INDEX

- **Acetaldehyde**, 13, 75, 94–95, 106–107, 215, 221–222, 240, 254, 262, 264
- **Acidolysis**, 72, 85, 97, 108, 129
- **Acrolein**, 111
- **Acrylamide**, 11–13
- **ActiTUF**, 268
- **Activated carbon**, 258
- **Activation energy**, 23
diffusion, 221, 228. *See also* Diffusion, coefficient(s)
polyamide reactions, 128, 132, 146, 212
polyester reactions, 74, 79, 107, 110–111, 162, 216
- **Acyl chloride**, 75
- **Additive(s)**, 160, 170, 173, 252, 269
- **Adipic acid**, 23, 139, 167. *See also* Diacid
- **Ageis OX**, 269
- **Agglomeration**, 23, 25, 168, 230, 241, 248. *See also* Sintering
- **Alcohololysis**, 69, 85. *See also* Transesterification
- **Aldehide scavengers**, 252
- **Allyl**
 - alcohol, 110–111
 - ester, 110
- **Alumina**, 243
- **Amcor**, 268
- **Amide compound**, 257, 267–269
- **Amidolysis**, 129
- **Amine group(s)**, 128, 133, 140, 148, 180, 209, 229, 267
- **Amino acid(s)**, 14, 19, 130, 132, 167, 182, 184, 195
 - *p*-Aminobenzoic acid, 169, 256
 - *ε*-Aminocaproic acid, 17, 180, 210
 - 6-Aminocytosine, 256
 - 6-Amino-1-3-dimethyluracil, 256
 - 12-Amino-ß-dodecanoic acid, 180, 195
 - 6-Amino-1-methyluracil, 256
 - Aminolysis, 129
 - 6-Aminopelargonic acid, 132
 - 6-Aminoundecanoic acid, 132, 184, 195
 - 6-Aminouracil, 256
- Amorphous carbon treatment on an internal surface, 266
- **Amosorb direct food contact**, 269
- **Antimony glycolate**, 161, 164
 - (tri)acetate, 161, 166, 213
 - (tri)oxide, 160, 161, 172, 259
- **Antioxidant**, 170, 172
- **AQUAFIL**, 247, 251
- **Autocatalysis**, 132, 168
- **Baekeland**, 3
- **Bakelite**, 2–3
- **Barrier properties**, 235, 262, 266
INDEX

Biaxial orientation, 265
BindOx, 268
2,2′-bis(3,1-benzoxnin-4-one), 254
Bis(caprolactam terephthalate(s), 253
Bis(cyclic carboxylic anhydride) bisoxazine(s), 253
Bis(hydroxyethyl terephthalate, 97, 235, 246
Bisoxazoline(s), 253
BKG, 251
Blow molding, 21, 172, 265, 269
Boric acid, 20, 132, 167–168
Boundary conditions, 57, 93, 223–224
Branching, 75, 135, 160, 166, 170–172, 253
Buhler, 241, 247, 250
Bulk polymerization, 10, 76. See also Melt polymerization
Butanediol, 108, 109
Caprolactam, 201, 209, 221–222
Carbon black, 270
Carbonated soft drink, 262, 266
Carboxyl(ic) group(s), 49, 68–69, 77, 81–82, 93, 100, 103, 108, 128, 130, 145, 161, 172, 182, 200, 209, 229, 253, 255, 262
Carothers, 3–4
Catalysis, 20, 84, 103, 159
Chain ends, 14, 22, 24, 42, 46, 126. See also End group(s)
extension, 75, 160, 170, 253
growth polymerization, 4, 7, 9, 11
mobility, 42, 76, 90, 260. See also Diffusion, segmental
scission, 47, 68, 74, 95, 106–108, 254–255
Chemical vapor deposition, 267
Cluster(s), 150
Cobalt acetate, 162, 166, 173, 257
Colburn factor, 208
