INDEX

χ² distribution, 59–61, 85–86, 637–638
χ² test, 85–89, 330, 568

Accuracy
 1998 FGDC standards, 435–440
definition of, 5
examples of, 5–6
local, 438
network, 436, 438, 440

Adjustment
 constrained, 63, 71, 89–90, 443, 468
 minimally constrained, 71–72, 89–90, 362–363, 468, 476
Adjustment of control coordinates, 443–449

Affine coordinate transformation, 395
general least squares method, 507

Alternative hypothesis, 79, 330

Angle
 error in astronomical observation, 130
 error in directional method, 115
 error in instrument centering, 120
 error in leveling, 123–124
 error in observation, 126
 error in pointing, 116
 error in reading, 114
 error in repetition method, 114
 error in target centering, 118
 error using range poles, 136
 error using total station, 117
 intersection adjustment, 288–293
Angle (continued)
ISO 17123-3 standard, 117
observation equation, 123, 286, 518, 522, 528
reading errors, 114–116
resection adjustment, 294–298
weight in, 185
Apogee, 347
APRS Accuracy Standards
for Digital Geospatial Data, 439
Astronomical observation, 130
Azimuth, 130, 146, 535, 666–667
Azimuth observation equation, 284, 521, 529
Baarda, Willem, 472
Back solution, 583
Baseline
adjustment of, 362–363, 552
analysis of, 356
analysis of repeat, 357–358
loop closure errors, 360
Bessel’s correction, 31–32
Bimodal distribution, 17–18
Bivariate distribution, 122, 419–420
Blunder
a priori methods, 466
definition of, 4
detection of, 49, 58, 465–466
example of, 477, 566
graphical methods, 467, 572
signs of residuals, 468, 565, 572
Carrier phase-shift observations, 344
Chi-squared distribution, 59–61, 85–86, 637–638
Chi-squared test, 85–89, 330, 568
Cholesky decomposition, 581
Class
frequency, 16
interval, 16
relative frequency, 16
width, 15–16
Class width
definition of, 15
example of, 15–16, 27
Cofactor, 179
Cofactor matrix
of adjusted observations, 249
of adjusted unknowns, 248–249
definition of, 180
elements, 249–250
of residuals, 470
Collimation error, 163
Compound event, 40–41
Conditional equation, 215–217
Confidence interval
definition of, 59
mean, 63–66, 649
population variance, 68–70
ratio of two population variances, 70–72
sample, 66–68
using STATS, 72–74
Conformal coordinate
transformation
general least squares method, 392, 503, 509
three-dimensional, 401–407, 509, 546–547
two-dimensional, 389–390, 392, 503–504
Constrained adjustment
definition of, 443
elimination of constraints method, 449
Helmert’s method, 452–453
least squares, 71, 89–90, 468
minimally, 71–72, 89–90, 362–363, 468
by over-weighting, 458–460
redundancies, 458
Constraint equation
control station coordinate
adjustment, 443
elimination of, 262, 449
Helmert’s method, 452–453
Constraints, geometric, 136, 193
Control coordinates
adjustment of, 443
estimating uncertainties in, 447
Control, minimum amount of, 321–322, 476
Conventional Terrestrial Pole (CTP), 348
Coordinate system
earth-centered, earth-fixed, 546
geocentric, 348
geodetic, 349, 518
local geodetic, 517
satellite, 348
Coordinate transformation
affine using general least squares method, 507
conformal using general least squares method, 392, 503, 509
eight parameter, 398–399, 508
four parameter similarity, 389–390
projective using general least squares method, 399, 507
seven-parameter similarity, 401–407, 509, 546–547
six parameter, 395, 507
three-dimensional conformal, 401–407, 509, 546–547
three-dimensional using general least squares method, 509, 546
two-dimensional affine, 395, 507
two-dimensional conformal, 389–390, 392, 503–504
two-dimensional projective, 398–399, 508
Covariance, 99, 179–180
Covariance matrix
