INDEX

\(\chi^2 \) distribution, 59–61, 85–86, 637–638
\(\chi^2 \) test, 85–89, 330, 568

Accuracy
 1998 FGDC standards, 435–440
definition of, 5
examples of, 5–6
local, 438
network, 436, 438, 440

Adjustment
 constrained, 63, 71, 89–90, 443, 468
 minimally constrained, 71–72, 89–90, 362–363, 468, 476

Adjustment of control coordinates, 443–449

Affine coordinate transformation, 395
general least squares method, 507

Alternative hypothesis, 79, 330

Angle
 error in astronomical observation, 130
 error in directional method, 115
 error in instrument centering, 120
 error in leveling, 123–124
 error in observation, 126
 error in pointing, 116
 error in reading, 114
 error in repetition method, 114
 error in target centering, 118
 error using range poles, 136
 error using total station, 117

intersection adjustment, 288–293

Adjoint, 610
ADJUST
 blunder detection, 489
 coordinate transformation files, 393
differential leveling files, 236
estimating errors in traverses, 156
GNSS baseline files, 366–367
horizontal network files, 318, 324
overview, 33
three-dimensional geodetic networks, 537–538
triangulation files, 297
trilateration files, 275
Angle (continued)
 ISO 17123-3 standard, 117
 observation equation, 123, 286, 518, 522, 528
 reading errors, 114–116
 resection adjustment, 294–298
 weight in, 185
 Apogee, 347
 ASPRS Accuracy Standards
 for Digital Geospatial Data, 439
 Astronomical observation, 130
 Azimuth, 130, 146, 535, 666–667
 Azimuth observation equation, 284, 521, 529

 Baarda, Willem, 472
 Back solution, 583
 Baseline
 adjustment of, 362–363, 552
 analysis of, 356
 analysis of repeat, 357–358
 loop closure errors, 360
 Bessel’s correction, 31–32
 Bimodal distribution, 17–18
 Bivariate distribution, 122, 419–420
 Blunder
 a priori methods, 466
 definition of, 4
 detection of, 49, 58, 465–466
 example of, 477, 566
 graphical methods, 467, 572
 signs of residuals, 468, 565, 572

 Carrier phase-shift observations, 344
 Chi-squared distribution, 59–61, 85–86, 637–638
 Chi-squared test, 85–89, 330, 568
 Cholesky decomposition, 581
 Class
 frequency, 16
 interval, 16
 relative frequency, 16
 width, 15–16

