CONTENTS

PREFACE xv
ACKNOWLEDGMENTS xxv
LIST OF FIGURES xxvii
LIST OF TABLES xxxiii
ACRONYMS xxxix

1. LOGIC FUNCTIONS 1

1.1 Discrete Functions 2
1.2 Tabular Representations of Discrete Functions 3
1.3 Functional Expressions 6
1.4 Decision Diagrams for Discrete Functions 10
1.4.1 Decision Trees 11
1.4.2 Decision Diagrams 13
1.4.3 Decision Diagrams for Multiple-Valued Functions 16
1.5 Spectral Representations of Logic Functions 16
1.6 Fixed-polarity Reed–Muller Expressions of Logic Functions 23
1.7 Kronecker Expressions of Logic Functions 25
1.8 Circuit Implementation of Logic Functions 27
2. SPECTRAL TRANSFORMS FOR LOGIC FUNCTIONS 31

2.1 Algebraic Structures for Spectral Transforms 32
2.2 Fourier Series 34
2.3 Bases for Systems of Boolean Functions 35
 2.3.1 Basis Functions 35
 2.3.2 Walsh Functions 36
 2.3.2.1 Ordering of Walsh Functions 40
 2.3.2.2 Properties of Walsh Functions 43
 2.3.2.3 Hardware Implementations of Walsh Functions 47
 2.3.3 Haar Functions 50
 2.3.3.1 Ordering of Haar Functions 51
 2.3.3.2 Properties of Haar Functions 55
 2.3.3.3 Hardware Implementation of Haar Functions 56
 2.3.3.4 Hardware Implementation of the Inverse Haar Transform 58
2.4 Walsh Related Transforms 60
 2.4.1 Arithmetic Transform 61
 2.4.2 Arithmetic Expressions from Walsh Expansions 62
2.5 Bases for Systems of Multiple-Valued Functions 65
 2.5.1 Vilenkin–Chrestenson Functions and Their Properties 66
 2.5.2 Generalized Haar Functions 70
2.6 Properties of Discrete Walsh and Vilenkin–Chrestenson Transforms 71
2.7 Autocorrelation and Cross-Correlation Functions 79
 2.7.1 Definitions of Autocorrelation and Cross-Correlation Functions 79
 2.7.2 Relationships to the Walsh and Vilenkin–Chrestenson Transforms, the Wiener-Khinchin Theorem 80
 2.7.3 Properties of Correlation Functions 82
 2.7.4 Generalized Autocorrelation Functions 84
2.8 Harmonic Analysis over an Arbitrary Finite Abelian Group 85
 2.8.1 Definition and Properties of the Fourier Transform on Finite Abelian Groups 85
 2.8.2 Construction of Group Characters 89
 2.8.3 Fourier–Galois Transforms 94
2.9 Fourier Transform on Finite Non–Abelian Groups 97
 2.9.1 Representation of Finite Groups 98
 2.9.2 Fourier Transform on Finite Non-Abelian Groups 101
3. CALCULATION OF SPECTRAL TRANSFORMS

