19.8</td>
<td>Continuous Emission Monitoring</td>
<td>171</td>
</tr>
<tr>
<td>4.19.9</td>
<td>QA and QC in Air Emission Rates</td>
<td>171</td>
</tr>
<tr>
<td>4.19.10</td>
<td>Performing Stack Tests</td>
<td>172</td>
</tr>
<tr>
<td>4.20</td>
<td>Industrial Solid Wastes and Its Management</td>
<td>173</td>
</tr>
</tbody>
</table>
4.20.1 Solid Waste Treatment: Some Perspectives on Recycling 173
4.20.2 Why Recycle? 173
4.20.3 What Is Recycling 173
4.20.4 A Brief Overview of Recycling in the United States and United Kingdom 174
4.20.5 Recycling Today 174
4.20.6 Recycling as a Route to Sustainable Productivity and Growth 175
4.20.7 Resource Conservation and Recovery Act 175
4.20.8 Few RCRA Provisions: Cradle-to-Grave Requirements 177
4.20.9 TSDFs Permits 178
4.21 Hazardous Waste Landfill (Sequestering, Isolation, etc.) 180
4.21.1 Final Disposal of Hazardous Waste 180
4.22 Industrial Waste Generation Rates 181
4.22.1 Generator Requirements and Responsibilities 181
4.22.2 Environmental Audits 181
4.23 Comprehensive Environmental Response, Compensation, and Liability Act and Superfund 182
4.23.1 History 182
4.23.2 Provisions 182
4.23.3 Procedures 183
4.23.4 Implementation 184
4.23.5 Hazard Ranking System 184
4.23.6 Environmental Discrimination 184
4.23.7 Case Studies in African American Communities 184
4.23.8 Case Studies in Native American Communities 185
4.24 Industrial Waste Management in India: Shifting Gears 185
4.24.1 Integrated Solid Waste Management 185
4.24.2 Hazardous Waste Handling and Management Rule 186
4.24.3 Biomedical Waste Rule 186
4.24.4 E-Waste Rule 186
4.24.5 Plastic Nonhazardous Waste Rule 186
5 Assessment and Management of Health and Environmental Risks: Industrial and Manufacturing Process Safety 193
5.1 Health Risk Assessment 193
5.1.1 Air Pollution 193
5.1.2 Problem Formulation 194
5.1.3 Exposure Assessment 195
5.1.4 Toxicity Assessment 199
5.1.5 Risk Characterization 200
5.2 Assessing the Risks of Some Common Pollutants 201
5.2.1 NOx, Hydrocarbons, and VOCs: Ground-Level Ozone 202
5.2.2 Carbon Monoxide 203
5.2.3 Lead and Mercury 204
5.2.4 Particulate Matter 205
5.2.5 SO2, NOx, and Acid Deposition 206
5.2.6 Air Toxics 207
5.3 Ecological Risk Assessment 207
5.3.1 Technical Aspects of Ecological Problem Formulation 208
5.3.2 Ecological Exposure Assessment 211
5.3.3 Ecological Effects Assessment 213
5.3.4 Additional Components of Ecological Risk Assessments 214
5.3.5 Tropospheric Ozone Pollution and Its Effects on Plants 215
5.3.6 Air Toxics 215
5.4 Additional Components of Ecological Risk Assessments 214
5.4.1 Tropospheric Ozone Pollution and Its Effects on Plants 215
5.3.6 Toxicity Testing 216
5.4 Risk Management 217
5.4.1 Valuation of Ecological Resources 218
5.4.2 Modeling Risk Management 220
5.4.3 Other Considerations for Risk Characterization 220
5.4.4 Conceptual Bases for De Minimis Risks 221
5.4.5 Ecological Risk Assessment of Chemicals 221
5.5 Communicating Information on Environmental and Health Risks 227
5.5.1 From Concern to Outrage: Determinants of Public Response 228
5.5.2 Sustainable Strategies for Environmental and Health Risk Communication 228
5.5.3 Case Study: Environmental and Health Risk Communication Neglected Until After an Accident 230
5.5.4 Lessons Learned 231
5.6 Environmental Information Access on the Internet 231
5.6.1 Internet Sources 232
5.6.2 Implications and Limitations of Using the Internet 233
5.7 Health and Occupational Safety 234
5.7.1 Occupational Safety and Health Administration 234
5.8 Industrial Process Safety System Guidelines 235
5.8.1 Types of Safety Systems 236
5.9 Industrial Hygiene 236
5.9.1 Toxicology 236
5.9.2 TLVs and Exposure Limits 237
5.10 Atmospheric Hazards 237
5.10.1 Oxygen Deficient Atmosphere 237
5.10.2 Toxic Atmosphere 237
5.10.3 Chronic Industrial Exposure 238
5.10.4 Accidental Chlorine Gas Release: Case Study 238
5.10.5 Determination of Toxic Endpoint Distance 239
5.10.6 Determination of Exposed Population to this Scenario 239
5.10.7 Chronic Industrial Exposure: TWA and TLV 239
5.11 Safety Equipment 241
5.11.1 Personal Protective Equipment 241
5.11.2 Personal Protective Clothing 242
5.12 Communication Devices 243
5.12.1 Air Monitoring Devices 243
5.12.2 Ventilation Devices 244
5.12.3 Safety Harness and Retrieval System 244
5.12.4 Respirators 245
5.12.5 Confined Space Entry 245
5.12.6 Safety Training 246
5.13 Noise 246
5.13.1 Occupational Noise Exposure 246
5.13.2 Basics of Occupational Noise and Hearing Protection 247
5.13.3 Noise: Physical Principles 247
5.13.4 Noise Exposure and Noise Protection 248
5.13.5 Noise Control 248
5.14 Radiation 249
5.14.1 Definition 249
5.14.2 Different Sources of Radiation 249
5.14.3 External Exposure and Internal Exposure 249
5.14.4 Radionuclide Decay 250
5.14.5 Radiation Dose 250
5.14.6 Biological Effects of Ionizing Radiation 250
5.14.7 Radiation Protection Principles 251
5.15 Effects of Global Warming: Climate Change – The World’s Health 253
5.15.1 The Greenhouse Effect 253
5.15.2 Greenhouse Gases 254
5.15.3 Are the Effects of Global Warming Really Concerns for Our Future? 255
5.15.4 More Frequent and Severe Weather 255
5.15.5 Higher Death Rates 256
5.15.6 Dirtier Air 256
5.15.7 Higher Wildlife Extinction Rates 256
5.15.8 More Acidic Oceans 256
5.15.9 Higher Sea Levels 256
5.15.10 Effects of Global Warming on Humans 256
5.16 Key Vulnerabilities 257
5.16.1 Health 257
5.16.2 Extreme Weather Events 257
5.16.3 Environment 257
5.16.4 Temperature 257
5.16.5 Water 257
5.16.6 Social Effects of Extreme Weather 257
5.17 Energy Sector 258
5.17.1 Oil, Coal, and Natural Gas 258
5.17.2 Nuclear 258
5.17.3 Hydroelectricity 258
5.17.4 Transport 258
5.17.5 Problems 259
5.17.6 References 260