 Class width
 definition of, 15
 example of, 15–16, 27
 Cofactor, 179
 Cofactor matrix
 of adjusted observations, 249
 of adjusted unknowns, 248–249
 definition of, 180
 examples, 249–250
 of residuals, 470
 Collimation error, 163
 Compound event, 40–41
 Conditional equation, 215–217
 Confidence interval
 definition of, 59
 mean, 63–66, 649
 population variance, 68–70
 ratio of two population variances, 70–72
 sample, 66–68
 using STATS, 72–74
 Conformal coordinate
 transformation
 general least squares method, 392, 503, 509
 three-dimensional, 401–407, 509, 546–547
 two-dimensional, 389–390, 392, 503–504
 Constrained adjustment
 definition of, 443
 elimination of constraints method, 449
 Helmert’s method, 452–453
 least squares, 71, 89–90, 468
 minimally, 71–72, 89–90, 362–363, 468
 by over-weighting, 458–460
 redundancies, 458
 Constraint equation
 control station coordinate
 adjustment, 443
 elimination of, 262, 449
 Helmert’s method, 452–453
Constraints, geometric, 136, 193
Control coordinates
 adjustment of, 443
 estimating uncertainties in, 447
Control, minimum amount of, 321–322, 476
Conventional Terrestrial Pole (CTP), 348
Coordinate system
 earth-centered, earth-fixed, 546
 geocentric, 348
 geodetic, 349, 518
 local geodetic, 517
 satellite, 348
Coordinate transformation
 affine using general least squares method, 507
 conformal using general least squares method, 392, 503, 509
 eight parameter, 398–399, 508
 four parameter similarity, 389–390
 projective using general least squares method, 399, 507
 seven-parameter similarity, 401–407, 509, 546–547
 six parameter, 395, 507
 three-dimensional conformal, 401–407, 509, 546–547
 three-dimensional using general least squares method, 509, 546
 two-dimensional affine, 395, 507
 two-dimensional conformal, 389–390, 392, 503–504
 two-dimensional projective, 398–399, 508
Covariance, 99, 179–180
Covariance matrix
 of adjusted observations, 250–253
 of adjusted unknowns, 249–250
 definition of, 97–101, 248–249
 development of, 97–101, 248–249
 example of, 249
 in traverse course, 145
Data
 classes in, 15–16
 graphical representation of, 15–18
 population, 13–14
 range of, 14–15, 24, 27
 sample, 13–14
Data snooping, 472
Datum, 545
Deflection of vertical, 535
Degrees of freedom, 20
Density function, 42
Detectable blunder, 485
Determinant, 607
Differencing
 double, 345
 single, 345
 triple, 345
Differential leveling
 adjustment of, 226–231
 collimation error in, 163–164
 leveling errors in, 163–166
 observation equation, 225
 random errors in, 166–171
 reading error in, 166–171
 rod plumbing error in, 167–169
 systematic errors in, 163–166, 536–537
 in three-dimensional adjustment, 522
 weights in, 186–187, 229
Discrepancy, 4
Dispersion, 14
Distance observation equation
 definition of, 259
 linearized, 261
Distribution
 F, 62–63, 641–648
 normal, 17, 42, 193, 565–566, 629, 635–636
 sampling, 59
 t, 61–62, 84, 639–640
 X², 59–61, 85–86, 637–638
Double differencing, 345
Earth curvature and refraction error, 165, 522, 535
EDM calibration, 214–215
Eight parameter transformation. See Projective coordinate transformation
Elimination of constraints, 449
Ellipse
 analysis of, 431
 computation of, 425
Equation
 normal, 200, 201–204, 580–581
 observation, 199–200 (See also Observation equation)
 residual, 199–200, 231
Error
 in angular misclosure of traverse, 127–130, 146–148, 152–153
 in azimuth observations, 130, 146, 535
 in azimuths of traverses, 146
 collimation, 163
 definition of, 3, 19–20
 earth curvature and refraction, 165, 522, 535
 in electronic distance measurement, 135–136
 ellipse, 419
 GNSS, 347
gross, 3
 instrumental, 3, 120
 in leveling, 163–166
 in linear misclosure of traverse, 146, 148–151, 153–154
 natural, 3
 personal, 3
 radial, 435
 random, 4, 21, 113–114, 135–136, 166–171, 565
 sources in angles, 113–114
 sources in electronic distance measurement, 135
 standard, 21–22
systematic, 4, 5–7, 115, 163–166, 534–537
 in traverse course, 144–145, 156
 in trigonometric leveling, 171–174
 in zenith angles, 172
Error ellipse
 advantages of, 409
 confidence level of, 429–431
 in network design, 431–435, 487
 overview, 419–421
Error propagation
 in angles, 126–127
 definition of, 2
 in distances, 135
 equation, 97–101, 245
 in leveling, 163–174
 in traverse surveys, 143
Estimator, 59
EXCEL®
 accompanying files, 219
 errors in traverse computations, 156
 estimating error in observations, 137
 spreadsheet use, 33, 674
External reliability, 486
F distribution, 62–63, 641–648
FGDC standards, 435–440
Fisher distribution, 62–63, 641–648
Fit of points to a line, 211–213
Fit of points to a parabola, 213–214
Forward solution, 583
Four-parameter similarity transformation. See Conformal coordinate transformation
Free network adjustment, 322
Frequency histogram, 15–18, 26, 52
Functional model, 197–198
General law of propagation of variances (GLOPOV), 100, 143, 250–251
INDEX

