1

Introduction and Overview
Richard Podolak\(^1\) and Darryl G. Black\(^2\)

\(^1\) Grocery Manufacturers Association, Washington, DC, USA
\(^2\) Food and Drug Administration, Bedford Park, IL, USA

1.1 Introduction

Low water activity (\(a_w\)) is a barrier to growth for many vegetative pathogens, including *Salmonella* spp. A product’s water activity is used as a quantitative measure of the free moisture in foods available to microorganisms. Water in food that is not bound to food molecules can support the growth of bacteria, yeasts, and molds. The terms water activity and low moisture have been used interchangeably by food safety professionals even though they are quite different by definition. A variety of foods may have similar moisture content values but significantly different water activities. Of particular interest are the low-moisture foods, with water activity 0.85 and below. Processed products such as powdered milk, chocolate, peanut butter, infant foods, cereal, and bakery products are characteristically low water activity foods. While these products do not support the growth of *Salmonella*, all have been implicated in outbreaks of salmonellosis. Although some die-off occurs in low-moisture foods during storage, the degree of reduction depends on factors such as storage temperature and product formulation. Many other bacterial pathogens, such as toxin-producing *Staphylococci*, verotoxigenic *E. coli* (VTEC), *Cronobacter sakazakii* and aflatoxin-producing molds should also be considered in low-moisture foods. Due to its enhanced thermal residence in dry environments, *Salmonella* can survive for long periods in low-moisture food products. The heat resistance of *Salmonella* and other microorganisms of concern is affected by many factors, mostly by strain and serotypes tested, previous growth and storage conditions, the physical and chemical food composition, test media and the media used to recover heat damaged cells. The heat resistance of *Salmonella* generally increases with reducing moisture and this fact must be taken into account as a significant risk. Finally, from a quality standpoint, many spoilage organisms have been associated with low-moisture products; references will be provided in this book to aid the processor in finding the appropriate information concerning target organisms for specific low-moisture foods.
1.2 Definition of Low-Moisture Foods (LMF) and Water Activity Controlled Foods

Manipulation of the water content of foods is a classical method for food preservation and has been used by people for centuries. Salting, curing, drying, and the addition of sugars are examples of several traditional preservation methods that have been practiced over the ages. Of particular interest are the low-moisture foods and food ingredients that are naturally low in moisture or that have been subjected to a drying process and resulted in reducing the water content, for example, as in traditional sun-dried foods. Processed products such as milk-based powders, chocolate, peanut butter, powdered infant foods, seeds, herbs and spices, cereal and bakery products, and animal feeds are the examples of this type of food. Low-moisture foods have a reduced water activity (a_w), which is a growth barrier for many vegetative pathogens, including Salmonella spp.

Both moisture content and water activity are key parameters in predicting the stability of low-moisture food products. The terms water activity and low moisture have been used interchangeably in the processing industry and by food safety professionals even though they are quite different by definition. Moisture content represents a measure of the quantity of water in a product, providing information about yield and texture, but it does not provide reliable information about microbial safety. However, water activity, which was originally applied by the pharmaceutical and food industries, can be used as a quantitative measure to determine the shelf-life of product. Water activity can be defined as the ratio of the vapor pressure of water in a food matrix compared to that of pure water at the same temperature (Labuza, 1980). Therefore, a water activity of 0.80 means the vapor pressure is 80% of that of pure water. Water activity can be also defined as the equilibrium relative humidity (expressed as a percentage) above the food in a closed container divided by 100. For example, an equilibrium relative humidity of 70% would be an equivalent to a water activity of 0.7. The water activity scale extends from 0 (bone dry) to 1.0 (pure water) but most foods have a water activity level in the range of 0.2 for very dry foods to 0.99 for very moist fresh foods.

In the food system, total water is present in “free” and “bound” forms. Growth of microorganisms can be limited or entirely prevented by binding water to make it inaccessible to microorganisms, for example, when salt and/or sugar are mixed with the food. The extent to which water is “bound” in foods is expressed in terms of water activity. Bound water is necessary to hydrate the hydrophilic molecules and to dissolve the solutes but it is not available for biological functions, so it does not contribute to water activity. It is necessary for the transport of nutrients and the removal of waste materials, to carry out enzymatic reactions, to synthesize cellular materials, and to take part in other biochemical reactions. Thus, this type of water in foods cannot be used by microorganisms for growth. The remaining water in foods exists in “free” form. Water activity is a measure of the “free” water that is available in food to react with other molecules and participate in spoilage reactions, such as enzymatic browning or microbial growth.
A product’s water activity is used as a quantitative measure of the free moisture in foods available for growth of microorganisms. Water that is not bound to food molecules can support the growth of bacteria, yeasts, and molds. Thus, water activity is an indicator of stability with respect to microbial growth, biochemical reaction rates, and physical properties.

When substances are dissolved in water, there is a reaction between the substance and water. If some food ingredients such as sugar, salt, dried fruits, and so on are added to food products, they will be substantially bound to the molecules of water and reduce the number of unattached water molecules, consequently reducing the amount of water available for growth of microorganisms. The amount of water available for microorganisms will depend on the water-binding capacity of the particular ingredient; thus, the water activity of a product is dependent on food composition. At the same molecular concentration, salt lowers water activity more than sugar. For example, sodium chloride has a water-binding ability almost six times higher than sucrose. The final ingredients in a product formulation and their effect on water-binding capacity are the critical factors in controlling water activity in foods. Thus, an essential component in assuring the required water activity will be the predetermination and accurate control of product formulation at the time of preparation and packing.

The water activity of low-moisture foods is also dependent on relative humidity and temperature during storage. Although microbial spoilage is prevented at a_w below 0.60, low-moisture foods are prone to gain moisture, which can be followed by undesirable changes, such as structural transformations, enzymatic changes, browning, and oxidation, depending on water activity and temperature. For example, in wafers, texture and mechanical characteristics critically depend on moisture content, due to the plasticization effect in the starch matrix (Parasoglou et al., 2009). If a wafer is too dry after baking, then it is brittle and breaks easily, making further processing difficult; but if the moisture content is too high, the texture is affected and bacterial growth may result in a significant decrease in the product shelf-life (Parasoglou et al., 2009). In instant coffee powder, high moisture content interferes with the flow characteristics and agglomeration of the product, while overdrying can result in a loss of volatile compounds affecting flavor. The effect of temperature on the water activity of a food is product specific. Some products increase in water activity with increasing temperature, others decrease with water activity, while in most high-moisture foods there is negligible change with temperature. Therefore, it is difficult to predict the direction of the change in water activity with temperature, since it depends on how temperature affects the factors that control the water activity in the food.

The relationship between moisture content and water activity is complex. A variety of foods may have similar moisture content values but significantly different water activities due to the different water-binding capacities of the food ingredients. An increase in water activity is almost always accompanied by an increase in the moisture content, but in a nonlinear trend, called the moisture sorption isotherm, at a given temperature. Moisture sorption isotherms are useful thermodynamic tools for determining interactions between water and food materials and provide information that can be used for selecting appropriate
storage conditions and packaging systems that optimize retention of aroma, texture, nutrient and biological stability (Ariahu, Kaze and Achem, 2006). Sorption isotherms provide information on the moisture-binding capacity of products at a determined relative humidity and are useful means of analyzing the moisture plasticizing effect and the effect on mechanical properties (Bell and Labuza, 2000; Al-Muhtaseb, McMinn, and Magee, 2002).