Color formation, 26, 160–162, 164, 166, 170, 243, 249, 254, 257, 262, 267, 270
ColorMatrix, 256, 269
Comonomer(s), 54, 148, 236, 239, 260, 264–265
Concentrate, 161, 168, 269
Copolymer, 148–152, 266
Cross-linking, 129, 135, 172
Crystal(s)
form, 131, 181, 186, 189, 191–195
monomer, 13, 16, 18, 179, 182, 191
mosaic, 183, 187
oligomer, 186, 191, 195
Crystallinity, 25, 28, 47, 54, 80, 90, 103, 106, 124, 127, 173, 191–192, 202, 204, 227, 236, 239, 264–265
Crystallizability, 236
Crystallization, 48, 80, 90, 107, 110, 180, 192, 204, 227, 238, 241, 244, 261, 264
Crystallizer, 201, 236, 238, 240, 245, 248
Cyclic oligomer, 68, 71–74, 97, 111, 166. See also Oligomer(s)
Cyclohexanediol, 236, 260, 264
Degradation, 47, 49, 109–110, 129–130, 210, 235, 237, 253
hydrolytic, 48, 238, 254, 262
thermal, 17, 28, 166, 169, 215, 244, 254
oxidative, 21
Deoxidation, 242
Depolymerization, 7–8, 16, 238, 249
Diacid, 18, 139, 150
Diamine, 17–18, 21, 130, 139–143, 180–183, 192
Diamond-like carbon, 266
Dianhydride, 171, 173, 253
Diethylbiphenyl, 260
Diethylene glycol, 68, 107, 164, 213, 215, 217, 225
3,5-Dihydroxybenzoic acid, 256
Differential scanning calorimetry, 183, 263, 264
Diffusion
by-product, 19, 24–26, 76, 80, 86, 91–96, 98, 102, 104, 126, 143, 236, 239
chemical, 22, 71, 73, 79, 89, 113
coefficient(s), 45, 80, 86, 102, 109, 138, 203, 221, 225
condensate, see Diffusion, by-product control, 20, 24, 80, 88, 93, 98, 104, 106
end-group(s), 14, 16, 24, 50, 126–127, 129, 134
Fickian, 80, 86, 93
interior, 14, 16, 24, 94, 98, 124
kinetics, 86, 93, 98, 125
rate, 28, 77, 80, 94, 100, 106, 136, 162
segmental, 22, 78, 87, 95–96, 106, 129, 138
surface, 14, 16, 24, 94, 98, 124
Diffusivity, 86, 105, 128, 207, 221, 228. See also Diffusion, coefficient(s)
Diisocyanates, 171, 253
Diphenyl terephthalate, 110, 235, 237
Diphenyl carbonate, 253
oxalate, 253
terephthalate, 253
Dipropylene glycol, 111
Direct
solid state polymerization, 10, 16, 130, 139, 179
polymerization to high-intrinsic-viscosity polymer, 252, 256
INDEX

DISCAGE®, 257
Dispersion, 161, 168
DL-α-tocopherol, 256
DuPont, 244
Dust formation, 241

Eastman, 259
EasyUp, 248
End-group(s) concentration, 24, 50, 78, 87–88, 92, 101, 127, 132, 168
inactive, 22, 24, 60, 89, 92, 97, 111, 134
mobility, 25, 78, 106, 261. See also Diffusion, end-group
molar ratio, 40, 49, 72, 94, 97, 100, 106, 109, 236
number, 47, 51, 78
reactivity, 7, 40, 47, 90, 132
residual, 50
End-to-end distance, 78, 126
Energy balance, 201, 203
Epoxy amine, 267
Equilibrium constant(s), 8, 24, 68, 83, 85–86, 128, 137, 181, 212, 216
ESPREE®, 256
Esterification, 15, 24, 48, 71, 83, 88, 92, 94, 200, 235
Ester interchange, 40, 70, 79, 214
Esterolysis, 73