6 Industrial Process Pollution Prevention: Life-Cycle Assessment to Best Available Control Technology 265
6.1 Industrial Waste 265
6.1.1 Waste as Pollution 265
6.1.2 Pollution Prevention in Industries 265
6.1.3 Defining Process Pollution Prevention (P³) 267
6.2 What Is Life Cycle Assessment? 267
6.2.1 Benefits of Conducting an LCA 268
6.2.2 Limitations of LCAs as Tools 268
6.2.3 Conducting an LCA 268
6.2.4 Life Cycle Inventory 271
6.2.5 Life Cycle Impact Assessment 273
6.2.6 Life Cycle Interpretation 277
6.3 LCA and LCI Software Tools 280
6.3.1 ECO-it 1.0 280
6.3.2 EcoManager 280
6.3.3 Eco Bat 2.1 280
6.3.4 GaBi 4 281
6.3.5 IDEMAT 281
6.3.6 EIO-LCA 281
6.3.7 LCAD 281
6.3.8 LCAIT 281
6.3.9 REPAQ 281
6.3.10 SimaPro 7 282
6.3.11 TEAM (Tool for Environmental Analysis and Management) 282
6.3.12 TRACI: A Model Developed by the USEPA 282
6.3.13 Umberto NXT CO₂ 282
6.3.14 International Organizations and Resources for Conducting Life Cycle Assessment 282
6.4 Evaluating the Life Cycle Environmental Performance of Chemical-, Mechanical-, and Bio-Pulping Processes 282
6.4.1 Introduction 282
6.4.2 Application of LCA 283
6.4.3 The Pulping Processes 283
6.5 Evaluating the Life Cycle Environmental Performance of Two Disinfection Technologies 291
6.5.1 The Challenge 292
6.5.2 The Chlorination (Disinfection) Process 292
6.5.3 Dechlorination with Sulfur Dioxide 293
6.5.4 UV Disinfection Process 295
6.6 Case Study: LCA Comparisons of Electricity from Biorenewables and Fossil Fuels 299
6.6.1 Results 299
6.6.2 Sensitivity Analysis 302
6.6.3 Summary and Conclusions 302
6.7 Best Available Control Technology (for Environmental Remediation) 303
6.7.1 What Is “Best Available Control Technology”? 303
6.6 BACT: Applications to Gas Turbine Power Plants 304
6.8 Importance of Energy Efficiency 305
6.8.1 NOx BACT Review 306
6.8.2 CO BACT Review: Combustion Turbines and Duct Burners 309
6.8.4 BACT Evaluation for PM/PM10 Emissions 310
6.8.5 VOC Control Technologies 311
6.8.6 BACT Evaluation for SO2 and H2SO4 Emissions 311
6.8.7 Problems 312
6.8.8 References 312