General least squares method
affine coordinate transformation, 507
conformal coordinate transformation, 392, 503, 509
projective coordinate transformation, 399, 507
solution, 499–500
for straight line, 497–499
three-dimensional coordinate transformation, 509, 546
Geocentric coordinate system, 348
Geodetic height, 349, 523, 557
Geodetic network, three-dimensional adjustment of, 517, 537–538
Geoid separation, 523
Geometric constraints, 146, 193
Global navigation satellite system (GNSS)
baselines, 346, 363, 366–367
observations, 344–347
overview, 257
preanalysis of observations, 356
GLOPOV, 100, 143, 250–251
GNSS. See Global navigation satellite system (GNSS)
Goodness of fit test, 330, 568
GPS, 257, 343–344

Height
geodetic, 349, 523, 557
geoid, 349, 557
orthometric, 349, 522, 557
Helmert transformation, 547–548
Helmert’s method, 452–453

Histogram
bimodal, 17–18
definition of, 15–16
example of, 16–17, 26
skewed, 18, 52
using STATS, 32–33

Hour angle
Greenwich, 130, 348
local, 130

Hypothesis testing
alternative hypothesis, 79, 330
false negative, 82
false positive, 82
level of significance of, 81
null hypothesis, 79, 330
for the population mean, 84–85
power of test, 81
ratio of two variances, 89–92
rejection criterion, 80–81
test decision, 80
test statistic, 79–80
type I error, 80
type II error, 80
using STATS, 92–93
for variance, 85–89

Indirect measurement, 2
Internal reliability, 485
Iteration, termination of, 273

Jacobian matrix, 100, 148, 208, 263, 294, 622

Keplarian parameters
argument of perigee, 348
eccentricity, 348
Greenwich hour angle of the vernal point, 348
inclination angle, 348
right ascension of the ascending node, 348
semimajor axis, 348

Lambert Conformal Conic
as map projection system, 656
mathematics of, 657–659
reduction of distances, 664
reduction of geodetic azimuths, 666
Lambert Conformal Conic
 (continued)
 reduction of observations, 663
 stereographic, 662
 Transverse Mercator, 656, 659
Law of cosines, 123
Least squares
 adjustment of angles, 283
 adjustment of distances, 257
 adjustment of horizontal networks, 313
 adjustment of intersections, 288
 adjustment of resections, 293
 advantages of, 8–10
 affine coordinate transformation, 507
 analysis of, 432, 465, 566
 angle intersection, 432, 465, 566–567
 conditional adjustment, 198, 215–216
 conditional adjustment model of, 198
 conformal coordinate transformation, 392, 503, 509
 constrained, 71, 89–90, 468
 differential leveling adjustment, 225
 fit of points to a line, 211–212, 500
 fit of points to a parabola, 213–214
 fundamental principle, 194–197
 generalized method, 497–503
 minimally constrained, 71, 89–90, 468
 parametric adjustment model of, 198
 projective coordinate transformation, 399, 507
 simulated adjustment, 488
 stochastic model in, 197
 three-dimensional coordinate transformation, 509, 546
 three-dimensional geodetic network, 517
Line of apsides, 347
Link traverse misclosure error, 152–156
Local accuracy, 438
Localization, 390, 551
Map projection coordinate systems
 coordinate transformation and, 556–559
 horizontal surveys and, 257–258
 Lambert Conformal Conic, 656, 657–659
 oblique stereographic, 556, 662
 overview, 655–656
 reduction of distances, 664–666
 reduction of geodetic azimuths, 666–667
 reduction of observations, 663–667
 stereographic, 662–663
 Transverse Mercator, 656, 659–662
Mapping standards, 28–31
MATHCAD®
 files in, 219, 276, 288, 324, 367, 394, 490, 537
 map projections in, 659, 663
 statistical functions in, 33, 490
Matrix
 addition, 595
 Cholesky decomposition of, 581
 cofactor, 180, 248–249, 251
 column, 593
 covariance, 99, 145, 179, 248, 251–252
 definition of, 591
 determinant of, 607
 diagonal, 594
 dimensions of, 592
 elementary row transformations, 611
 equality, 594
 equivalent weight, 499
 inverse of, 607
 Jacobian, 100, 148, 208, 263, 294, 622
multiplication, 595
partitioning of, 253
row, 593
scalar multiplication of, 595
size of, 592
solution of equations, 607
square, 593
symmetric, 594
transpose of, 594
types of, 593
unit, 594
vector, 593
weight, 180, 207, 365–366, 499
Matrix algebra, 591
Matrix operations, computer algorithms of, 577–589, 598, 615
MATRIX software
differential leveling, 236
horizontal network, 318
triangulation, 297
trilateration, 269, 274
using, 33
Mean
arithmetic, 5, 19
certainty interval, 63–66, 649
definition of, 5, 19, 24, 26
example of, 19, 24, 26
population, 19, 84–85
sample, 19
standard deviation of, 22, 102, 182
weighted, 181–183
Measure of central tendency
definition of, 18–19
mean, 19
median, 19
mode, 19
Measurements, direct and indirect, 2
Median
definition of, 15, 19
example of, 24
Minimally constrained adjustment, 71–72, 89–90, 362–363, 468, 476
Misclosure in traverse, 146–151, 152–156
Mistakes, 3–4
Mode
definition of, 19
example of, 24, 27
Model
functional, 197–198
mathematical, 198–199
stochastic, 197
Most probable value, 20
NAVSTAR GPS, 343
Network
adjustment of, 322
definition of, 322
design of, 431–435, 487
GNSS baseline, 346, 363, 366–367
leveling, 226
Noncentrality parameter, 485
Nonlinear equations
angle, 286
azimuth, 284
distance, 260
linearized, 261, 287, 314
solution of, 619
Normal
distribution, 17, 193, 565–566, 629, 635–636
distribution curve, 42, 629
distribution function, 44, 629, 635–636
radius of, 351
Normal equation
definition of, 200
direct formation, 580–581
systematic formulation of, 201–203
tabulation formation, 203–204
Normal matrix
definition of, 205
direct formation of, 204–207, 268, 580–581
Null hypothesis
definition of, 79
failure to reject, 80–81, 330

