CONTENTS

Preface xv

1 Experimentation, Errors, and Uncertainty 1

1-1 Experimentation, 2
 1-1.1 Why Is Experimentation Necessary?, 2
 1-1.2 Degree of Goodness and Uncertainty Analysis, 3
 1-1.3 Experimentation and Validation of Simulations, 5

1-2 Experimental Approach, 6
 1-2.1 Questions to Be Considered, 6
 1-2.2 Phases of Experimental Program, 7

1-3 Basic Concepts and Definitions, 8
 1-3.1 Errors and Uncertainties, 8
 1-3.2 Degree of Confidence and Uncertainty Intervals, 14
 1-3.3 Expansion of Concept from “Measurement Uncertainty” to “Experimental Uncertainty,” 15
 1-3.4 Elemental Systematic Errors and Effects of Calibration, 17
 1-3.5 Repetition and Replication, 19

1-4 Experimental Results Determined from Multiple Measured Variables, 21

1-5 Guides and Standards, 24
 1-5.1 Experimental Uncertainty Analysis, 24
 1-5.2 Validation of Simulations, 25

1-6 A Note on Nomenclature, 25
CONTENTS

References, 26
Problems, 27

2 Errors and Uncertainties in a Measured Variable 29
 2-1 Statistical Distributions, 29
 2-2 Gaussian Distribution, 33
 2-2.1 Mathematical Description, 33
 2-2.2 Confidence Intervals in Gaussian Distribution, 38
 2-3 Samples from Gaussian Parent Population, 40
 2-3.1 Statistical Parameters of Sample Population, 40
 2-3.2 Confidence Intervals in Sample Populations, 41
 2-3.3 Tolerance and Prediction Intervals in Sample Populations, 44
 2-4 Statistical Rejection of Outliers from a Sample, 47
 2-5 Uncertainty of a Measured Variable, 51
 2-5.1 Systematic Standard Uncertainty Estimation, 51
 2-5.2 Overall Uncertainty of a Measured Variable, 53
 2-5.3 Large-Sample Uncertainty of a Measured Variable, 55
 2-5.4 Uncertainty of Measured Variable by Monte Carlo Method, 57
 2-6 Summary, 58

References, 58
Problems, 58

3 Uncertainty in a Result Determined from Multiple Variables 61
 3-1 Taylor Series Method for Propagation of Uncertainties, 62
 3-1.1 TSM for Function of Multiple Variables, 62
 3-1.2 Expanded Uncertainty of a Result, 65
 3-1.3 Large-Sample Approximation for Uncertainty of a Result, 65
 3-1.4 Example of TSM Uncertainty Propagation, 68
 3-1.5 Numerical Approximation for TSM Propagation of
 Uncertainties, 70
 3-2 Monte Carlo Method for Propagation of Uncertainties, 71
 3-2.1 General Approach for MCM, 71
 3-2.2 Example of MCM Uncertainty Propagation, 74
 3-2.3 Coverage Intervals for MCM Simulations, 78
 3-2.4 Example of Determination of MCM Coverage Interval, 80

References, 81
Problems, 82
CONTENTS

4 General Uncertainty Analysis: Planning an Experiment and Application in Validation 85

4-1 Overview: Using Uncertainty Propagation in Experiments and Validation, 85
 4-1.1 Application in Experimentation, 86

4-2 General Uncertainty Analysis Using the Taylor Series Method (TSM), 86

4-3 Application to Experiment Planning (TSM), 88
 4-3.1 Simple Case, 88
 4-3.2 Special Functional Form, 92

4-4 Using TSM Uncertainty Analysis in Planning an Experiment, 96

4-5 Example: Analysis of Proposed Particulate Measuring System, 98
 4-5.1 The Problem, 98
 4-5.2 Proposed Measurement Technique and System, 98
 4-5.3 Analysis of Proposed Experiment, 99
 4-5.4 Implications of Uncertainty Analysis Results, 101
 4-5.5 Design Changes Indicated by Uncertainty Analysis, 102

4-6 Example: Analysis of Proposed Heat Transfer Experiment, 103
 4-6.1 The Problem, 103
 4-6.2 Two Proposed Experimental Techniques, 104
 4-6.3 General Uncertainty Analysis: Steady-State Technique, 106
 4-6.4 General Uncertainty Analysis: Transient Technique, 110
 4-6.5 Implications of Uncertainty Analysis Results, 112

4-7 Examples of Presentation of Results from Actual Applications, 113
 4-7.1 Results from Analysis of a Turbine Test, 113
 4-7.2 Results from Analysis of a Solar Thermal Absorber/Thruster Test, 114

4-8 Application in Validation: Estimating Uncertainty in Simulation Result due to Uncertainties in Inputs, 115

References, 116

Problems, 117

5 Detailed Uncertainty Analysis: Designing, Debugging, and Executing an Experiment 121

5-1 Using Detailed Uncertainty Analysis, 121

5-2 Detailed Uncertainty Analysis: Overview of Complete Methodology, 124
5-3 Determining Random Uncertainty of Experimental Result, 128
 5-3.1 Example: Random Uncertainty Determination in
 Compressible Flow Venturi Meter Calibration Facility, 130
 5-3.2 Example: Random Uncertainty Determination in
 Laboratory-Scale Ambient Temperature Flow Test Facility, 132
 5-3.3 Example: Random Uncertainty Determination in
 Full-Scale Rocket Engine Ground Test Facility, 135
 5-3.4 Summary, 137

