INDEX

absorptive capacity, 65
acquired properties of firms, 63–6
activity approach to measuring innovation, 58
adverse selection, 18–20
agglomeration studies, 105–7
advanced producer services
agglomeration in service sector, 113–14
agglomeration economics, 107–9
asset bubbles, 22
bank regulation, 21–2
Barcelona target, 45
Barth’s model, 12–14
bathtub model, 110–11
Bernanke and Bertler model, 16, 21
Bertrand competition, 10, 11
Bogota Manual, 59
bubbles, 21
US housing, 22
Business Characteristics Survey (BCS), 60
business cycle
models, 6
formal model, 7–9
Schumpeter’s theory, 6–7
business expenditure on R&D (BERD), 31–2, 42–3
business make-up, 64
Business Operations Survey (BOS), 60
business service (BS), 80
backward and forward linkages, 91–5
spatial agglomeration, 88
EU regional comparative advantage, 90
share on inputs/outputs, 91
urbanization externalities and knowledge density, 88–91
structural change, 84
intermediate demand, 86–8
service growth, 85–6
Caballero and Hammoor model, 8–9, 20, 21
capital good, 14–15
China
innovation dynamics, 164, 170, 171–2
regional innovation systems (RIS), 178, 192–3
evolving governance and innovation, 178–81
governance in Shenzhen and Dongguan, 186–92
innovation pattern in Shenzhen and Dongguan, 181–6
classical tradition on understanding services, 85
clustering regions, 132, 141–2
empirical approach results, 146
scatter plot of European regions, 147
codified knowledge, 113, 133–4
balanced mix, 134–7
Coleman boat model, 110–11
Community Innovation Survey (CIS), 59
cumulative analysis of innovation dynamics of countries, 159–60,
172
capital good, 14–15
China
innovation dynamics, 164, 170, 171–2
regional innovation systems (RIS), 178, 192–3
evolving governance and innovation, 178–81
governance in Shenzhen and Dongguan, 186–92
innovation pattern in Shenzhen and Dongguan, 181–6
classical tradition on understanding services, 85
clustering regions, 132, 141–2
empirical approach results, 146
scatter plot of European regions, 147
codified knowledge, 113, 133–4
balanced mix, 134–7
Coleman boat model, 110–11
Community Innovation Survey (CIS), 59
cumulative analysis of innovation dynamics of countries, 159–60,
172
capital good, 14–15
China
innovation dynamics, 164, 170, 171–2
regional innovation systems (RIS), 178, 192–3
evolving governance and innovation, 178–81
governance in Shenzhen and Dongguan, 186–92
innovation pattern in Shenzhen and Dongguan, 181–6
classical tradition on understanding services, 85
clustering regions, 132, 141–2
empirical approach results, 146
scatter plot of European regions, 147
codified knowledge, 113, 133–4
balanced mix, 134–7
Coleman boat model, 110–11
Community Innovation Survey (CIS), 59
cumulative analysis of innovation dynamics of countries, 159–60,
172
capital good, 14–15
China
innovation dynamics, 164, 170, 171–2
regional innovation systems (RIS), 178, 192–3
evolving governance and innovation, 178–81
governance in Shenzhen and Dongguan, 186–92
innovation pattern in Shenzhen and Dongguan, 181–6
international traditional on understanding services, 85
clustering regions, 132, 141–2
empirical approach results, 146
scatter plot of European regions, 147
codified knowledge, 113, 133–4
balanced mix, 134–7
Coleman boat model, 110–11
Community Innovation Survey (CIS), 59
cumulative analysis of innovation dynamics of countries, 159–60,
172
capital good, 14–15
China
innovation dynamics, 164, 170, 171–2
regional innovation systems (RIS), 178, 192–3
evolving governance and innovation, 178–81
governance in Shenzhen and Dongguan, 186–92
innovation pattern in Shenzhen and Dongguan, 181–6
international traditional on understanding services, 85
clustering regions, 132, 141–2
empirical approach results, 146
scatter plot of European regions, 147
codified knowledge, 113, 133–4
balanced mix, 134–7
Coleman boat model, 110–11
Community Innovation Survey (CIS), 59
cumulative analysis of innovation dynamics of countries, 159–60,
172
capital good, 14–15
China
innovation dynamics, 164, 170, 171–2
regional innovation systems (RIS), 178, 192–3
evolving governance and innovation, 178–81
governance in Shenzhen and Dongguan, 186–92
innovation pattern in Shenzhen and Dongguan, 181–6
international traditional on understanding services, 85
clustering regions, 132, 141–2
empirical approach results, 146
scatter plot of European regions, 147
codified knowledge, 113, 133–4
balanced mix, 134–7
Coleman boat model, 110–11
Community Innovation Survey (CIS), 59
cumulative analysis of innovation dynamics of countries, 159–60,
172
localized knowledge flows, 162–3
public policies, 163–4
systems of innovations conditions, 161–2
evidence, 165–6
territorial determinants of innovation emerging countries, 169–72
EU, 166–8
USA, 168–9
competency trap, 181
cost disease argument, 37–8, 85–6
country effects, 89
creative destruction, 54
models, 6
formal model, 7–9
Schumpeter’s theory, 6–7
cross-classified probit models, 117, 119–20
debt to equity ratio, 64
decreasing absolute risk aversion (DARA), 17–18
demographic effects, 41
dependent variables in surveys, 61–2
direct measures, 58
ecological efficiency, 106
employment subsidies, 20
entrepreneurship
benefits to economy, 5
definition, 5–6
good entrepreneurs, 15–16
poor entrepreneurs, 15–16
productivity gap between EU and USA, 42
taxation, 20, 21
European Innovation Scoreboard, 59
European Manufacturing Survey (EMS), 60
explicit knowledge, 113, 133–4
balanced mix, 134–7
externalists, 81–2
final good, 14–15
financial capability, 64
Financial, Communication and Business (FCB) services, 87–8
firm age, 65
firm behaviour and strategy, 66–9
firms
agglomeration studies, 105–7
data and variables, 121–2
modeling results, 122–4
nonlinear heterogeneity, 120–1
Francios and Lloyd Ellis model, 11–12, 20–1
Frascati Manual, 42, 69
198