Observation
analysis of, 13–19, 432, 465–466, 565
measurements and, 2, 18
nonspur, 474–475
population, 13–14
propagation, 2
redundant, 7–8, 20, 232, 458
sample, 13–14
spur, 474–475

Observation equation
altitude angle, 123, 518, 522
angles, 123, 286, 518, 522, 528
azimuth, 284, 521, 529
baseline vector, 363, 552
control station coordinates, 443, 530
definition of, 199
differential leveling, 225, 522
distance, 259, 519, 523, 525, 527
horizontal angle, 286, 522, 528
horizontal distance, 260, 523–524
horizontal network, 314, 322
overview, 199–200
projective coordinate transformation, 398–399, 507–508
slant distance, 519, 527
three-dimensional conformal coordinate transformation, 404, 509
two-dimensional affine coordinate transformation, 395, 507
two-dimensional conformal coordinate transformation, 392, 504
two-dimensional coordinate transformation, 389–390, 392, 503
two-dimensional projective coordinate transformation, 398–399, 508
vertical plane, 522
Orthometric height, 349, 522, 557

PDOP (Positional dilution of precision), 433, 488
Perigee, 347–348
Pope, Alan J., 474
Population, 13–14
Population variance, 20, 85–86, 330

Positional dilution of precision (PDOP), 433, 488
Precision, 4–6

Probability
computation of, 44–49
curve, 42, 629
standard error, 21–22, 47
theory of, 39
Probability curve, 42, 629
Probability density function, 42, 629

Probable error
50%, 48
95%, 49
other values, 49
uses of, 50–52

Projective coordinate transformation, 398–399, 507–508
general least squares method, 399, 507