Ethylene glycol, 40, 93–94, 96, 100, 102, 104–106, 161, 210, 213, 215, 217, 221–222, 234, 258
Ethylene vinyl alcohol, 268
Exchange reactions, 22, 25, 78, 79, 85, 129
 Extrusion, 21, 28, 124, 166, 169, 171, 251, 254, 256, 266, 268
Fast heating, 269
Finite difference, 222–225
Filler(s), 2, 173
Flake(s), 16, 21, 136, 249
Flory, 4, 7
kinetics, 8, 132–136, 140, 143–148
Fluoropolymer, 246
Free radical polymerization, 9, 96
Gala, 251
 Gas
carrier, 87, 104, 240, 242
flow rate, 24, 80, 87, 91, 94, 98, 104, 106, 127, 202, 208, 225
inert, 16, 21, 26–27, 98, 105, 236, 240, 242, 259
Germanium oxide, 162–164
Geometry, 24, 98, 136. See also Particle(s) size
Glaskin, 267
Glass transition temperature, 23, 68, 110, 236
Glycolysis, 48, 97
Goodyear, 2
Graphite, 270
Heat exchanger, 240
transfer coefficient(s), 206, 208–209
Hemispherical particle(s), 237, 244, 251
Hexamethylenediamine, 17–18, 21, 23, 130, 132, 139, 167. See also Diamine
Hexamethylenediammonium adipate, 17, 19–20, 23, 131, 139, 167, 181, 192
High performance polyamides, 29, 124
High pressure solid state polymerization, 16, 26, 179
Honeywell, 269
Hot fill, 265
Hydrogen bonding, 130, 181, 186, 189, 192
Hydrogenated terphenyl, 260
Hydrolysis, 41, 48, 50
Hydrotalcite, 163
Hydroxyl group(s), 49, 56, 64, 69, 79, 81, 94, 100, 161, 200, 234, 236, 254
4-Hydroxybenzoic acid, 256
Hyatt, 3
Ionomer(s), 148
Inhibition, 160
Injection molding, 21, 28, 124, 239, 246, 254, 256, 262, 266, 268
stretch blow molding, 262
IntegRex, 259
Invista, 244, 255, 268
Iron oxide(s), 270
Isophthalic acid, 247, 264
Isophthalic acid, 101–102, 150, 173, 236, 239, 247, 264
Kinetic(s)
assumptions, 41, 56, 86, 90, 93, 127
constant(s), 59, 63, 77–79, 81, 87, 101, 107
model(s), 41, 68, 91, 98, 125, 128, 132, 144, 202
polymerization, 8, 41, 56, 81, 89, 128, 139, 143, 148, 209, 222, 225
Liquid density, 216, 218
molar volume, 217–218
Lump formation, 236, 239–240, 247, 260. See also Sintering

M9, 269
Manganese diacetate, 162, 257
Manganous hypophosphite, 25, 169
Mass transfer coefficient(s), 87, 93, 104, 136, 201, 204, 206
Material balance, 90, 93, 203, 205, 222
Melting temperature, 10, 13, 18, 23, 68, 107, 110, 112, 124, 130, 164, 171, 180, 219, 236, 239, 260
Melt polymerization, 9, 23, 47, 68, 77, 94, 106, 110, 148, 163, 216, 235, 238, 244, 256, 258
Method of lines, 222–225
M&G, 248, 267–268
Microwave energy, 27
Migration, 14, 93, 129, 138. See also Diffusion
Mineral water, 171, 237, 254, 262, 264
Model molecules, 77, 86, 103
Moisture, 24, 28, 238, 247, 254, 262
Molecular weight, 10, 21, 28, 43, 58, 110, 126, 134, 162, 166, 184, 200, 202, 237
distribution, 44, 71, 73–74, 77, 129
initial, 24, 55, 124
leveling off, 41, 49, 52, 97
Monoethylbiphenyl, 260