INDEX

GDP per hour worked for EU and USA, 27, 28–9
general practice activities of firms, 66–7
general purpose technology (GPT), 7, 35
innovation, 55
German Manufacturing Survey, 60
Ghatak’s model, 19–20, 21
Gibbs sampling, 117
global network, 163
globalizing regions, 132, 141–2
empirical approach results, 146–8
good entrepreneurs, 15–16
Herfindahl-type indices, 69–70
implicit knowledge, 113, 133–4
independent variables in surveys, 62–6
India, innovation dynamics, 170, 171
indirect measures, 58
industrial atmosphere, 88, 133
information and communication technologies (ICTs), 25–6
boost in 1990s, 29
diffusion in EU and USA, 33–4
New Economy effect, 35–7
retail sector, 39
service sector, 37–8
innovation, 55–6
R&D gap between EU and USA, 31–3
inherent properties of firms, 63–6
innovation, 53–4, 72
definitions, 53–4
determinants, 63, 67, 70
evolving understanding, 54–8
firm behaviour and strategy, 67
firm characteristics, 63
firm environment, 70
link with R&D investment, 160–1
measures, 58
dependent variables, 61–2
firm behaviour and strategy, 66–9
firm overall environment, 69–72
independent variables, 62–6
survey-related research, 61
world surveys, 59–61
innovation and implementation cycles, 10–14
innovation inputs, 170
intermediate demand, 86–8
internalists, 81–2
intraclass correlation (ICC), 113
intrinsic effect, 25, 31
invention contrasted with innovation, 10
Investment Climate Survey, 59
job creation, 9
job destruction, 9
just-in-time (JIT) systems, 55
knowledge density, 88–91
knowledge dynamics, 82, 88
backward and forward linkages, 91–5
urbanization externalities and knowledge density, 88–91
knowledge economy, 79–80, 95–6
see also New Economy
knowledge, technology and structural change, 80–1
knowledge and technology, 81–3
technology and structural change, 83–4
structural change and BS, 84
intermediate demand, 86–8
service growth, 85–6
knowledge environment, 95
knowledge gatekeepers, 140–1
Knowledge Intensive Business Services (KIBS), 84
backward and forward linkages, 91–5
growth, 86–8
knowledge networking regions, 133, 141–2
empirical approach results, 149
evolving towards, 138–9
formal pattern of knowledge exchange, 140–1
informal pattern of knowledge diffusion, 139–40
simple typology, 141–2
knowledge production function (KPF) frameworks, 137
labour market productivity gap between EU and USA, 40–1
Lisbon Agenda, 45
local buzz, 133, 134, 141
localization economies, 108
localized knowledge flows, 162–3
low-and-medium technology (LMT) firms, 65
management productivity gap between EU and USA, 41–2
market of knowledge, 87
market turbulence, 31
Markov Chain Monte Carlo algorithm, 117
Marshall, Alfred, 107–8
mass production under asymmetric information models, 14
adverse selection, 18–20
costly state verification, 14–16
moral hazard, 17–18
men of speculation, 85
metropolitan statistical area (MSA), 168–9
minimum wage policies, 20
moral hazard, 17–18
Moran scatterplots, 92–3
multilevel approaches in economic growth studies, 124–5
advanced producer services
adding predictor variables and cross-level interactions, 115–16
agglomeration economies, 118–19
agglomeration in service sector, 113–14
data and variables, 116–17
mixed hierarchical and cross-classified model, 114–15
modeling strategy, 117–18
varying effects of agglomeration, 119–20
agglomeration studies, 103–7
macro to micro link
agglomeration economics, 107–9
agglomeration in organization studies, 109–10
multilevel model framework, 111–13
from macro to micro, 110–11
organization and productivity of firms
data and variables, 121–2
modeling results, 122–4
nonlinear heterogeneity, 120–1
multinational enterprises (MNEs), 170
National Survey of R&D, 59
neo-industrialist pessimists, 80, 85
New Economy, 25–6
ICT diffusion, 35–7
noninteractive regions, 132, 141–2
empirical approach results, 148–9
organizing principles, 110
organization studies in agglomeration, 109–10
Oslo Manual, 59, 60
Pavitt, 55–6
personal wealth, 15–16
poor entrepreneurs, 15–16
Porter, 56
INDEX