A variety of microorganisms can grow in food products, and each microorganism can survive in different ranges of water activity. The optimum water activity for growth of most microorganisms is in the range 0.995–0.98. (Lund, Baird-Parker, and Gould, 2000). Fresh foods with a_w values above 0.95 rapidly spoil if they are not rapidly refrigerated. Bacteria require the highest amount of free water to grow and can be found in products with a_w as low as 0.75, but most are inhibited at a_w below 0.91. At lower water activity, yeasts and molds become the main spoilage organisms, with a minimum growth at a_w of approximately 0.88 and 0.75, respectively. Of the food poisoning bacteria, Staphylococcus aureus is one of the organisms of most concern, as it has been reported to tolerate a_w as low as 0.85 under aerobic conditions and pH = 7 (Brown, 1976; Notermans and Heuvelman, 1983).

Some species of bacteria, yeast, and molds can grow well below the minimum water activity stated and these exceptions are responsible for the food microbiologist’s problems. Among these exceptional species are halophilic bacteria and osmophilic yeasts and molds that either tolerate or require high concentrations of solutes in growth medium and are able to grow on food with an a_w as low as 0.60. Several species of xerophilic spoilage molds, such as Aspergillus chevalieri, Chrysosporium fastidium, and several Eurotium species, and osmophilic yeasts, including Zygosaccharomyces rouxii, can grow at a_w 0.60–0.70, whereas the halophilic bacteria and halophilic molds are able to grow at a_w as low as 0.75 and 0.70, respectively. Below 0.60, yeasts, molds, and bacteria will not proliferate.

Definitions of low-moisture foods in terms of water activity values vary within wide limits. The US Food and Drug Administration (FDA) defines low-moisture foods as foods with an a_w of 0.85 and below (FDA, 2010). Also, the Codex Committee on Food Hygiene considers a low-moisture product to be a food with a water activity of 0.85 or below (CCF, 2013). This definition implies that some dried fish or meat products fall under the scope; however, the committee suggests excluding dried fish and meat products from the scope of this code. There is also a subcategory of low-moisture foods that considers foods with a_w ranging from 0.75 to 0.83 to be classified as intermediate-moisture foods (IMF) (Corry, 1976). Foods with a_w levels below 0.7 have also been classified as low-moisture foods (Blessington, Mitcham, and Harris, 2012).

1.3 Salmonella as a Continuing Challenge and Ongoing Problem in Low-Moisture Foods

Foodborne disease caused by contaminated low-moisture foods continues to be a challenge and problem in the United States. In 2013, the Foodborne
Diseases Active Surveillance Network (FoodNet), which monitors the incidence of laboratory-confirmed infections caused by food pathogens transmitted commonly through food in United States, identified 19,056 cases of infection, 4,200 hospitalizations, and 80 deaths. The total number of *Salmonella* infections was 7,277, resulting in 27 deaths; the number of incidence per 100,000 populations was 15.19. *Salmonella* serotypes implicated with outbreaks in low-moisture foods are presented in Table 1.1. Among 6,520 (90%) *Salmonella* isolates, the top serotypes were: Enteritidis, 1,237 (19%); Typhimurium, 917 (14%); and Newport, 674 (10%). The rate of *Salmonella* infections (15.19 per 100,000 population) decreased by about 9% in 2013 compared with the previous three years but it remains similar to 2006–2008, which is above the current national Healthy People objective and the national goal for 2020 (which are both 11.4 cases per 100,000 population). The incidence of serotype Enteritidis infection was lower in 2013 than in 2010–2012, but was not lower than in 2006–2008. This may be partly explained by the large Enteritidis outbreak linked to eggs in 2010 (CDC, 2014a).

Table 1.1 *Salmonella* serotypes implicated with outbreaks in low-moisture foods.

<table>
<thead>
<tr>
<th>Food</th>
<th>Serotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard cheese</td>
<td>Heidelberg, Typhimurium</td>
<td>Van Duynhoven et al., 2009</td>
</tr>
<tr>
<td>Black pepper</td>
<td>Oranienburg, Weltevreden</td>
<td>Van Doren et al., 2013</td>
</tr>
<tr>
<td>Peanut/Peanut butter</td>
<td>Mbandaka, Typhimurium, Tennessee, Stanley, Newport</td>
<td>CDC 2007a, 2009; Ng et al., 1996</td>
</tr>
<tr>
<td>Paprika</td>
<td>Saintpaul, Rubislaw and Javiana</td>
<td>Lehmacher, Bockemühl, and Aleksic, 1995</td>
</tr>
<tr>
<td>Infant dried milk</td>
<td>Ealing</td>
<td>Rowe et al., 1987</td>
</tr>
<tr>
<td>Savoury snacks</td>
<td>Manchester (yeast-based flavor), Agona</td>
<td>Killala et al., 1996</td>
</tr>
<tr>
<td>Infant cereal food</td>
<td>Senftenberg</td>
<td>Rushdy et al., 1998</td>
</tr>
<tr>
<td>Toasted oat cereal</td>
<td>Agona</td>
<td>CDC, 1998</td>
</tr>
<tr>
<td>Coconut</td>
<td>Java, Senftenberg, Typhimurium</td>
<td>Wilson and MacKenzie, 1955</td>
</tr>
<tr>
<td>Milk powder</td>
<td>Derby, Oranienburg</td>
<td>D’Aoust and Maurer, 2007; RASFF, 2012</td>
</tr>
</tbody>
</table>
1.4 Foodborne Outbreaks of *Salmonella* spp. and Other Implicated Microbial Pathogens in Low-Moisture Foods

Salmonella spp. and other bacterial pathogens are still a continuing problem in low-moisture foods. While low-moisture food products with a water activity of 0.85 and below do not support the growth of *Salmonella* spp. and other bacterial pathogens, many of them have been linked to international and domestic outbreaks (e.g., nuts, cereal products, and spices). Selected international outbreaks of *Salmonella* spp. during the period 1970–2014 that have been linked with low-moisture food products are presented in Table 1.2, and selected outbreaks between 2007 and 2015 of various other bacterial pathogens are presented in Table 1.3. Bacterial pathogens such as *Escherichia coli* O157:H7, *Bacillus cereus*, *Campylobacter* species, *Clostridium botulinum*, *Clostridium perfringens*, *Cronobacter* species, *Listeria monocytogenes*, *Staphylococcus aureus*, and aflatoxin producing molds should be considered in low-moisture foods. Table 1.4 presents information on the characteristics of bacterial and viral pathogens that have caused infections or intoxications as a result of the consumption of low water activity food products. Each of these microorganisms is reviewed from the standpoint of the following: source of the microorganism, the illness, temperature and pH for growth, heat resistance, minimum water activity for growth, and selected control methods.

Table 1.2 Selected international outbreaks of *Salmonella* spp. during the period 1970–2014 linked with low-moisture food products.