of adjusted observations, 250–253
of adjusted unknowns, 249–250
definition of, 97–101, 248–249
development of, 97–101, 248–249
example of, 249
in traverse course, 145
Data
classes in, 15–16
graphical representation of, 15–18
population, 13–14
range of, 14–15, 24, 27
sample, 13–14
Data snooping, 472
Datum, 545
Deflection of vertical, 535
Degrees of freedom, 20
Density function, 42
Detectable blunder, 485
Determinant, 607
Differencing
double, 345
single, 345
triple, 345
Differential leveling
adjustment of, 226–231
collimation error in, 163–164
leveling errors in, 163–166
observation equation, 225
random errors in, 166–171
reading error in, 166–171
rod plumbing error in, 167–169
systematic errors in, 163–166,
536–537
in three-dimensional adjustment, 522
weights in, 186–187, 229
Discrepancy, 4
Dispersion, 14
Distance observation equation
definition of, 259
linearized, 261
Distribution
\(F \), 62–63, 641–648
normal, 17, 42, 193, 565–566, 629,
635–636
sampling, 59
\(t \), 61–62, 84, 639–640
\(X^2 \), 59–61, 85–86, 637–638
Double differencing, 345
Earth curvature and refraction error, 165, 522, 535
EDM calibration, 214–215
Eight parameter transformation. See Projective coordinate transformation
Elimination of constraints, 449
Ellipse
 analysis of, 431
 computation of, 425
Equation
 normal, 200, 201–204, 580–581
 observation, 199–200 (See also Observation equation)
 residual, 199–200, 231
Error
 in angular misclosure of traverse, 127–130, 146–148, 152–153
 in azimuth observations, 130, 146, 535
 in azimuths of traverses, 146
 collimation, 163
 definition of, 3, 19–20
 earth curvature and refraction, 165, 522, 535
 in electronic distance measurement, 135–136
 ellipse, 419
 GNSS, 347
 gross, 3
 instrumental, 3, 120
 in leveling, 163–166
 in linear misclosure of traverse, 146, 148–151, 153–154
 natural, 3
 personal, 3
 radial, 435
 random, 4, 21, 113–114, 135–136, 166–171, 565
 sources in angles, 113–114
 sources in electronic distance measurement, 135
 standard, 21–22
systematic, 4, 5–7, 115, 163–166, 534–537
 in traverse course, 144–145, 156
 in trigonometric leveling, 171–174
 in zenith angles, 172
Error ellipse
 advantages of, 409
 confidence level of, 429–431
 in network design, 431–435, 487
 overview, 419–421
Error propagation
 in angles, 126–127
 definition of, 2
 in distances, 135
 equation, 97–101, 245
 in leveling, 163–174
 in traverse surveys, 143
Estimator, 59
EXCEL®
 accompanying files, 219
 errors in traverse computations, 156
 estimating error in observations, 137
 spreadsheet use, 33, 674
External reliability, 486
F distribution, 62–63, 641–648
FGDC standards, 435–440
Fisher distribution, 62–63, 641–648
Fit of points to a line, 211–213
Fit of points to a parabola, 213–214
Forward solution, 583
Four-parameter similarity transformation. See Conformal coordinate transformation
Free network adjustment, 322
Frequency histogram, 15–18, 26, 52
Functional model, 197–198
General law of propagation of variances (GLOPOV), 100, 143, 250–251
General least squares method
- affine coordinate transformation, 507
- conformal coordinate transformation, 392, 503, 509
- projective coordinate transformation, 399, 507
- solution, 499–500
- for straight line, 497–499
- three-dimensional coordinate transformation, 509, 546

Geocentric coordinate system, 348

Geodetic height, 349, 523, 557

Geodetic network, three-dimensional adjustment of, 517, 537–538

Geoid separation, 523

Geometric constraints, 146, 193

Global navigation satellite system (GNSS)
- baselines, 346, 363, 366–367
- observations, 344–347
- overview, 257
- preanalysis of observations, 356