3.1 Calculation of Walsh Spectra

3.1.1 Matrix Interpretation of the Fast Walsh Transform

3.1.2 Decision Diagram Methods for Calculation of Spectral Transforms

3.1.3 Calculation of the Walsh Spectrum Through BDD

3.2 Calculation of the Haar Spectrum

3.2.1 FFT-Like Algorithms for the Haar Transform

3.2.2 Matrix Interpretation of the Fast Haar Transform

3.2.3 Calculation of the Haar Spectrum Through BDD

3.3 Calculation of the Vilenkin–Chrestenson Spectrum

3.3.1 Matrix Interpretation of the Fast Vilenkin–Chrestenson Transform

3.3.2 Calculation of the Vilenkin–Chrestenson Transform Through Decision Diagrams

3.4 Calculation of the Generalized Haar Spectrum

3.5 Calculation of Autocorrelation Functions

3.5.1 Matrix Notation for the Wiener–Khinchin Theorem

3.5.2 Wiener–Khinchin Theorem Over Decision Diagrams

3.5.3 In-place Calculation of Autocorrelation Coefficients by Decision Diagrams

4. SPECTRAL METHODS IN OPTIMIZATION OF DECISION DIAGRAMS

4.1 Reduction of Sizes of Decision Diagrams

4.1.1 K-Procedure for Reduction of Sizes of Decision Diagrams

4.1.2 Properties of the K-Procedure

4.2 Construction of Linearly Transformed Binary Decision Diagrams

4.2.1 Procedure for Construction of Linearly Transformed Binary Decision Diagrams

4.2.2 Modified K-Procedure

4.2.3 Computing Autocorrelation by Symbolic Manipulations

4.2.4 Experimental Results on the Complexity of Linearly Transformed Binary Decision Diagrams

4.3 Construction of Linearly Transformed Planar BDD

4.3.1 Planar Decision Diagrams

4.3.2 Construction of Planar LT-BDD by Walsh Coefficients

4.3.3 Upper Bounds on the Number of Nodes in Planar BDDs
4.3.4 Experimental Results for Complexity of Planar LT-BDDs

4.4 Spectral Interpretation of Decision Diagrams
4.4.1 Haar Spectral Transform Decision Diagrams
4.4.2 Haar Transform Related Decision Diagrams

5. ANALYSIS AND OPTIMIZATION OF LOGIC FUNCTIONS

5.1 Spectral Analysis of Boolean Functions
5.1.1 Linear Functions
5.1.2 Self-Dual and Anti-Self-Dual Functions
5.1.3 Partially Self-Dual and Partially Anti-Self-Dual Functions
5.1.4 Quadratic Forms, Functions with Flat Autocorrelation

5.2 Analysis and Synthesis of Threshold Element Networks
5.2.1 Threshold Elements
5.2.2 Identification of Single Threshold Functions

5.3 Complexity of Logic Functions
5.3.1 Definition of Complexity of Systems of Switching Functions
5.3.2 Complexity and the Number of Pairs of Neighboring Minterms
5.3.3 Complexity Criteria for Multiple-Valued Functions

5.4 Serial Decomposition of Systems of Switching Functions
5.4.1 Spectral Methods and Complexity
5.4.2 Linearization Relative to the Number of Essential Variables
5.4.3 Linearization Relative to the Entropy-Based Complexity Criteria
5.4.4 Linearization Relative to the Numbers of Neighboring Pairs of Minterms
5.4.5 Classification of Switching Functions by Linearization
5.4.6 Linearization of Multiple-Valued Functions Relative to the Number of Essential Variables
5.4.7 Linearization for Multiple-Valued Functions Relative to the Entropy-Based Complexity Criteria

5.5 Parallel Decomposition of Systems of Switching Functions
5.5.1 Polynomial Approximation of Completely Specified Functions
5.5.2 Additive Approximation Procedure
5.5.3 Complexity Analysis of Polynomial Approximations 250
5.5.4 Approximation Methods for Multiple-Valued Functions 251
5.5.5 Estimation of the Number of Nonzero Coefficients 255

6. SPECTRAL METHODS IN SYNTHESIS OF LOGIC NETWORKS 261

6.1 Spectral Methods of Synthesis of Combinatorial Devices 262
6.1.1 Spectral Representations of Systems of Logic Functions 262
6.1.2 Spectral Methods for the Design of Combinatorial Devices 264
6.1.3 Asymptotically Optimal Implementation of Systems of Linear Functions 266
6.1.4 Walsh and Vilenkin–Chrestenson Bases for the Design of Combinatorial Networks 270
6.1.5 Linear Transforms of Variables in Haar Expressions 272
6.1.6 Synthesis with Haar Functions 274
 6.1.6.1 Minimization of the Number of Nonzero Haar Coefficients 274
 6.1.6.2 Determination of Optimal Linear Transform of Variables 275
 6.1.6.3 Efficiency of the Linearization Method 283