<table>
<thead>
<tr>
<th>Year</th>
<th>Product</th>
<th>Salmonella serotype</th>
<th>Country</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973</td>
<td>Milk powder</td>
<td>Derby</td>
<td>Trinidad</td>
<td>D’Aoust and Maurer, 2007</td>
</tr>
<tr>
<td>1987</td>
<td>Chocolate</td>
<td>Typhimurium</td>
<td>Norway, Finland</td>
<td>Kapperud et al., 1990</td>
</tr>
<tr>
<td>1993</td>
<td>Powdered infant formula</td>
<td>Tennessee</td>
<td>Canada, USA</td>
<td>CDC, 1993</td>
</tr>
<tr>
<td>1995</td>
<td>Infant cereals</td>
<td>Senftenberg</td>
<td>UK</td>
<td>Rushdy et al., 1998</td>
</tr>
<tr>
<td>1996</td>
<td>Peanut butter</td>
<td>Mbandaka</td>
<td>Australia</td>
<td>Ng et al., 1996</td>
</tr>
<tr>
<td>1998</td>
<td>Toasted oats cereals</td>
<td>Agona</td>
<td>USA</td>
<td>CDC, 1998</td>
</tr>
</tbody>
</table>
Table 1.2 (Continued)

<table>
<thead>
<tr>
<th>Year</th>
<th>Product</th>
<th>Salmonella serotype</th>
<th>Country</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000–2001</td>
<td>Raw almonds</td>
<td>Enteritidis</td>
<td>USA, Canada</td>
<td>CDC, 2004</td>
</tr>
<tr>
<td>2001</td>
<td>Peanuts</td>
<td>Stanley, Newport</td>
<td>Australia, Canada, and UK</td>
<td>Little, 2001</td>
</tr>
<tr>
<td>2001</td>
<td>Chocolate</td>
<td>Oranienburg</td>
<td>Germany, Sweden, Denmark, Austria, Belgium, Finland, Netherlands</td>
<td>Werber et al., 2005</td>
</tr>
<tr>
<td>2003–2004</td>
<td>Raw almonds</td>
<td>Enteritidis</td>
<td>USA, Canada</td>
<td>CDC, 2004</td>
</tr>
<tr>
<td>2006</td>
<td>Chocolate</td>
<td>Montevideo</td>
<td>UK</td>
<td>FSA, 2006</td>
</tr>
<tr>
<td>2006–2007</td>
<td>Peanut butter</td>
<td>Tennessee</td>
<td>USA</td>
<td>CDC, 2007a</td>
</tr>
<tr>
<td>2007</td>
<td>Children’s snack</td>
<td>Wandsworth, Typhimurium</td>
<td>USA</td>
<td>CDC, 2007b</td>
</tr>
<tr>
<td>2008</td>
<td>Puffed cereals</td>
<td>Agona</td>
<td>USA</td>
<td>CDC, 2008</td>
</tr>
<tr>
<td>2008</td>
<td>Powdered infant formula</td>
<td>Give</td>
<td>France</td>
<td>Jourdan et al., 2008</td>
</tr>
<tr>
<td>2008–2009</td>
<td>Peanut butter, peanut butter containing products</td>
<td>Typhimurium</td>
<td>USA, Canada</td>
<td>CDC, 2009</td>
</tr>
<tr>
<td>2009</td>
<td>Peanut butter flavored snack bars</td>
<td>Typhimurium</td>
<td>USA</td>
<td>RASFF, 2009</td>
</tr>
<tr>
<td>2009</td>
<td>Peanut butter</td>
<td>Typhimurium</td>
<td>USA</td>
<td>RASFF, 2009</td>
</tr>
<tr>
<td>2010</td>
<td>Dried sausage</td>
<td>Typhimurium</td>
<td>France</td>
<td>RASFF, 2010</td>
</tr>
<tr>
<td>2011</td>
<td>Ground cumin</td>
<td>Caracas</td>
<td>UK</td>
<td>RASFF, 2010</td>
</tr>
<tr>
<td>2012</td>
<td>Dried milk powder</td>
<td>Oranienburg</td>
<td>Belgium</td>
<td>RASFF, 2012</td>
</tr>
<tr>
<td>2012</td>
<td>Peanut butter and peanut-based products</td>
<td>Bredeney</td>
<td>USA</td>
<td>RASFF, 2012</td>
</tr>
<tr>
<td>2012</td>
<td>Dry dog food</td>
<td>Infantis</td>
<td>USA</td>
<td>CDC, 2012</td>
</tr>
<tr>
<td>2012</td>
<td>Nut butter</td>
<td>Braenderup</td>
<td>USA</td>
<td>CDC, 2012</td>
</tr>
<tr>
<td>2012</td>
<td>Turkish pine nuts</td>
<td>Enteritidis</td>
<td>USA</td>
<td>CDC, 2012</td>
</tr>
<tr>
<td>2013</td>
<td>Tahini sesame paste</td>
<td>Montevideo, Mbhandaka</td>
<td>USA</td>
<td>CDC, 2013</td>
</tr>
<tr>
<td>2014</td>
<td>Nut butter</td>
<td>Braenderup</td>
<td>USA</td>
<td>CDC, 2014b</td>
</tr>
</tbody>
</table>
Table 1.3 Selected international outbreaks between 2007 and 2015 of food pathogens other than Salmonella spp. associated with low-moisture food products.

<table>
<thead>
<tr>
<th>Year</th>
<th>Product</th>
<th>Pathogen</th>
<th>Country</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Rice, seeds, nuts, and almonds</td>
<td>B. cereus, E. coli STEC, S. aureus, Staphylococcus spp.</td>
<td>EU</td>
<td>EFSA, 2010</td>
</tr>
<tr>
<td></td>
<td>Herbs and spices</td>
<td>B. cereus, C. perfringens</td>
<td>France, Serbia, Sweden, UK</td>
<td>EFSA, 2009</td>
</tr>
<tr>
<td></td>
<td>Fried rice</td>
<td>B. cereus</td>
<td>USA</td>
<td>CDC, 2012</td>
</tr>
<tr>
<td>2008</td>
<td>Rice</td>
<td>B. cereus</td>
<td>USA (Georgia)</td>
<td>CDC, 2012</td>
</tr>
<tr>
<td></td>
<td>Spanish rice</td>
<td>C. perfringens</td>
<td>USA (Colorado)</td>
<td>CDC, 2012</td>
</tr>
<tr>
<td>2009</td>
<td>Rice</td>
<td>B. cereus</td>
<td>USA (Alabama)</td>
<td>CDC, 2012</td>
</tr>
<tr>
<td></td>
<td>Raw cookie dough</td>
<td>E. coli O157:H7</td>
<td>USA (30 states)</td>
<td>CDC, 2012</td>
</tr>
<tr>
<td>2010</td>
<td>Rice</td>
<td>B. cereus</td>
<td>USA (Florida)</td>
<td>CDC, 2012</td>
</tr>
<tr>
<td></td>
<td>Dried tofu</td>
<td>C. botulinum</td>
<td>Taiwan</td>
<td>SFI, 2012</td>
</tr>
<tr>
<td>2011</td>
<td>Fenugreek seeds</td>
<td>E. coli O104:H4</td>
<td>Germany</td>
<td>EFSA, 2011</td>
</tr>
<tr>
<td></td>
<td>Raw shelled walnuts</td>
<td>E. coli O157:H7</td>
<td>Canada</td>
<td>CDC, 2012</td>
</tr>
<tr>
<td></td>
<td>In-shell hazelnuts</td>
<td>E. coli O157:H7</td>
<td>USA (3 states)</td>
<td>CDC, 2012</td>
</tr>
<tr>
<td>2013</td>
<td>Almond puree</td>
<td>C. botulinum</td>
<td>France, Norway</td>
<td>RASFF, 2013</td>
</tr>
</tbody>
</table>

Table 1.4 Characteristics of bacterial and viral pathogens of concern in low-moisture food.

Bacillus cereus

Source: The normal habitat and/or distribution for *B. cereus* is dust, water, soil.