5-4 Determining Systematic Uncertainty of Experimental Result, 138
 5-4.1 Systematic Uncertainty for Single Variable, 138
 5-4.1.1 Some Practical Considerations, 140
 5-4.1.2 Digital Data Acquisition Errors, 142
 5-4.1.3 Property Value Uncertainty, 143
 5-4.2 Systematic Uncertainty of a Result Including Correlated
 Systematic Error Effects, 145
 5-4.2.1 Example: Correlated Errors in a Temperature
 Difference, 147
 5-4.2.2 Example: Correlated Errors in an Average
 Velocity, 150
 5-4.3 Comparative Testing and Correlated Systematic Error
 Effects, 151
 5-4.3.1 Result Is a Difference of Test Results, 152
 5-4.3.2 Result Is a Ratio of Test Results, 156

5-5 Comprehensive Example: Sample-to-Sample Experiment, 157
 5-5.1 Problem, 157
 5-5.2 Measurement System, 158
 5-5.3 Zeroth-Order Replication-Level Analysis, 159
 5-5.4 First-Order Replication-Level Analysis, 163
 5-5.5 Nth-Order Replication-Level Analysis, 164

5-6 Comprehensive Example: Debugging and Qualification of a
 Timewise Experiment, 165
 5-6.1 Basic Ideas, 165
 5-6.2 Example, 166

5-7 Some Additional Considerations in Experiment Execution, 172
 5-7.1 Choice of Test Points: Rectification, 172
 5-7.1.1 Example of Use of Rectification, 175
 5-7.2 Choice of Test Sequence, 177
 5-7.3 Relationship to Statistical Design of Experiments, 179
 5-7.4 Use of Balance Checks, 180
 5-7.4.1 Application to a Flow System, 180
 5-7.5 Use of a Jitter Program, 183
 5-7.6 Comments on Transient Testing, 184
CONTENTS

References, 186
Problems, 187

6 Validation Of Simulations 193

6-1 Introduction to Validation Methodology, 193
6-2 Errors and Uncertainties, 194
6-3 Validation Nomenclature, 195
6-4 Validation Approach, 197
6-5 Code and Solution Verification, 200
6-6 Estimation of Validation Uncertainty u_{val}, 200
 6-6.1 Estimating u_{val} When Experimental Value D of Validation Variable Is Directly Measured (Case 1), 201
 6-6.2 Estimating u_{val} When Experimental Value D of Validation Variable Is Determined from Data Reduction Equation (Cases 2 and 3), 204
 6-6.2.1 No Measured Variables Share Identical Error Sources (Case 2), 205
 6-6.2.2 Measured Variables Share Identical Error Sources (Case 3), 208
 6-6.3 Estimating u_{val} When Experimental Value D of Validation Variable Is Determined from Data Reduction Equation That Itself Is a Model (Case 4), 209
6-7 Interpretation of Validation Results Using E and u_{val}, 213
 6-7.1 Interpretation with No Assumptions Made about Error Distributions, 213
 6-7.2 Interpretation with Assumptions Made about Error Distributions, 214
6-8 Some Practical Points, 215

References, 215

7 Data Analysis, Regression, and Reporting of Results 217

7-1 Overview of Regression Analysis and Its Uncertainty, 218
 7-1.1 Categories of Regression Uncertainty, 218
 7-1.2 Uncertainty in Coefficients, 219
 7-1.3 Uncertainty in Y from Regression Model, 219
 7-1.4 (X_i, Y_i) Variables Are Functions, 221
7-2 Least-Squares Estimation, 221
7-3 Classical Linear Regression Uncertainty: Random Uncertainty, 223
CONTENTS

7-4 Comprehensive Approach to Linear Regression Uncertainty, 225
 7-4.1 Uncertainty in Coefficients: First-Order Regression, 225
 7-4.2 Uncertainty in Y from Regression Model: First-Order Regression, 227
 7-4.3 Higher Order Regressions, 229

7-5 Reporting Regression Uncertainties, 229

7-6 Regressions in Which X and Y Are Functional Relations, 231

7-7 Examples of Determining Regressions and Their Uncertainties, 233
 7-7.1 Experimental Apparatus, 234
 7-7.2 Pressure Transducer Calibration and Uncertainty, 235
 7-7.3 Venturi Discharge Coefficient and Its Uncertainty, 238
 7-7.4 Flow Rate and Its Uncertainty in a Test, 242

7-8 Multiple Linear Regression, 246

References, 248
Problems, 248

Appendix A Useful Statistics 251

Appendix B Taylor Series Method (TSM) for Uncertainty Propagation 257
 B-1 Derivation of Uncertainty Propagation Equation, 258
 B-2 Comparison with Previous Approaches, 262
 B-2.1 Abernethy et al. Approach, 262
 B-2.2 Coleman and Steele Approach, 263
 B-2.3 ISO Guide Approach, 264
 B-2.5 NIST Approach, 265
 B-3 Additional Assumptions for Engineering Applications, 265
 B-3.1 Approximating the Coverage Factor, 266

References, 268

Appendix C Comparison of Models for Calculation of Uncertainty 271
 C-1 Monte Carlo Simulations, 271
 C-2 Simulation Results, 274

References, 281

Appendix D Shortest Coverage Interval for Monte Carlo Method 283
 Reference, 284