GLOPOV, 100, 143, 250–251

GNSS. See Global navigation satellite system (GNSS)

Goodness of fit test, 330, 568

GPS, 257, 343–344

Hour angle
- Greenwich, 130, 348
- local, 130

Hypothesis testing
- alternative hypothesis, 79, 330
- false negative, 82
- false positive, 82
- level of significance of, 81
- null hypothesis, 79, 330
- for the population mean, 84–85
- power of test, 81
- ratio of two variances, 89–92
- rejection criterion, 80–81
- test decision, 80
- test statistic, 79–80
- type I error, 80
- type II error, 80
- using STATS, 92–93
- for variance, 85–89

Indirect measurement, 2

Internal reliability, 485

Iteration, termination of, 273

Jacobian matrix, 100, 148, 208, 263, 294, 622

Keplarian parameters
- argument of perigee, 348
- eccentricity, 348
- Greenwich hour angle of the vernal point, 348
- inclination angle, 348
- right ascension of the ascending node, 348
- semimajor axis, 348

Lambert Conformal Conic
- as map projection system, 656
- mathematics of, 657–659
- reduction of distances, 664
- reduction of geodetic azimuths, 666
Lambert Conformal Conic

(continued)

reduction of observations, 663
stereographic, 662
Transverse Mercator, 656, 659

Law of cosines, 123

Least squares
adjustment of angles, 283
adjustment of distances, 257
adjustment of horizontal networks, 313
adjustment of intersections, 288
adjustment of resections, 293
advantages of, 8–10
affine coordinate transformation, 507
analysis of, 432, 465, 566
angle intersection, 432, 465, 566–567
conditional adjustment, 198, 215–216
conditional adjustment model of, 198
conformal coordinate transformation, 392, 503, 509
constrained, 71, 89–90, 468
differential leveling adjustment, 225
fit of points to a line, 211–212, 500
fit of points to a parabola, 213–214
fundamental principle, 194–197
generalized method, 497–503
minimally constrained, 71, 89–90, 468
parametric adjustment model of, 198
projective coordinate transformation, 399, 507
simulated adjustment, 488
stochastic model in, 197
three-dimensional coordinate transformation, 509, 546
three-dimensional geodetic network, 517

Line of apsides, 347
Link traverse misclosure error, 152–156
Local accuracy, 438
Localization, 390, 551

Map projection coordinate systems
coordinate transformation and, 556–559
horizontal surveys and, 257–258
Lambert Conformal Conic, 656, 657–659
oblique stereographic, 556, 662
overview, 655–656
reduction of distances, 664–666
reduction of geodetic azimuths, 666–667
reduction of observations, 663–667
stereographic, 662–663
Transverse Mercator, 656, 659–662

Mapping standards, 28–31
MATHCAD®
files in, 219, 276, 288, 324, 367, 394, 490, 537
map projections in, 659, 663
statistical functions in, 33, 490

Matrix
addition, 595
Cholesky decomposition of, 581
cofactor, 180, 248–249, 251
column, 593
covariance, 99, 145, 179, 248, 251–252
definition of, 591
determinant of, 607
diagonal, 594
dimensions of, 592
elementary row transformations, 611
equality, 594
equivalent weight, 499
inverse of, 607
Jacobian, 100, 148, 208, 263, 294, 622
multiplication, 595
partitioning of, 253
row, 593
scalar multiplication of, 595
size of, 592
solution of equations, 607
square, 593
symmetric, 594
transpose of, 594
types of, 593
unit, 594
vector, 593
weight, 180, 207, 365–366, 499

Matrix algebra, 591
Matrix operations, computer
 algorithms of, 577–589, 598, 615

MATRIX software
 differential leveling, 236
 horizontal network, 318
 triangulation, 297
 trilateration, 269, 274
 using, 33

Mean
 arithmetic, 5, 19
 confidence interval, 63–66, 649
 example of, 19, 24, 26
 population, 19, 84–85
 sample, 19
 standard deviation of, 22, 102, 182
 weighted, 181–183