Disease, symptoms, and onset: It produces two types of gastroenteritis, emetic and diarrheal. The diarrheal syndrome (also called *C. perfringens*-like) is caused by an enterotoxin that is a vegetative growth metabolite formed in the intestine. The toxin is a protein (50 kDa) that is heat labile (56°C, 5 min) and trypsin sensitive. The illness onset for this syndrome is 8–16 h and it has a duration of 6–24 h. The symptoms include nausea, abdominal cramps, and diarrhea. The emetic syndrome (also called *S. aureus*-like) is also caused by a cyclic polypeptide toxin that is much smaller (5000 Da) and may be preformed in certain foods. As opposed to the diarrheal toxin, the emetic toxin is heat (>90 min at 121°C) and trypsin stable. The illness onset is very short, from 1 to 6 h and the duration is <24 h. Symptoms include nausea and vomiting (more severe than diarrheal). The illness is not generally fatal. Infectious dose: diarrheal, 5–7 log cells; emetic, 5–8 log cells.

Characteristics of microorganism:

- Facultative anaerobe, Gram positive, spore-forming rod-shaped bacterium
- Spore formers
- Grows at 4–55°C (optimum 30–40°C)
- Grows at pH 5.0–8.8 (optimum pH 6.0–7.0)
Table 1.4 (Continued)

| Minimum a_w for growth/toxin formation and survival in low-moisture food | ● Growth and toxin formation 0.92–0.93
● Spores can survive for a very long periods |
|-----------------------------|---------------------------------|
| Heat resistance of microorganism | ● Spores are of moderate-to-high heat resistance
● $D_{95°C} = 1.2–36$ min, z-value $7.9–9.9°C$ |
| Control | ● 7.5% NaCl inhibits growth
● Application of preservatives/antimicrobials: sorbate, propionate, benzoate, nisin
● Modified atmospheres
● Radiation |
| References | Davidson, 2002; Granum, 2007; Schraft and Griffiths, 2005 |

Campylobacter species

Source

Intestinal tract of wild and domestic warm-blooded animals. Most common contaminated foods are milk and poultry products. Can be also found in insects and water.

Disease, symptoms, and onset

Campylobacter jejuni causes a gastroenteritis called campylobacteriosis that has an onset time of 2–5 days and has primary symptoms of severe diarrhea and abdominal pain. Fever and headache may also be present. The duration is <1 week without treatment and the mortality rate is very low. Complications of campylobacteriosis include relapse (5–10%), bacteremia, acute appendicitis, meningitis, urinary tract infections, endocarditis (primarily *C. fetus*), peritonitis, Reiter’s Syndrome (reactive arthritis), and Guillain-Barré Syndrome. Infectious dose as low as 500 cells.

Characteristics of microorganism

● Microaerophilic
● Nonspore-forming, Gram negative, vibroid (helical, S-shaped, or gull-wing shaped) or spiral-shaped rods
● Grows at 32–45°C (optimum 42–43°C)
● Grows at pH 4.9–9 (optimum 6.5–7.5). Rapid death in foods at pH less than 4, especially at above refrigerated temperature

| Minimum a_w for growth/toxin formation and survival in low-moisture food | ● 0.98 (=2.0 NaCl), toxin formation 0.92–0.93
● Sensitive to drying but under refrigerated conditions can remain viable for several weeks. Food type influences survival at refrigerated and frozen conditions. Survival in food is better under refrigerated conditions than at room temperature, up to 15 times as long at 2°C than 20°C |
|-----------------------------|---------------------------------|
| Heat resistance of microorganism | ● Rapidly inactivated by heating at 55°C and above
● $D_{55°C} = 0.6–2.3$ min, $D_{60°C} = 0.2–0.3$ min, z-value $3.5–8°C$ |
| Control | ● Chlorination of water
● Pasteurization process
● Avoid cross-contamination |
| References | Davidson, 2002; Solomon and Hover, 1999; Nachamkin, 2007; ICMSF, 2005; NACMCF, 1995 |

(Continued)
Table 1.4 (Continued)

Clostridium botulinum

| Source | Soil; the intestinal tract of animals, including fish. Almost all foods, especially vegetables, will contain *C. botulinum* spores. |

<table>
<thead>
<tr>
<th>Disease, symptoms, and onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>● The foodborne illness termed botulism is intoxication. The onset time is 12–36 h; the symptoms are blurred or double vision, dysphagia (difficulty swallowing), general weakness, nausea, vomiting; dysphonia (confused speech), and dizziness. The intoxication is due to a neurotoxin that first affects the neuromuscular junctions in the head and neck. The toxin causes paralysis, which progresses to the chest and extremities. Death occurs when paralysis reaches the muscles of the diaphragm or heart. Duration of the illness can be from 1 day to several months. A high proportion of patients require respiratory therapy. Death occurs without treatment in 3–6 days. The mortality rate was very high (30–65%) in the early part of the twentieth century but has been reduced significantly in recent years due to better detection and treatment. The treatment for botulism is administration of an antitoxin. Its success depends upon timing, since the toxin binds to myoneural junctions irreversibly.</td>
</tr>
<tr>
<td>● Clostridium botulinum toxin is one of the most toxic substances known. The toxin is absorbed into the blood stream through respiratory mucous membranes or the walls of the stomach or small intestine. It then enters the peripheral nervous system and attaches at the myoneural junction, blocking release of acetylcholine and causing paralysis of the muscle. Heat resistance of the toxin is low, with 5–10 min at 80°C (Type A) or 15 min at 90°C (Type B) required to inactivate.</td>
</tr>
<tr>
<td>● Infants less than 1 year old are susceptible to infant botulism. In adults, preformed C. botulinum toxin must be ingested. In infants, if as few as 10–100 spores of C. botulinum are ingested they may germinate in the intestinal tract and produce toxin. The illness occurs in infants most likely because their intestinal microflora is not established enough to prevent C. botulinum colonization. Types A and B are primarily involved. Symptoms of the illness are weakness, loss of head control, and diminished gag reflex.</td>
</tr>
<tr>
<td>● Infectious dose: adult botulism, no infectious dose – toxin causes illness; infant botulism, 10–100 spores of C. botulinum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics of microorganism</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Anaerobe, Gram-positive, spore-forming bacterium with oval to cylindrical, terminal to subterminal spores</td>
</tr>
<tr>
<td>● Nonproteolytic types grow at low temperature ≥3.3, optimum 28–30°C, most proteolytic types grow at ≥10°C (optimum 35–40°C)</td>
</tr>
<tr>
<td>● Nonproteolytic types minimum pH 5.0, proteolytic types minimum pH 4.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimum a<sub>w</sub> for growth/toxin formation and survival in low-moisture food</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Nonproteolytic types: 0.97</td>
</tr>
<tr>
<td>● Proteolytic types: 0.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heat resistance of microorganism</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Nonproteolytic types: D<sub>100°C</sub> <0.1 min, z-values 7–10°C</td>
</tr>
<tr>
<td>● Proteolytic types: D<sub>121°C</sub> = 0.21 min, z-value 10°C</td>
</tr>
</tbody>
</table>
Table 1.4 (Continued)

<table>
<thead>
<tr>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Retort product to destroy spores</td>
</tr>
<tr>
<td>● Low pH and low water activity</td>
</tr>
<tr>
<td>● Temperature control</td>
</tr>
</tbody>
</table>

References: Davidson, 2002; Johnson, 2007; ICMSF, 2005; NACMCF, 1995

Clostridium perfringens

Source: Soil, water, dust, air, and certain raw foods such as meats and spices.