post-industrialist optimists, 80, 85
prescriptive knowledge, 82
probit models, 117–18
product market productivity gap between EU and USA, 39–40
productivity gap between EU and USA, 25–6, 44–5
GDP per hour worked, 27
historical evolution, 26–30
ICT diffusion, 33–9
measurement issues, 42–4
other issues, 39–42
R&D–ICT intensity gap, 31–3
propositional knowledge, 82
public services, 85
R&D
as a measure of innovation, 58, 68–9
ICT gap between EU and USA, 31–3
spending increase during booms
Barlevy’s model, 12–14
Rampini’s model, 17–18, 21
random intercept probit models, 117–18
regional innovation systems (RIS), 132, 136, 161, 177–8, 192–3
evolved governance and innovation, 178–81
governance in Dongguan, China
compared with Shenzhen, 192
since the Opening Policy, 190
initial phase of industrialization (1980s), 190–90
turning point (1990s), 190–2

governance in Shenzhen and Dongguan, China, 186–8
governance in Shenzhen, China
compared with Dongguan, 192
since the Opening Policy, 186
initial phase of industrialization (1980s), 186–7
turning point (1990s), 189–90
innovation pattern in Shenzhen and Dongguan, China, 181–3
empirical results of innovation and interactive learning, 183–6
survey design of a comparative study, 183
regional typology, 131–3
empirical approach, 142–3
empirical approach results, 146
clustering regions, 146
globalizing regions, 146–8
knowledge networking regions, 149
map of regions, 148
noninteractive regions, 148–9
robustness analysis, 149
empirical approach
data sources, 144–6
variable construction, 143–4
policy implications, 149–51
theoretical and empirical literature review
balanced mix of knowledge flows, 134–7
external knowledge piping, 137–8
physical space and knowledge flows, 133–4
towards knowledge networking region, 138–9
formal pattern of knowledge exchange, 140–1
informal pattern of knowledge diffusion, 139–40
simple typology, 141–2

Regions and Innovation Policy, 71–2
regression models, 112
retail sector ICT diffusion, 39

savings, 15–16
Schumpeter, Joseph, 6
theory of business cycles and creative destruction, 6–7
sectoral composition effect, 31
service sector ICT diffusion, 37–8
Shleifer’s model, 10–12, 20
small and medium enterprises (SMEs) R&D, 32
Smith, Adam, 85–6
social filter indices, 162
social network analysis (SNA), 144
Spanish Survey of Entrepreneurial Strategies (ESEE), 59
Special Economic Zone (SEZ), 178
stock of knowledge, 65
structural burden, 86
structural change, 80–1
business service (BS), 84
intermediate demand, 86–8
service growth, 85–6
technology, 83–4
structural effect, 25
Survey of Commercialization of Innovation, 59
Survey of Industrial Research and Development, 59
Survey on Organizational Changes and Computerization, 59
surveys of innovation, 72
dependent variables, 61–2
firm behaviour and strategy, 66–9
firm overall environment, 69–72
independent variables, 62–6
research, 61
world, 59–61

tacit knowledge, 113, 133–4
balanced mix, 134–7
Taiwanese Technological Innovation Survey (TTIS), 62
taxation on entrepreneurship, 20, 21
techne, 80, 82
technological strategy of firms, 69
technology, 80–1
knowledge and technology, 81–3
structural change, 83–4
territorial determinants of innovation
emerging countries, 169–72
EU, 166–8
USA, 168–9
theoretical background, 5–6, 20–2
business cycle, 6
formal model, 7–9
Schumpeter’s theory, 6–7
creative destruction, 6
formal model, 7–9
Schumpeter’s theory, 6–7
innovation and implementation cycles, 10–14
mass production under asymmetric information models, 14
adverse selection, 18–20
costly state verification, 14–16
moral hazard, 17–18
total factor productivity (TFP), 27–8, 32
ICT diffusion, 35
labour markets, 40–1
product markets, 39–40
transatlantic productivity gap, 25–6, 44–5
historical evolution, 26
different parts of Europe, 29–30
GDP per hour worked, 27
whole EU, 26–9
ICT diffusion, 33–4
New Economy effect, 35–7
retail sector, 39
service sector, 37–8
measurement issues, 42–4
other issues, 39
entrepreneurial culture, 42
labour markets, 40–1
organizational and managerial issues, 41–2
product markets, 39–40
R&D–ICT intensity gap, 31–3
unproductive hands, 85
urbanization economies, 108–9
urbanization externalities, 88–91
USA
productivity gap with EU, 25–6, 44–5
historical evolution, 26–30
ICT diffusion, 33–9
measurement issues, 42–4

other issues, 39–42
R&D–ICT intensity gap, 31–3
territorial determinants of innovation, 168–9

variance partition coefficient (VPC), 115, 117
variation of regression coefficients, 112

worker wages and return to entrepreneurs, 20