6.2 Spectral Methods for Synthesis of Incompletely Specified Functions 286
6.2.1 Synthesis of Incompletely Specified Switching Functions 286
6.2.2 Synthesis of Incompletely Specified Functions by Haar Expressions 286

6.3 Spectral Methods of Synthesis of Multiple-Valued Functions 292
6.3.1 Multiple-Valued Functions 292
6.3.2 Network Implementations of Multiple-Valued Functions 292
6.3.3 Completion of Multiple-Valued Functions 293
6.3.4 Complexity of Linear Multiple-Valued Networks 293
6.3.5 Minimization of Numbers of Nonzero Coefficients in the Generalized Haar Spectrum for Multiple-Valued Functions 295

6.4 Spectral Synthesis of Digital Functions and Sequences Generators 298
6.4.1 Function Generators 298
6.4.2 Design Criteria for Digital Function Generators 299
6.4.3 Hardware Complexity of Digital Function Generators 300
6.4.4 Bounds for the Number of Coefficients in Walsh Expansions of Analytical Functions 302
6.4.5 Implementation of Switching Functions Represented by Haar Series

303

6.4.6 Spectral Methods for Synthesis of Sequence Generators

304

7. SPECTRAL METHODS OF SYNTHESIS OF SEQUENTIAL MACHINES

308

7.1 Realization of Finite Automata by Spectral Methods

308

7.1.1 Finite Structural Automata

308

7.1.2 Spectral Implementation of Excitation Functions

311

7.2 Assignment of States and Inputs for Completely Specified Automata

313

7.2.1 Optimization of the Assignments for Implementation of the Combinational Part by Using the Haar Basis

315

7.2.2 Minimization of the Number of Highest Order Nonzero Coefficients

320

7.2.3 Minimization of the Number of Lowest Order Nonzero Coefficients

322

7.3 State Assignment for Incompletely Specified Automata

333

7.3.1 Minimization of Higher Order Nonzero Coefficients in Representation of Incompletely Specified Automata

333

7.3.2 Minimization of Lower Order Nonzero Coefficients in Spectral Representation of Incompletely Specified Automata

338

7.4 Some Special Cases of the Assignment Problem

342

7.4.1 Preliminary Remarks

342

7.4.2 Autonomous Automata

342

7.4.3 Assignment Problem for Automata with Fixed Encoding of Inputs or Internal States

344

8. HARDWARE IMPLEMENTATION OF SPECTRAL METHODS

348

8.1 Spectral Methods of Synthesis with ROM

349

8.2 Serial Implementation of Spectral Methods

349

8.3 Sequential Haar Networks

350

8.4 Complexity of Serial Realization by Haar Series

352

8.4.1 Optimization of Sequential Spectral Networks

356

8.5 Parallel Realization of Spectral Methods of Synthesis

358

8.6 Complexity of Parallel Realization

359

8.7 Realization by Expansions over Finite Fields

362
9. SPECTRAL METHODS OF ANALYSIS AND SYNTHESIS OF RELIABLE DEVICES

9.1 Spectral Methods for Analysis of Error Correcting Capabilities
 9.1.1 Errors in Combinatorial Devices
 9.1.2 Analysis of Error-Correcting Capabilities
 9.1.3 Correction of Arithmetic Errors

9.2 Spectral Methods for Synthesis of Reliable Digital Devices
 9.2.1 Reliable Systems for Transmission and Logic Processing
 9.2.2 Correction of Single Errors
 9.2.3 Correction of Burst Errors
 9.2.4 Correction of Errors with Different Costs
 9.2.5 Correction of Multiple Errors