Disease, symptoms, and onset: The gastroenteritis syndrome is an infection and is the result of an enterotoxin formed in the intestine. Onset time is 8–24 h and primary symptoms include diarrhea and abdominal cramps. The duration is 12–24 h and the mortality is low. The microorganism produces a protein enterotoxin (35 kDa) during sporulation and concentration of the toxin is greatest immediately prior to cell lysis. Sporulation occurs at a high rate in the gut. Infectious dose: around 6–8 log.

Characteristics of microorganism:

- Gram-positive spore-forming rod
- Grows well anaerobically and in reduced oxygen conditions
- Grows at 12–50°C (optimum 43–47°C)
- Grows at pH 5.5–9 (optimum 7.2)

Minimum a_w for growth/toxin formation and survival in low-moisture food:

- 0.93
- Spores are highly resistant to desiccation but vegetative cells are not very tolerant of low water activity

Heat resistance of microorganism:

- Spores: $D_{95^\circ C}$ 17.6–63 min
- Vegetative cells: $D_{60^\circ C}$ 5.4–14.5 min

Control:

- Proper heating and cooling of cooked foods

References: Davidson, 2002; McClane, 2007; ICMSF, 2005; NACMCF, 1995

Cronobacter species

Source: Dry foods such as powdered baby formula, powdered milk, herbal teas, wheat, rice, and starches. It has also been found in sewed water.

Disease, symptoms, and onset: Infants – defined as children <1 year of age – and especially infants <28 days old are the primary victims of *Ent. sakazakii* infections. *Cronobacter* germs usually get in the blood or make the lining of the brain and spine swell (meningitis). In infants there are three main classes of illness associated with *Ent. sakazakii*: (i) meningitis, (ii) bacteremia or the more serious sepsis, and (iii) necrotizing enterocolitis. Sickness from *Cronobacter* in babies will usually start with a fever and poor feeding, crying, or very low energy. Some babies may also have seizures. Babies with meningitis may develop serious, long-lasting problems in their brains. The mortality rate of infants who develop *Ent. sakazakii*-associated neonatal meningitis is estimated to be 40–80%.

People of all ages: *Cronobacter* can cause problems in cuts, scrapes, or places where people have had operations. *Cronobacter* can also get into the urinary tract. Older people and people whose bodies have trouble fighting germs because of a sickness they already have may also get *Cronobacter* in their blood. Mental retardation and quadriplegia have been reported.

Approximately 1000 cells may be sufficient to cause an infection.

(Continued)
Table 1.4 (Continued)

| Characteristics of microorganism | ● Motile peritrichous Gram-negative rod-shaped nonspore-forming bacteria
| | ● Faculative anaerobe
| | ● Grows at 5.5–45°C (optimum 39.4°C)
| | ● Min pH 3.89, pH 5–9 (optimum), no maximum value found in the literature
| Minimum a_w for growth/toxin formation and survival in low-moisture food | ● Survive at 0.2; minimum for growth not known
| Heat resistance of microorganism | ● Ability to survive in dry foods up to 2 years in powdered infant formula
| Control | ● No synergistic interactions between inhibitory factors such as weak acids, pH, salt and temperature.
| References | Breeuwer, Lardeau, and Joosten, 2003; Cordier, 2008; Kandhai et al., 2006; Lambert and Bidlas, 2007; Nazarowec-White and Farber, 1997; Townsend and Forsythe, 2008; Iversen and Forsythe, 2003, 2004

Escherichia coli O157:H7

Source
Intestinal tract of humans (transmitted via person-to-person) and animals (dairy cattle (healthy), deer, sheep) and water.

Disease, symptoms, and onset
The spectrum of human illness of *E. coli* O157:H7 infection includes nonbloody diarrhea, hemorrhagic colitis (bloody diarrhea), hemolytic uremic syndrome (HUS), and thrombotic thrombocytopenic purpura (TTP). Some persons are infected but asymptomatic. About one-third of the patients infected with *E. coli* require hospitalization.

The illness caused by Enterohemorrhagic Escherichia coli (EHEC) has an onset time of 12–60 h. The duration of the illness may be 2–9 days, with an average of 4 days. In 2–7% of patients (most often younger age groups), HUS develops. HUS is characterized by hemolytic anemia, thrombocytopenia, and renal failure. Damage to renal endothelial cells is caused by blood clotting in the capillaries of kidney and accumulation of waste products in blood, which results in a need for dialysis. Approximately, half of the patients with overt symptoms of HUS require blood dialysis and three-quarters require transfusions of erythrocytes and/or platelets. The death rate associated with HUS is 3–5%. Thrombotic thrombocytopenic purpura is an involvement of the central nervous system that occurs primarily in elderly adults. This can lead to blood clots in the brain.

The infectious dose of EHEC for susceptible persons is estimated to be as low as 2–2000 cells.

Characteristics of microorganism
● Nonspore-forming, Gram-negative, rod-shaped bacterium
| ● Faculative anaerobe
| ● Grows at 7–46°C (optimum 35–37°C)
| ● Grows at pH 4.4–9.0 (optimum pH 6.0–7.0), can survive below pH 4.6
| Minimum a_w for growth/toxin formation and survival in low-moisture food | ● 0.95 for growth
| ● Ability to survive in dry food such as dry fermented meats

References
Breeuwer, Lardeau, and Joosten, 2003; Cordier, 2008; Kandhai et al., 2006; Lambert and Bidlas, 2007; Nazarowec-White and Farber, 1997; Townsend and Forsythe, 2008; Iversen and Forsythe, 2003, 2004
Table 1.4 (Continued)

| Heat resistance of microorganism | ● Spores are of moderate-to-high heat resistance
| Control | ● Proper cooking and reheating of foods
| | ● Proper refrigeration ≥4.4°C
| | ● Good sanitation and personal hygiene
| | ● Low pH and low water activity
| References | Davidson, 2002; Meng, Doyle, and Zhao, 2007; ICMSF, 2005; NACMCF, 1995

Listeria monocytogenes

Source

Occurs in human carriers (1–10% of the population), healthy domestic animals, normal and mastitis milk, silage (especially improperly fermented (high pH)), soil, and leafy vegetables.

Disease, symptoms, and onset

Listeria often may pass through the digestive systems of healthy people, causing only mild, flu-like symptoms or without causing any symptoms at all. Foodborne illness caused by *L. monocytogenes* in pregnant women can result in miscarriage, fetal death, and severe illness or death of a newborn infant. Pregnant women are most frequently infected in the third trimester. The mother's symptoms are influenza-like (chills, fever, sore throat, headache, dizziness, low back pain, and diarrhea). During the illness the microorganism localizes in the uterus in the amniotic fluid, resulting in abortion, stillbirth or delivery of an acutely ill baby. Once the fetus is aborted, the mother becomes asymptomatic. In newborns infected with the microorganism, perinatal septicemia involving the central nervous system, circulatory system, or respiratory system or meningitis may occur. For other target groups, meningitis, meningoencephalitis or bacteremia are the most common outcomes. In target populations the onset time for listeriosis can be as short as 1 day and as long as 91 days. In food-related human infections, *L. monocytogenes* likely enter the host via intestinal epithelial cells or Peyer's patches and are phagocytized and transported to the liver where they cause infection. Infectious doses dependent upon the immunological status of the host and type of food consumed; generally, 100–1000 cells are required to cause disease.