Measure of central tendency
 definition of, 18–19
 mean, 19
 median, 19
 mode, 19

Measurements, direct and indirect, 2

Median
 definition of, 15, 19
 example of, 24

Minimally constrained adjustment, 71–72, 89–90, 362–363, 468, 476

Misclosure in traverse, 146–151, 152–156

Mistakes, 3–4

Mode
 definition of, 19
 example of, 24, 27

Model
 functional, 197–198
 mathematical, 198–199
 stochastic, 197

Most probable value, 20

NAVSTAR GPS, 343

Network
 adjustment of, 322
 definition of, 322
 design of, 431–435, 487
 GNSS baseline, 346, 363, 366–367
 leveling, 226

Noncentrality parameter, 485

Nonlinear equations
 angle, 286
 azimuth, 284
 distance, 260
 linearized, 261, 287, 314
 solution of, 619

Normal
 distribution, 17, 193, 565–566, 629, 635–636
 distribution curve, 42, 629
 distribution function, 44, 629, 635–636
 radius of, 351

Normal equation
 definition of, 200
 direct formation, 580–581
 systematic formulation of, 201–203
 tabulation formation, 203–204

Normal matrix
 definition of, 205
 direct formation of, 204–207, 268, 580–581
Null hypothesis
definition of, 79
failure to reject, 80–81, 330

Observation
analysis of, 13–19, 432, 465–466, 565
measurements and, 2, 18
nonspur, 474–475
population, 13–14
propagation, 2
redundant, 7–8, 20, 232, 458
sample, 13–14
spur, 474–475

Observation equation
altitude angle, 123, 518, 522
angles, 123, 286, 518, 522, 528
azimuth, 284, 521, 529
baseline vector, 363, 552
control station coordinates, 443, 530
definition of, 199
differential leveling, 225, 522
distance, 259, 519, 523, 525, 527
horizontal angle, 286, 522, 528
horizontal distance, 260, 523–524
horizontal network, 314, 322
overview, 199–200
projective coordinate
transformation, 398–399, 507–508
slant distance, 519, 527
three-dimensional conformal
coordinate transformation, 404, 509
two-dimensional affine coordinate
transformation, 395, 507
two-dimensional conformal
coordinate transformation, 392, 504
two-dimensional coordinate
transformation, 389–390, 392, 503
two-dimensional projective
coordinate transformation, 398–399, 508
vertical plane, 522

Orthometric height, 349, 522, 557

PDOP (Positional dilution of precision), 433, 488
Perigee, 347–348
Pope, Alan J., 474
Population, 13–14
Population variance, 20, 85–86, 330

Positional dilution of precision (PDOP), 433, 488
Precision, 4–6

Probability
computation of, 44–49
curve, 42, 629
standard error, 21–22, 47
theory of, 39
Probability curve, 42, 629
Probability density function, 42, 629

Probable error
50%, 48
95%, 49
other values, 49
uses of, 50–52

Projective coordinate
transformation, 398–399, 507–508
general least squares method, 399, 507

Propagation of variance
general law, 100
special law, 101

Prototype equation
angles, 522
azimuths, 286, 314, 521
baseline vector, 363
for differential leveling, 225
for distances, 261, 314, 523–524
horizontal angles, 258, 314, 522
horizontal network, 314
slant distances, 519
Pseudorandom noise codes, 344
Pseudoranging, 344