9.3 Correcting Capability of Sequential Machines
 9.3.1 Error Models for Finite Automata
 9.3.2 Computing an Expected Number of Corrected Errors
 9.3.2.1 Simplified Calculation of Characteristic Functions
 9.3.2.2 Calculation of Two-Dimensional Autocorrelation Functions
 9.3.3 Error-Correcting Capabilities of Linear Automata
 9.3.4 Error-Correcting Capability of Group Automata
 9.3.5 Error-Correcting Capabilities of Counting Automata

9.4 Synthesis of Fault-Tolerant Automata with Self-Error Correction
 9.4.1 Fault-Tolerant Devices
 9.4.2 Spectral Implementation of Fault-Tolerant Automata
 9.4.3 Realization of Sequential Networks with Self-Error Correction

9.5 Comparison of Spectral and Classical Methods

10. SPECTRAL METHODS FOR TESTING OF DIGITAL SYSTEMS

10.1 Testing and Diagnosis by Verification of Walsh Coefficients
 10.1.1 Fault Models
 10.1.2 Conditions for Testability
 10.1.3 Conditions for Fault Diagnosis

10.2 Functional Testing, Error Detection, and Correction by Linear Checks
 10.2.1 Introduction to Linear Checks
10.2.2 Check Complexities of Linear Checks 431
10.2.3 Spectral Methods for Construction of Optimal Linear Checks 434
10.2.4 Hardware Implementations of Linear Checks 440
10.2.5 Error-Detecting Capabilities of Linear Checks 442
10.2.6 Detection and Correction of Errors by Systems of Orthogonal Linear Checks 446
10.3 Linear Checks for Processors 455
10.4 Linear Checks for Error Detection in Polynomial Computations 457
10.5 Construction of Optimal Linear Checks for Polynomial Computations 462
10.6 Implementations and Error-Detecting Capabilities of Linear Checks 471
10.7 Testing for Numerical Computations 474
10.7.1 Linear Inequality Checks for Numerical Computations 474
10.7.2 Properties of Linear Inequality Checks 475
10.7.3 Check Complexities for Positive (Negative) Functions 479
10.8 Optimal Inequality Checks and Error-Correcting Codes 480
10.8.1 Error Detection in Computation of Numerical Functions 483
10.8.2 Estimations of the Probabilities of Error Detection for Inequality Checks 487
10.8.3 Construction of Optimal Systems of Orthogonal Inequality Checks 489
10.8.4 Error-Detecting and Error-Correcting Capabilities of Systems of Orthogonal Inequality Checks 492
10.9 Error Detection in Computer Memories by Linear Checks 498
10.9.1 Testing of Read-Only Memories 498
10.9.2 Correction of Single and Double Errors in ROMs by Two Orthogonal Equality Checks 499
10.10 Location of Errors in ROMs by Two Orthogonal Inequality Checks 504
10.11 Detection and Location of Errors in Random-Access Memories 507

11. EXAMPLES OF APPLICATIONS AND GENERALIZATIONS OF SPECTRAL METHODS ON LOGIC FUNCTIONS 512

11.1 Transforms Designed for Particular Applications 513
11.1.1 Hybrid Transforms 513
11.1.2 Hadamard–Haar Transform 514
CONTENTS xiii

11.1.3 Slant Transform 516
11.1.4 Parameterised Transforms 518
11.2 Wavelet Transforms 521
11.3 Fibonacci Transforms 523
 11.3.1 Fibonacci p-Numbers 524
 11.3.2 Fibonacci p-Codes 525
 11.3.3 Contracted Fibonacci p-Codes 525
 11.3.4 Fibonacci–Walsh Hadamard Transform 527
 11.3.5 Fibonacci-Haar Transform 528
 11.3.6 Fibonacci SOP-Expressions 528
 11.3.7 Fibonacci Reed–Muller Expressions 529
11.4 Two-Dimensional Spectral Transforms 530
 11.4.1 Two-Dimensional Discrete Cosine Transform 534
 11.4.2 Related Applications of Spectral Methods in Image Processing 536
11.5 Application of the Walsh Transform in Broadband Radio 537

APPENDIX A 541

REFERENCES 554

INDEX 593