Characteristics of microorganism

● Nonspore-forming Gram-positive rods; they are motile via peritrichous flagella at 20–25°C but not at 37°C
| ● Facultative anaerobe
| ● Grows at −0.4–45°C (optimum 37°C)
| ● Grows at pH 4.4–9.4 (optimum pH 7.0)

Minimum aw for growth/toxin formation and survival in low-moisture food

● 0.90–0.93 for growth
| ● Ability to survive in dry foods, dry fermented meats, and peanut butter (aw 0.33)
| ● Can remain viable in dry environment for long periods

Heat resistance of microorganism

● D60°C 1.6–16.7 min in food substrates, 70°C for 2 min (z = 13.5°C)

Control

● Proper heat treatment, low pH and low water activity, avoidance of re-contamination, addition of inhibitors to growth

References

Davidson, 2002; Swaminathan *et al*., 2007; ICMSF, 2005; NACMCF, 1995

(Continued)
Table 1.4 (Continued)

Salmonella spp

Source
Intestinal tract of animals such as birds, reptiles, farm animals, humans and insects, water, soil. They may also be found in animal feeds and foods, including raw milk, poultry (up to 70%), raw meats, eggs, and raw seafood.

Disease, symptoms, and onset
- The non-typhoid foodborne illness caused by *Salmonella* is a gastroenteritis called “salmonellosis.” It is classified as an infection. The onset time is 8–72 hours and duration is about 5 days. The primary symptoms include nausea, vomiting, abdominal pain, headache, chills, mild fever, and diarrhea. Salmonellosis may progress to septicemia or chronic sequelae such as ankylosing spondylitis, reactive arthritis, or rheumatoid arthritis. *Salmonella* cells attach to and invade gastrointestinal tissue in the small intestine. The mortality rate associated with the illness is low (<1%) but is age dependent.
- Infectious dose: the number of cells required to produce symptoms varies with individual and strain and can be as low as 1 cell per gram of food up to 7 log cells. It was estimated that 6 cells per 65 g of ice cream caused a massive outbreak of salmonellosis in 1994.

Characteristics of microorganism
- Nonspore-forming, Gram-negative rods
- Facultative anaerobe
- Grows at 5.2–46.2°C (optimum 35–43°C)
- Grows at pH 3.8–9.5 (optimum pH 7.0–7.5)

Minimum aw for growth/toxin formation and survival in low-moisture food
- 0.94 for growth
- Ability to survive in dry foods for weeks, months or years. Can remain viable in dry environment for long periods

Heat resistance of microorganism
- $D_{90°C}$ 0.1–10 min, z-value 4–5°C, heat resistance increased in low water activity and high fat foods

Control
- Proper heat treatment
- Low pH
- Avoidance of re-contamination
- Proper hygiene of food handlers

References
Davidson, 2002; D’Aoust, and Maurer, 2007; ICMSF, 2005; NACMCF, 1995

Staphylococcus aureus

Source
Usually humans. The microorganism is carried in the nasal cavity on the skin (arms, hands, face) and by wounds (boils, carbuncles). *Staphylococcus aureus* may also be found in air, dust, and on clothing. It may be associated with mastitis infection in dairy cattle.

Disease, symptoms, and onset
Staphylococcus aureus gastroenteritis is an intoxication. It has a very short onset time of around 4 h (range 1–6 h). Primary symptoms include nausea, vomiting, and severe abdominal cramps (secondary symptoms: diarrhea, sweating, headache, prostration, temperature drop). The duration is 24–48 h and the mortality rate is very low. Infectious dose: the number of cells necessary to produce enough toxin for symptoms (1 µg) is 100 000–100 000 000.

1. Introduction and Overview

Table 1.4 (Continued)

<table>
<thead>
<tr>
<th>Characteristics of microorganism</th>
<th>Minimum a_w for growth/toxin formation and survival in low-moisture food</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Nonspore-forming, Gram-positive cocci</td>
<td>● 0.83–0.85 for growth, 0.87 for toxin formation</td>
</tr>
<tr>
<td>● Facultative anaerobe</td>
<td>● Ability to survive in dry foods for months</td>
</tr>
<tr>
<td>● Grows at 7–48°C (optimum 37°C)</td>
<td></td>
</tr>
<tr>
<td>● Grows at pH 4.0–10.0 (optimum pH 6.0–7.0). Toxin production: minimum pH 4.5, optimum pH 7–8, maximum pH 9.6</td>
<td></td>
</tr>
<tr>
<td>Heat resistance of microorganism</td>
<td>● $D_{60^\circ C}$ 1–2.5 min in phosphate buffer, z-value 8–10°C, heat resistance increased in low water activity and high fat foods</td>
</tr>
<tr>
<td>● Toxins produced by S. aureus are extremely heat resistant. Over 27 min at 121°C are required to inactivate 5 µg/ml SEA in beef bouillon and >7 min at 121°C are required to inactivate an unspecified amount in whole milk</td>
<td></td>
</tr>
</tbody>
</table>

Control

● Proper hygiene	
● Proper refrigeration of foods <4.4°C	
● Proper handling of perishable food when hot, e.g., >57°C	
● Exclusion of food handlers with boils, scores, abscesses	
● Hold foods at times and temperatures that limit growth	

References

Davidson, 2002; Seo and Bohach, 2007; ICMSF, 2005; NACMCF, 1995

Hepatitis A Virus

Source

Intestinal tract of humans.

Disease, symptoms, and onset

Symptoms include fever, malaise, anorexia, nausea, abdominal discomfort, dark urine, and jaundice. The disease course typically lasts less than 2 months. In rare cases, Hepatitis A Virus (HAV) can cause severe cases of fulminant hepatitis with fatal outcomes in otherwise healthy adults. An average incubation period is from 28 to 30 days (range 15–50 days). Infectious dose is unknown.

Characteristics of microorganism

● Virus particles are featureless spheres 28 nm in diameter, single-stranded RNA coated with protein |
| ● Cannot replicate in foods | |
| ● Stable at acid pH. At pH 1.0 and 25°C, HAV retained high infectivity after 2 hs and was still infectious after 5 h | |

Heat resistance of microorganism

● Killed instantaneously at 85°C

Control

● Proper employee hygiene	
● Proper heat treatment	
● Harvest shellfish from approved growing water	

References

Cliver, 1997; Cromeans et al., 1994; Nainan, et al., 2006; Wasley, Fiore, and Bell, 2006

Norovirus (NoV)

Source

Intestinal tract of humans, animals, and food: contaminated bivalve shellfish, fresh produce (e.g., berries, herbs, lettuce, salads), water, ice, and manually prepared ready-to-eat foods (including bakery items). Poor hygiene practices by food harvesters, processors, and food handlers are a significant source.
Control of *Salmonella* and Other Bacterial Pathogens in Low-Moisture Foods

Table 1.4 (Continued)

| Disease, symptoms, and onset | Norovirus (NoV) infection causes acute gastroenteritis, characterized by rapid onset of nausea, vomiting, diarrhea, abdominal cramps, abdominal pain, mucus in stool, malaise, and headache. The infection is usually resolved within 12–60 h. It can last up to 120 days in elderly, young children or immune compromised individuals; these groups are at greatest risk for mortality and increased morbidity. Up to 30% of Norovirus infections are asymptomatic; however, these individuals are able to transmit the virus. Infectious dose is less than 10 visions. |
| Characteristics of microorganism | ● Virus particles are small, round, structured particles, 27–35 nm in diameter, non-enveloped, single-stranded RNA
● Cannot replicate in foods
● Resists gastric acids at pH 3–4. The virus retained infectivity after exposure to pH 2.7 for 3 h at room temperature. Believed to be sensitive to pH >9.0 but unproven. |
| Minimum a_w for growth/toxin formation and survival in low-moisture food | ● Based on data for other enteric viruses and virus indicators, it is likely that NoV persist in waters for extended periods (possibly weeks/months) (Carter, 2005; Rzezutka and Cook, 2004) |
| Heat resistance of microorganism | ● Killed by cooking temperatures designated to inactivate other pathogens on a food
● Inactivated by temperatures of 71.3°C for 1 minute
● It can survive at pH 2.7 for at least 3 h |
| Control | ● Proper employee hygiene especially good hand washing
● Exclusion of ill food handlers
● Proper heat treatment
● Harvest shellfish from approved growing water |
| References | Carter, 2005; Green, 2007; Rzezutka and Cook, 2004, Todd *et al*., 2008 |