Propagation of variance
general law, 100
special law, 101

Prototype equation
angles, 522
azimuths, 286, 314, 521
baseline vector, 363
for differential leveling, 225
for distances, 261, 314, 523–524
horizontal angles, 258, 314, 522
horizontal network, 314
slant distances, 519
Pseudorandom noise codes, 344
Pseudoranging, 344
Radial error, 435
Random error
 in angles, 113–114
 definition of, 4
 in electronic distance measurements, 135–136
 in leveling, 166–171
 properties of, 4, 21, 565
Range
 definition of, 14
 example of, 14–15, 24, 27
 in GNSS, 344
Redundancy number
 definition of, 472
 effects in blunder detection, 485
 relative, 472
Redundant observations, 7–8, 20, 232, 314
Reference frames, 545–546
Rejection criterion, 80, 472–473
Relative positioning, 346
Relative redundancy, 472
Reliability
 external, 486
 internal, 485
Reordering algorithms, 587
Resection, adjustment of, 293
Residuals
 analysis of, 465–466, 565–568
 cofactor matrix of, 470
 computation of, 24–25
 definition of, 20
 equation, 199–200, 231
 equivalent, 499
 properties of, 565
 signs of, 468, 565, 572
 standardized, 472
 use of plots, 572
Root mean square error (RMSE), 27–31, 439
Sample
 definition of, 13–14
 selecting size of, 67–68
Sample variance, 21
Sampling distribution, 59
Satellite system
 GPS, 257, 343–344
 TRANSIT, 343
Seven-parameter similarity transformation. See Three-dimensional conformal coordinate transformation
Single differencing, 345
Site calibration. See Localization
Six parameters transformation. See Affine coordinate transformation
Slant distance, 519
Sparseness in matrix, 586
Special law of propagation of variance (SLOPOV), 101, 143
Spreadsheets, use of, 33, 674
Standard deviation
 definition of, 22
 example of, 24–25
 of the mean, 22, 102
 modified for weighted observations, 184
 reference, 231–232, 249
 in series, 102
 in sum, 102
 of unit weight, 181, 231–232, 249
 of weighted mean, 182
Standard error
 definition of, 22, 31
Standard error (continued)
probability of, 47
relation to weight, 183
of weight \(w \), 184–185
Standard error ellipse, 421
Standard error rectangle, 419
Standardized residual, 472
Statistic, definition of, 18
Statistical test
\(F \), 89
goodness-of-fit, 330
one-tailed, 83
for population mean, 84
for population variance, 85–86, 330
for ratio of two variances, 89
\(t \), 84
two-tailed, 83
\(\chi^2 \), 85–89, 330, 568
STATS
confidence intervals, 72–74
histogram data, 32–33
hypothesis testing, 92–93
Stochastic model, 197
Storage optimization, 586
Survey planning and design, 157, 431–432, 487
Systematic error
in azimuths, 535
definition of, 4
examples of, 4, 5–7
in leveling, 163–166, 536–537
in vertical angles, 535
\(t \) distribution, 61–62, 84, 639–640
Table
confidence intervals, 650–654
\(F \) distribution, 642–648
standard normal distribution, 635–636
\(t \) distribution, 640
\(\chi^2 \), 638
Tabular method, 203
Tau criterion, 474
Taylor’s theorem
nonlinear equations and, 619–620
use of, 207–208, 260, 285, 287
Test decision, 80
Test statistics, 79–80
Three-dimensional conformal
coordinate transformation, 401–407, 509, 546–547
general least squares method, 509, 546
Three-dimensional geodetic network
adjustment, 517, 537–538
Transformation between reference
frames, 545–546
TRANSIT, 343
Traverse
error in angular misclosure, 127–130, 146–148, 152–153
error in latitude and departure, 144–145
error in linear misclosure, 146, 148–151, 153–154
estimating errors using EXCEL®, 156
misclosure in, 127–130, 146–156
Triangulation adjustment, 283
Trigonometric leveling, error in, 171–174
Trilateration adjustment, 257
Triple differencing, 345
True value, definition of, 19
Two-dimensional
affine coordinate transformation, 395, 507
conformal coordinate
transformation, 389–390, 392, 503–504
projective coordinate
transformation, 398–399, 508
Type I error, 80
Type II error, 80
Valid parameters, 407–411

Variance
- alternative formula for, 22–24
- definition of, 20
- example of, 27
- population, 20, 85–86, 330
- reference, 180, 330
- sample, 21
- of unit weight, 181, 231–232, 249, 330

Vertical, deflection of, 535

Weight
- in angles, 185
- definition of, 179
- in differential leveling, 186–187
- relation to correction, 183
- relation to standard error, 183
- relation to variance, 179, 183

Weight matrix, equivalent, 180, 499

Weighted mean, 181–183