Monohydroxyethyl terephthalate, 97, 246
Montmorillonite, 26, 173
Multilayer, 266, 268–270
Multiplet(s), 150
Nanocomposites, 2, 11, 26, 173, 269
Nanocor, 269
Naphthalene 2,6 dicarboxylic acid, 109, 164, 265
Neopentyl glycol, 264
NG3, 244, 247, 251, 255
Nitrogen purification unit, 242
Nucleation, 17–19, 26, 130, 140, 142, 173
Nylon(s), 2, 5, 21, 139. See also Polyamide(s)
Oligomer(s), 20, 22, 68, 70, 76, 85, 97, 108, 111, 129, 166, 186, 191, 235, 242, 252, 258
Orientation, 12, 18, 183, 191, 249, 265
Palladium, 242
Parallel arrangement, 181, 189, 196
Particle(s) size, 19, 24, 91–96, 98, 104, 106, 111, 124, 239, 261, 270
Pastilles, 244, 251. See also Hemispherical particle(s)
Phenyl orthocarbonate(s), 253
Phosphate(s), 161, 166–167, 169, 256
Phosphonate(s), 26, 152, 165, 169, 172, 256
Phosphonic acid, 166, 169
esters, 164, 166, 169, 172
Phosphoric acid, 20, 166, 168, 173
Phosphorous acid, 161, 167, 173
Physical vapor deposition, 267
Plasmag 12D, 267
Platinum, 242
Plenum, 246
Polyamidation, 15, 20, 23, 128, 148, 186
Polyamide(s) applications, 28, 123, 139
salt, 14, 17, 19, 130, 180, 187. See also Hexamethylenediammonium adipate
solid state polymerization, 11, 22, 26, 123, 159, 167, 179, 225
structure, 5, 181, 184
sulfonated, 148
Polyamide m(m±2x), 187
Poly(bisphenol A carbonate), 6, 14, 136
Poly(butylene terephthalate), 5, 74–75, 94, 97, 100, 107, 160, 166, 172
Polycaproamide, 5, 15, 17, 22, 29, 124, 168, 136, 145, 200, 209
Polycarbonate, 6, 172. See also Poly(bisphenol A carbonate)
Poly(dimethylene cyclohexane terephthalate), 6
Polydodecanamide, 5, 29, 184
Polyester(s) applications, 254, 256, 259, 262, 264
solid state polymerization, 11, 23, 67, 161, 225, 233
structure, 5, 105
superpolyester(s), 162
Polyethylene(s), 6
Poly(ethylene naphthalate), 6, 104, 109, 240, 265, 268
Poly(ethylene isophthalate), 265
Poly(ethylene terephthalate) bottles, 237, 249, 262
fibers, 29
recycling, 241, 249, 254
solid state polymerization, 24, 26, 104, 106, 161, 171, 199, 210, 225, 233
structure, 3, 5, 15
ultra-high-molecular-weight, 260
Poly(hexamethylene adipamide) consumption, 28
fibers, 22, 28, 135, 146–148
ionomer, 148
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>solid state polymerization</td>
<td>17, 20–26, 92, 124, 128, 132, 139, 143, 148, 169</td>
</tr>
<tr>
<td>structure</td>
<td>5, 15, 131, 181, 187</td>
</tr>
<tr>
<td>sulfonated</td>
<td>148</td>
</tr>
<tr>
<td>Poly(hexamethylene dodecanamide)</td>
<td>29</td>
</tr>
<tr>
<td>Poly(hexamethylene sebacamide)</td>
<td>5, 17, 92, 191</td>
</tr>
<tr>
<td>Poly(t-lactic acid)</td>
<td>68, 71, 85, 104, 112</td>
</tr>
<tr>
<td>Poly(methyl methacrylate)</td>
<td>2, 7</td>
</tr>
<tr>
<td>Polymerizability</td>