1.5 Major Safety Concerns in Low-Moisture Foods

Concern with *Salmonella* in low-moisture foods is not a new problem. Historically, *Salmonella* spp. was a recognized problem in low-moisture foods as early as the 1950s in contaminated dried milk products produced in the United Kingdom and Bulgaria (Marth, 1969). In 1966, a multistate outbreak associated with *Salmonella Newbrunswick*, which primarily affected infants, occurred in the United States (Collins *et al*., 1968). The outbreak investigation ultimately linked the illnesses to consumption of dried milk with the contamination occurred in the spray driers (Collins *et al*., 1968). Incidents such these prompted the implementation of specific control measures, particularly during the 1970s, to minimize the risk associated with powdered dairy products and *Salmonella* species. Even though these efforts brought a positive impact by reducing the number of *Salmonella* spp. contaminations (Forsyth, Bennett, and Hogben, 2003), there have been an increased number of food safety related contamination events and increased numbers of outbreaks in the 40-year period from 1970 to 2013 linked to the consumption of low-moisture foods (Table 1.2).
Another concern about *Salmonella* in low-moisture foods is due to its enhanced thermal resistance in dry environments. Even though *Salmonella* spp. cannot grow in low-moisture products, it is able to survive drying processes and may persist for long periods of time, especially when stored at refrigerated temperatures. There is also a belief and misconception that low-moisture foods are not risky because they do not support the growth of pathogens. Furthermore, there is a significant concern that low numbers of *Salmonella* in foods can cause illness. There have been several outbreaks of *Salmonella* spp. citing low infectious numbers of the organism. For example, a level of *Salmonella* as low as 0.04–0.06 CFU was found in snacks in an outbreak attributed to paprika and paprika powdered tomato chips (FSA, 2006). Another outbreak related to low numbers of *Salmonella* Montevideo has been reported for chocolate products (Table 1.2) (ACMSF, 2006). To cause food poisoning, *Salmonella* spp. and other acid-sensitive enteric pathogens must reach the small intestine. To do this, they must overcome the low pH in the stomach (pH 2.5). Fat or lipid coating the cells may help cells survive a low pH environment, thus increasing the likelihood of illness from consuming low numbers of organisms (Waterman and Small, 1998).

All of the above concerns have raised awareness of low-moisture foods as a vector for foodborne illness. *Salmonella* and other bacterial pathogen contamination has become an emerging and vexing food safety challenge for low-moisture foods. Therefore, food processors are well advised to enact highly disciplined safety control measures to address the risk associated with *Salmonella* and other pathogenic bacteria in low-moisture foods.

1.6 Content and Brief Book Chapter Review

This book is composed of eleven major chapters that address key areas of focus for controlling pathogens of concern in low-moisture foods. The book starts with current regulatory requirements and any science-based recommendations given in accordance with current rules and policies. While current FDA and USDA FSIS (United States Department of Agriculture Food Safety and Inspection Service) regulations deal with the dividing line for filed food products with a water activity of 0.85 or greater, there has not been a significant amount of regulatory guidance and requirements for so-called low-moisture foods. With the shift towards more preventive controls and the identification of high risk foods by both agencies, there will be more attention paid to this category. Full genome testing and DNA-based techniques for detection will likely be combined with expanding outbreak information to better differentiate the impact this food category has in regards to food safety and also to define the corresponding risk level associated with individual products.

Chapter 3 defines sources and risk factors for pathogenic bacteria of concern in the manufacturing environment for low-moisture/water activity products, and characterizes the persistence and thermal resistance of these pathogens in both the environment and the food product. *Salmonella* contamination in low-moisture foods has been traced to poor sanitation practices, substandard facility and equipment design, improper maintenance, poor operational practices and
good manufacturing practices (GMPs), inadequate ingredient control, and other factors. Cross-contamination by *Salmonella* can occur in low-moisture foods from an assortment of sources and vectors due to one or more causative factors. Microbial contaminants can form niches due to poor equipment and facility design, maintenance issues such as leaky roofs, leaking pipes, and faulty sprinklers, or any occurrence where moisture is introduced into a normally dry environment. Moisture control is a final barrier in preventing *Salmonella* growth in low-moisture products. Water, while necessary for many activities in the dry processing environment, is one of the most significant risk factors for *Salmonella* spp. contamination because the presence of water allows the pathogen to grow in the environment, where normally the lack of moisture would prevent this. Preventing or minimizing the introduction of the pathogen into the product or the food processing environment is also key to reducing the risk of contamination. Manufacturers would be well served to identify potential sources of contamination and implement control measures against these. In order to minimize the risk of salmonellosis from the consumption of low-moisture foods, it is crucial for manufacturers to apply best efforts to control various risk factors that may lead to cross-contamination.

Chapter 4 covers the persistence of *Salmonella* and other bacterial pathogens in low-moisture foods. It is well recognized that *Salmonella* can survive for long periods in low-moisture food products. Although some die-off occurs in low-moisture foods during storage, the degree of reduction depends on factors such as storage temperature and product formulation. To prevent growth of *Salmonella*, it is important to keep the available water below the growth threshold, so that cells that survive the initial osmotic shock phase will be unable to multiply and will eventually die off due to starvation.

Chapter 5 takes the reader through the best industry practices to control *Salmonella* and provides information on current guidelines and product specific organizations that have developed such guidance and protocols, including the Industry Guidelines from Almonds Board of CA, American Peanut Council, Grocery Manufacturers Association (GMA) Industry Handbook for Safe Processing of Nuts, and GMA Guidelines on Control of *Salmonella*. A great deal of attention was placed on the prevention of ingress or the spreading of *Salmonella* in the processing facilities, enhancing the stringency of hygiene practices and controls in the primary *Salmonella* control area. Applying hygienic design principles to building and equipment design, preventing or minimizing growth of *Salmonella* within the facility, establishing raw materials/ingredients control programs, validation control measures to inactivate *Salmonella*, and establishing procedures for verification of *Salmonella* controls and corrective actions will also be explored in detail. Sanitation practices will be reviewed and discussed, including dry and wet cleaning and verification and validation methods.

Chapter 6 describes heat resistance of *Salmonella* and other bacterial pathogens. Due to its enhanced thermal residence in dry environments, *Salmonella* can survive for long periods in low-moisture food products. The heat resistance of *Salmonella* is affected by many factors, mostly by strain and serotypes tested, previous growth and storage conditions, the physical and chemical food
composition, test media and the media used to recover heat damaged cells. *Salmonella* heat resistance generally increases with reducing moisture/water activity and this fact must be taken into account as a significant risk. Finally, from a quality standpoint, many spoilage organisms have been associated with low moisture products and references are provided to aid the processor in finding the appropriate information concerning target organisms for specific low-moisture foods.