7 Economics of Manufacturing Pollution Prevention: Toward an Environmentally Sustainable Industrial Economy 317
7.1 Introduction 317
7.2 Economic Evaluation of Pollution Prevention 317
7.2.1 Total Cost Assessment of Pollution Control and Prevention Strategies 317
7.2.2 Economics of Pollution Control Technology 318
7.3 Cost Estimates 318
7.3.1 Elements of Total Capital Investment 318
7.3.2 Elements of Total Annual Cost 320
7.4 Economic Criteria for Technology Comparisons 321
7.5 Calculating CF 321
7.5.1 Achieving a Responsible Balance 323
7.6 From Pollution Control to Profitable Pollution Prevention 323
7.6.1 Life Cycle Costing 324
7.6.2 Total Cost Assessment 325
7.6.3 Economic Consideration Associated with Pollution Prevention 325
7.7 Resource Recovery and Reuse 325
7.8 Profitable Pollution Prevention in the Metal-Finishing Industry 326
7.8.1 National Metal Finishing Strategic Goals Program 327
7.8.2 The Role of Pollution Prevention Technologies 328
7.8.3 Value-Added Chemicals from Pulp Mill Waste Gases 332
7.8.4 Recovery and Control of Sulfur Emissions 333
7.9 Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment vs. Expanded Chemical Regimen for Recirculating Water Quality Management 335
7.9.1 Introduction 335
7.9.2 Key Points 336
7.9.3 The World’s First Zero Effluent Pulp Mill at Meadow Lake: The Closed-Loop Concept 337
7.9.4 Successful Implementation of a Zero Discharge Program 339
7.9.5 Conclusions 340
7.10 Consequences of Dirty Air: Costs–Benefits 340
7.10.1 Public Health 341
7.10.2 Visibility 341
7.10.3 Ecosystems 341
7.10.4 Economic Consequences 341
7.10.5 Global Climate Change 341
7.10.6 Quality of Life 341
7.10.7 Costs–Benefits Analysis 341
7.11 Some On-Going Pollution Prevention Technologies 341
7.11.1 Economic Performance Indicators 343
7.11.2 Estimates of Environmental Costs 343
7.11.3 Total Annualized Cost for BACT 345
7.11.4 Cost Per Ton (T) of Pollutant Removal 345
7.12 Cost Indices and Estimating Cost of Equipment 348
7.12.1 Equipment Costs 348
7.13 Waste-to-Energy 350
7.13.1 Methods 350
7.13.2 Other Technologies 350
7.13.3 Global Developments 351
7.13.4 Examples of WtE Plants 351
7.13.5 Case Study: Energy Recovery from Municipal Solid Waste: Profitable Pollution Prevention at the City of Spokane, Washington (see Appendix G) 352
7.14 Sustainable Economy and the Earth 354
7.14.2 Costs of Manufacturing Various Biobased Products and Energy 355

8 Lean Manufacturing: Zero Defect and Zero Effect: Environmentally Conscious Manufacturing 363
8.1 Introduction 363
8.2 Engineering Data Summary and Presentation 364
8.2.1 Sample Mean 364
8.2.2 Stem-and-Leaf Diagram 365
8.2.3 Constructing a Stem-and-Leaf Display 366
8.2.4 Application 366
8.2.5 Histogram 366
8.2.6 Pareto Diagram 367
8.2.7 Boxplots 368
8.2.8 Statistical Tools for Experimental Design: Process and Product Development 369
8.3 Time Series: Process over Time 369
8.3.1 Basic Principles 370
8.4 Process Capability 371
8.4.1 Statistical Process Control 372
8.4.2 Control Charts for Variables 372
8.4.3 PC Analysis 374
8.5 Lean Manufacturing 374
8.5.1 Overview 375
9 Industrial Waste Minimization Methodology: Industrial Ecology, Eco-Industrial Park and Manufacturing Process Intensification and Integration