<td>181, 184</td>
</tr>
<tr>
<td>Polyol</td>
<td>172</td>
</tr>
<tr>
<td>Polyoxamides</td>
<td>167</td>
</tr>
<tr>
<td>Polyoxymethylene</td>
<td>13, 180</td>
</tr>
<tr>
<td>Polylpropylene</td>
<td>3, 6</td>
</tr>
<tr>
<td>PolyShield</td>
<td>268</td>
</tr>
<tr>
<td>Poly(styrene)</td>
<td>2, 6</td>
</tr>
<tr>
<td>Poly(tetramethylene adipamide)</td>
<td>5, 17, 22, 29, 124, 130, 133, 145–146</td>
</tr>
<tr>
<td>Poly(tetramethylene oxamide)</td>
<td>5, 124</td>
</tr>
<tr>
<td>Poly(trimethylene naphthalate)</td>
<td>268</td>
</tr>
<tr>
<td>Poly(tetramethylene terephthalate)</td>
<td>110, 240, 268</td>
</tr>
<tr>
<td>Polyundecanamide</td>
<td>5, 29, 180, 184</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>6, 25, 172</td>
</tr>
<tr>
<td>Poly(vinyl acetate)</td>
<td>7</td>
</tr>
<tr>
<td>Poly(vinyl alcohol)</td>
<td>6</td>
</tr>
<tr>
<td>Poly(vinyl chloride)</td>
<td>3, 6</td>
</tr>
<tr>
<td>Porosity</td>
<td>98, 100, 159, 173</td>
</tr>
<tr>
<td>Post-extrusion solid state polymerization</td>
<td>21</td>
</tr>
<tr>
<td>Powder</td>
<td>16, 21, 87, 98, 137, 208</td>
</tr>
<tr>
<td>Power-law model(s)</td>
<td>41, 91, 126, 132, 135, 140, 143, 153</td>
</tr>
<tr>
<td>Precrystallization</td>
<td>107, 239. See also Crystallization</td>
</tr>
<tr>
<td>Preextrusion solid state polymerization</td>
<td>21</td>
</tr>
<tr>
<td>Preform(s)</td>
<td>256, 262</td>
</tr>
<tr>
<td>Preheater</td>
<td>238, 241, 245–247</td>
</tr>
<tr>
<td>2-(2′ Pyridyl) ethyl phosphonic acid</td>
<td>25</td>
</tr>
<tr>
<td>Pyrolidine</td>
<td>130</td>
</tr>
<tr>
<td>Pyromellitic dianhydride</td>
<td>171, 253</td>
</tr>
<tr>
<td>Radiation-induced solid state polymerization</td>
<td>11, 180</td>
</tr>
<tr>
<td>Reaction temperature</td>
<td>13, 19, 23, 100, 127</td>
</tr>
<tr>
<td>Reactive extrusion</td>
<td>254. See also Chain, extension</td>
</tr>
<tr>
<td>Reactivity</td>
<td>39, 110, 162, 239, 253</td>
</tr>
<tr>
<td>Reactor column</td>
<td>241</td>
</tr>
<tr>
<td>continuous-stirred-tank</td>
<td>201, 203</td>
</tr>
<tr>
<td>fouling</td>
<td>168</td>
</tr>
<tr>
<td>plug-flow</td>
<td>125, 201, 247</td>
</tr>
<tr>
<td>universal polymerization</td>
<td>247</td>
</tr>
<tr>
<td>Recrystallization</td>
<td>182</td>
</tr>
<tr>
<td>Recycling</td>
<td>10, 27, 240, 249, 254, 267</td>
</tr>
<tr>
<td>Reheat blow moulding</td>
<td>269</td>
</tr>
<tr>
<td>Reiter</td>
<td>251</td>
</tr>
<tr>
<td>Remelting</td>
<td>24, 80, 106, 249, 252</td>
</tr>
<tr>
<td>Removal of by-product</td>
<td>16, 21, 24, 27, 104, 149, 261. See also Diffusion, by-product</td>
</tr>
<tr>
<td>Rhodium</td>
<td>242</td>
</tr>
<tr>
<td>Rotoformer</td>
<td>244</td>
</tr>
<tr>
<td>Sandvik</td>
<td>244</td>
</tr>
<tr>