Radial error, 435
Random error
 in angles, 113–114
 definition of, 4
 in electronic distance
 measurements, 135–136
 in leveling, 166–171
 properties of, 4, 21, 565
Range
 definition of, 14
 example of, 14–15, 24, 27
 in GNSS, 344
Redundancy number
 definition of, 472
 effects in blunder detection, 485
 relative, 472
Redundant observations, 7–8, 20, 232, 314
Reference frames, 545–546
Rejection criterion, 80, 472–473
Relative positioning, 346
Relative redundancy, 472
Reliability
 external, 486
 internal, 485
Reordering algorithms, 587
Resection, adjustment of, 293
Residuals
 analysis of, 465–466, 565–568
 cofactor matrix of, 470
 computation of, 24–25
 definition of, 20
 equation, 199–200, 231
 equivalent, 499
 properties of, 565
 signs of, 468, 565, 572
 standardized, 472
 use of plots, 572
Root mean square error (RMSE), 27–31, 439

Sample
 definition of, 13–14
 selecting size of, 67–68
Sample variance, 21
Sampling distribution, 59
Satellite system
 GPS, 257, 343–344
 TRANSIT, 343
Seven-parameter similarity
 transformation. See
 Three-dimensional conformal
 coordinate transformation
Single differencing, 345
Site calibration. See Localization
Six parameters transformation.
 See Affine coordinate
 transformation
Slant distance, 519
Sparseness in matrix, 586
Special law of propagation of
 variance (SLOPOV), 101, 143
Spreadsheets, use of, 33, 674
Standard deviation
 definition of, 22
 example of, 24–25
 of the mean, 22, 102
 modified for weighted
 observations, 184
 reference, 231–232, 249
 in series, 102
 in sum, 102
 of unit weight, 181, 231–232, 249
 of weighted mean, 182
Standard error
 definition of, 22, 31
Standard error (continued)
probability of, 47
relation to weight, 183
of weight w, 184–185
Standard error ellipse, 421
Standard error rectangle, 419
Standardized residual, 472
Statistic, definition of, 18
Statistical test
F, 89
goodness-of-fit, 330
one-tailed, 83
for population mean, 84
for population variance, 85–86, 330
for ratio of two variances, 89
t, 84
two-tailed, 83
χ^2, 85–89, 330, 568
STATS
certainty intervals, 72–74
histogram data, 32–33
hypothesis testing, 92–93
Stochastic model, 197
Storage optimization, 586
Survey planning and design, 157, 431–432, 487
Systematic error
in azimuths, 535
definition of, 4
examples of, 4, 5–7
in leveling, 163–166, 536–537
in vertical angles, 535

t distribution, 61–62, 84, 639–640
Table
confidence intervals, 650–654
F distribution, 642–648
standard normal distribution, 635–636
t distribution, 640
χ^2, 638
Tabular method, 203

Tau criterion, 474
Taylor’s theorem
nonlinear equations and, 619–620
use of, 207–208, 260, 285, 287
Test decision, 80
Test statistics, 79–80
Three-dimensional conformal
cordinate transformation, 401–407, 509, 546–547
general least squares method, 509, 546
Three-dimensional geodetic network
adjustment, 517, 537–538
Transformation between reference
frames, 545–546
TRANSIT, 343
Traverse
error in angular misclosure, 127–130, 146–148, 152–153
error in latitude and departure, 144–145
error in linear misclosure, 146, 148–151, 153–154
estimating errors using EXCEL®, 156
misclosure in, 127–130, 146–156
Triangulation adjustment, 283
Trigonometric leveling, error in, 171–174
Trilateration adjustment, 257
Triple differencing, 345
True value, definition of, 19
Two-dimensional
affine coordinate transformation, 395, 507
conformal coordinate
cordinate transformation, 389–390, 392, 503–504
projective coordinate
cordinate transformation, 398–399, 508
Type I error, 80
Type II error, 80
Valid parameters, 407–411
Variance
 alternative formula for, 22–24
 definition of, 20
 example of, 27
 population, 20, 85–86, 330
 reference, 180, 330
 sample, 21
 of unit weight, 181, 231–232, 249, 330
Vertical, deflection of, 535
Weight
 in angles, 185
 definition of, 179
 in differential leveling, 186–187
 relation to correction, 183
 relation to standard error, 183
 relation to variance, 179, 183
Weight matrix, equivalent, 180, 499
Weighted mean, 181–183