In Chapter 7, a variety of foods is discussed and multiple processing platforms evaluated from the standpoint of process validation to reach the appropriate food safety objective (FSO) for the finished/packaged product prior to consumption. Validation of control measures is an essential component of a properly implemented hazard analysis critical control point (HACCP) program and a requirement of the Food Safety Modernization Act. This chapter provides guidelines and examples for required elements of validation studies, including: (i) formation of validation team; (ii) setting objectives and identifying the specific product and process parameters (control measures) to be validated; (iii) defining the validation approach; (iv) conducting microbiological studies, as needed; (v) defining desirable attributes for selecting *Salmonella* surrogates and examples of surrogates that have been used for validation of pasteurization processes for LMF; and (vi) a final validation report detailing procedures and results and providing the justification for the selected log reduction of the target microorganism in LMF. Although this chapter focuses on validation studies for *Salmonella*, many principles may be applied to validation studies of other bacterial pathogens in LMF.

Testing low-moisture food products for *Salmonella* is discussed in Chapter 8. Testing may be necessary for a variety of reasons, some of which might include regulatory requirements, internal line validation triggers, identifying vulnerabilities of the food, or determining log reduction potential. How food is sampled and the test methods selected play a direct role in test results and are the key to ensuring the results reflect the processors needs accurately. Criteria such as how the product is used and who consumes the food are examples of a multivariable evaluation that provides clarity to the sampling plan design. The sampling plan, in conjunction with characteristics of the food such as shelf life, stability or composition, will lead to selecting the appropriate test methods, some of which are specialized for collecting accurate information in low-moisture foods. A clear understanding of the construction of a sampling plan, options for test methods, and the sampling and testing challenges faced when evaluating different compositions within low-moisture foods will ensure optimum results and minimize errors.

Chapter 9 explores techniques to determine heat resistance of low-moisture foods through the use of thermal death time (TDT) studies and the determination of thermal inactivation kinetic values (e.g., D- and z-values). TDT studies involve the inoculation of microbial cells onto a food matrix followed by heating the samples at various time/temperature combinations. After heat treatment, the number of surviving cells can be determined analytically and heat inactivation values calculated mathematically. While this may seem like a simple approach, there are many considerations and challenges involved in executing this type of
work in a meaningful manner for LMF. Among the most difficult challenges is to
inoculate the LMF with microbial cells without changing the water activity or
other intrinsic properties of the product, affecting the viability of the microbial
cells studied or jeopardizing the safety of the analyst. Furthermore, there are
many additional considerations in designing the experiment such as selecting the
heating method, heating container, inoculum level, bacterial strain(s), product
preparation procedures, method of recovering the surviving cells, mathematical
methods used to calculate the D and z values, and so on. Since these studies are
complex and costly it is impractical to conduct TDT studies for every single LMF
formulation in the market. Therefore, a common challenge presented to the food
microbiologist is to select a LMF product on which to conduct TDT studies
which serves as a conservative representation of a given category. The results
obtained for this product are then adopted as appropriate (“safe-harbor process”)
for that category. This chapter illustrates the concept of TDT studies and
addresses the challenges and considerations mentioned above.

Chapter 10 provides a comprehensive modeling approach to describe vari-
ous aspects of pathogen detection and management. This chapter gives the
reader an introduction to modeling the survival of microorganisms in low
water activity foods, serving as a framework on key aspects to consider when
developing a predictive model. Issues such as the heterogeneous distribution
of microorganisms in foods, how to best select a sampling plan, and how to
account for variability and uncertainty are discussed. The chapter follows with
an overview on the factors to take into account when choosing available non-
linear versus linear inactivation models. A step-by-step approach to develop a
predictive model is outlined, highlighting the importance of model validation.
The chapter then introduces the reader to the use of predictive models in risk
assessment and setting performance standards including the transformation
of modeling into concepts in food manufacturing practice. An up to date
account on available modeling programs to develop predictive models and
determine risk, is provided followed by a case study showing the use of quan-
titative microbiology tools in modeling persistence of Salmonella in low water
activity foods.

The final chapter (Chapter 11) explores spoilage organisms associated with
low-moisture products, including halophilic bacteria, osmophilic yeasts and
xerophilic molds. Some of these spoilage microorganisms can survive the drying
process and grow in low water activity products. Several species of xerophilic
spoilage molds, such as Aspergillus chevalieri, Chrysosporium fastidium, and
several Eurotium species and osmophilic yeasts, including Zygosaccharomyces
rouxii, can grow at a_w 0.60–0.70, whereas the halophilic bacteria and halophilic
molds can grow at a_w as low as 0.75 and 0.70, respectively. Some of the spoilage
organisms are relatively heat-resistant. The heat resistance of spoilage organ-
isms is reviewed and discussed for this product category. Low-moisture ingredi-
ents susceptible to microbiological spoilage should have adequate controls in
place to prevent spoilage. Prevention of cross-contamination of spoilage micro-
organisms from low-moisture foods that are microbiologically stable should be
a goal of the food safety system (e.g., GMPs, HACCP systems, and food safety
plans (FSPs)).
1.7 Goal of the Book

Due to the increased attention placed on low-moisture foods in recent years, combined with the growing body of knowledge that shows an increased thermal resistance of certain pathogens (e.g., *Salmonella*) in these foods, it is important that appropriate resources are compiled. This book offers industry a comprehensive reference and how-to solution for managing food safety for low-moisture, higher risk foods. With a preventive control approach mandated by the Food Safety Modernization Act and the specific regulations that will result, it is important to provide a practical book that brings the current body of knowledge together into a functional resource.

1.8 How to Use the Book

The food manufacturing industry has undergone significant changes in its approach to product safety. With the continued development of HACCP and the new preventive controls approach outlined in the Food Safety Modernization Act, the concept of just reacting to a food safety hazard in a finished food product or ingredient is not an acceptable option. The good news is “tools are available to the processor” to navigate these waters. Prevalence data on specific pathogens and their association with certain products and ingredients give the industry a place to start. Knowing the prevalence of these pathogens, it becomes more of a defined approach to look for potential sources and risk factors (Chapter 3), both on incoming ingredients and internal systems. Knowing the persistence of these pathogens in low-moisture foods (Chapter 4) and the appropriate industry practices to control them in the facility (Chapter 5) help the processor understand the scope of the food safety issue and how it should be addressed in their hazard analysis and subsequent controls. Using the latest prevalence information and understanding the systems and constraints of the manufacturing environment allow the processor to conduct a meaningful hazard analysis that helps define the risk to a particular product/process and to implement the appropriate mitigation strategy. The corresponding steps in this strategy start with determining the likelihood of pathogens being present in the low-moisture food, followed by gaining a better understanding of the kinetics/resistance of those specific pathogens in the actual product being produced (e.g., heat resistance of the pathogens – Chapters 6 and 9). Using the appropriate techniques and heat resistance data, the processor can then validate (Chapter 7) the process they plan to use through applying data from existing peer-reviewed studies or conducting their own product-specific studies. It is also advisable to model the persistence of specific pathogens (Chapter 10) in the product, taking into consideration the vectors and kinetics of the pathogen/product/process system covered in previous chapters. This modeling approach can be used throughout the process and gives the processor or researcher a head start in determining the scale and scope of hazard analysis and validation procedures. Finally, from a product quality standpoint, Chapter 11 discusses spoilage organisms associated with low-moisture foods and strategies to control them.
References

Introduction and Overview