9.1 Introduction 409
9.2 Industrial Ecology 409
9.2.1 What Is EIP? 410
9.2.2 EIP Development 412
9.2.3 EIPs – The Ebara Process: Mini Case Study 9.1 in Japan 412
9.2.4 Mini-Case Study 9.2: Seshasayee Paper and Board Ltd. in India 414
9.2.5 Mini-Case Study 9.3: Materials and Energy Flow in an EIP in North Texas, USA 415
9.2.6 Mini-Case Study 9.4: EIP Including Numerous Symbiotic Factories for Manufacturing Very Large Scale Photovoltaic System 415
9.3 Water–Energy Nexus 417
9.3.1 Technology Roadmaps and R&D 420
9.3.2 Circular Economy 421
9.3.3 Rethink the Business Model 424
9.3.4 Biomimicry 425
9.4 CE Indicators in Relation to Eco-Innovation 426
9.4.1 Development of the Concept of the CE 426
9.5 Process Intensification and Integration Potential in Manufacturing 427
9.5.1 What Is PI? 427
9.5.2 Case Study 9.5: Elimination of Dioxin and Furans by Alternative Chemical PI 428
9.5.3 Mini-Case Study 9.2: Multi-Pollutants Capture and Recovery of SO₃, NOₓ, and Mercury in Coal-Fired Power Plant 428
9.6 Manufacturing Process Integration 432
9.6.1 Process Integration Technique Has Few Possible Applications 432
9.7 New Sustainable Chemicals and Energy from Black Liquor Gasification Using Process Integration and Intensification 433
9.7.1 Introduction 433
9.7.2 Black Liquor Gasification (BLG): Introduction 435
9.8.1 The Pulp and Paper Industry 436
9.8.2 Black Liquor Gasification Combined Cycle Power/Recovery 437
9.8.3 Biorefinery 437
9.8.4 Liquid Fuels Synthesis 439
9.8.5 Dimethyl Ether 439
9.8.6 Pressurized Chemrec BLG 440
9.8.7 Catalytic Hydrothermal Gasification of Black Liquor 440
9.8.8 Fischer-Tropsch Liquids 441
9.8.9 Mixed Alcohols 441
9.8.10 “WTW” Environmental Impact of Black Liquor Gasification 441
9.8.11 Water and Solid Waste 443
9.8.12 Mill-Related Air Emissions 443
9.8.13 Tomlinson Boiler Air Emissions 443
9.8.14 Economic Development Opportunities 444
9.8.15 Cost-Benefit Analysis 445
9.9 Conclusions 445
9.9.1 Summary 447
9.9.2 Problems 447
9.9.3 References 448

10 Quality Industrial Environmental Management: Sustainable Engineering in Manufacturing

10.1 Introduction: Industry and the Global Environmental Issues 453
10.1.1 Industry Role and Trends 453
10.1.2 Code of Ethics for Engineers 454
10.1.3 Sustainable Engineering Design Principles 455
10.1.4 Design for Environmental Practices 459
10.1.5 Why Do Firms Want to Design for the Environment? 460
10.1.6 How Does a Business Design for the Environment? 460
10.1.7 Design for Environment 460
10.1.8 Design for Regulatory Compliance 461
10.1.9 Design for Testability 461
10.1.10 Design and Test for Service and Maintenance 461
10.1.11 Design for Manufacturing 461
10.1.12 Design for Assembly 461
10.1.13 Design for Disassembly 462
10.1.14 Design for Sustainable Manufacturing 462
10.1.15 Design for Sustainability 462
10.2 Integrating LCA in Sustainable Product Design and Development 463
10.3 Green Chemistry: The Twelve Principles of Green Chemistry 464
10.3.1 The Principles of Green Chemistry 465
10.4 The Hannover Principles 467
10.4.1 Leadership in Energy and Environmental Design (LEED) 467
10.5 Sustainable Industries and Business 468
10.5.1 Eco-Efficiency 469
10.5.2 Sustainable Supply Chain Systems 469
10.5.3 Sustainable Green Economy 469
10.6 Six Essential Characteristics 470
10.7 Social Services 471
10.8 Environmental Regulatory Law: Command and Control Market Based, and Reflexive 471
10.9 Business Ethics 472
10.9.1 The Two Traditional Issues Involved with Ethics 472
10.10 International Issues 473
10.11 Ethical Sustainability 473
10.12 Social Sustainability 474
10.13 Conclusions 475
10.13.1 Business 475
10.13.2 Corporate Sustainability 476
10.14 Strategy for Corporate Sustainability 476
10.14.1 Business Case for Sustainability 476
10.14.2 Transparency 476
10.14.3 Stakeholder Engagement 476
Problems 477
References 477

Appendix A Conversion Factors 481
Appendix B International Environmental Law 483
Appendix C Air Pollutant Emission Factors: Stationary Point and Area Sources 487
Appendix D Frequently Asked Questions and Answers: Water Quality Model, Dispersion Model and Permits 493
Appendix E Industrial Hygiene Outlines 511
Appendix F Environmental Cost-Benefit 513
Appendix G Resource Recovery: Waste-To-Energy Facility, City of Spokane, Washington, USA 515
Appendix H The Hannover Principles 519
Appendix I Environmental Goals and Business Goals Are Not Two Distinct Goal Sets 521
Appendix J Sample Codes of Ethics and Guidelines 523
Index 527