<td>Secondary amine group(s)</td>
<td>129</td>
</tr>
<tr>
<td>Segmental mobility</td>
<td>see Diffusion, segmental Sidel, 266</td>
</tr>
<tr>
<td>Silica</td>
<td>26, 242</td>
</tr>
<tr>
<td>Sintering</td>
<td>20, 27, 110, 184, 236, 239, 240</td>
</tr>
<tr>
<td>Sodium hypophosphite</td>
<td>25</td>
</tr>
<tr>
<td>5-Sodium sulfosulfonic acid</td>
<td>148</td>
</tr>
<tr>
<td>Solid high-intrinsic-viscosity polycondensation</td>
<td>247</td>
</tr>
<tr>
<td>Solid-melt transition</td>
<td>19, 21, 131, 168</td>
</tr>
<tr>
<td>Solution polymerization</td>
<td>9, 11, 21, 23, 260</td>
</tr>
<tr>
<td>SPHERO, 251</td>
<td></td>
</tr>
<tr>
<td>Stabilizer(s)</td>
<td>148, 161, 163, 166, 168</td>
</tr>
<tr>
<td>Staggered arrangement</td>
<td>181, 180, 192</td>
</tr>
<tr>
<td>Staudinger</td>
<td>2</td>
</tr>
<tr>
<td>Step-growth polymerization</td>
<td>4, 7, 11, 180, 234</td>
</tr>
<tr>
<td>Strapping</td>
<td>249, 254</td>
</tr>
<tr>
<td>Sulfonate moieties</td>
<td>151</td>
</tr>
<tr>
<td>Sulfur</td>
<td>148, 164, 168</td>
</tr>
<tr>
<td>Swollen-state polymerization</td>
<td>260</td>
</tr>
<tr>
<td>Terephthalic acid</td>
<td>85, 109–110, 164, 218, 235, 259</td>
</tr>
<tr>
<td>Tert-butyl isophthalic acid</td>
<td>265</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>75, 86, 97, 108</td>
</tr>
<tr>
<td>Tetrakis(2,4-di-tert-butylphenyl)[1,1-biphenyl]-4,4′ diylbisphosphonite</td>
<td>163</td>
</tr>
<tr>
<td>Tetrapak</td>
<td>267</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>208, 222</td>
</tr>
<tr>
<td>Thermogravimetric analysis</td>
<td>139</td>
</tr>
<tr>
<td>Thiodialvaleric acid</td>
<td>132</td>
</tr>
<tr>
<td>Tin, 72, 112, 163</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>72, 83, 110, 160, 162, 164</td>
</tr>
<tr>
<td>Topochemical reactions</td>
<td>12, 16, 130, 180</td>
</tr>
<tr>
<td>Transesterification</td>
<td>15, 24, 48, 69, 82, 94, 103, 235</td>
</tr>
<tr>
<td>Triethylphalphenyl</td>
<td>260</td>
</tr>
<tr>
<td>Trimellitic anhydride</td>
<td>172, 253</td>
</tr>
<tr>
<td>Trioxane</td>
<td>11, 13, 180</td>
</tr>
<tr>
<td>Two-phase model</td>
<td>21, 25, 134</td>
</tr>
<tr>
<td>UOP, 240, 242, 249</td>
<td></td>
</tr>
<tr>
<td>UDHE-INVENTA-FISCHER, 256</td>
<td></td>
</tr>
</tbody>
</table>
Vacuum, 16, 21, 26, 80, 97, 104, 244, 258, 265
Valor, 268
Valspar, 268
Vapor pressure, 207, 217
Vinyl ester group(s), 40, 74, 95, 107, 111, 255, 262
Viscosity
intrinsic, 41, 50, 110, 163, 171, 173, 187, 222, 226, 235, 252, 256
leveling off, 50. See also Molecular weight, leveling off
melt, 21, 28, 164, 200, 235
relative, 26, 135, 145, 169, 222
solution, 222
Yarn(s), 28, 235, 238, 243, 250, 252, 257
Zimmer, 256
Zimmerman, 21, 134
Zwitterion, 182, 191, 195