Index

\textbf{a}
- a posteriori error estimate 273
- ABAQUS 274
- absolute error control 188
- action research 111
- activation function 90
- adaptive mesh refinement 273
- adaptive stepsize 176
- adjusted coefficient of determination 78
- algebraic equation model 40, 44
- allegory of the cave 45
- almost 311
- alternative hypothesis 61
- analysis 41
- analysis of variance 63
 - factor 64
 - factor level 64
 - fixed-effects model 64
 - homogeneity of variance 64
 - multi-way 64
 - one-way 64
 - random effects models 64
- analytical model 44
- analytical solution 154, 173
- anisotropy 239
- ANN model 87, 88
- anova 63
- \texttt{Anova.r} 64
- applanation tonometry 306
- approximation error 188
- archaeology analogy 119
- arithmetic mean 49
- arrow plots 285
- artificial intelligence 110
- artificial neural network 89
- asparagus ridge 295
- atool 188
- autonomous model 44
- autonomous ODE 146

\textbf{auxiliary variables} 25
\textbf{average deviation} 51

\textbf{b}
- backward facing step problem 298
- batch mode 277
- BDF method 180
- best model 4
- Beuys, J., XIII
- bias 88
- binomial distribution 60
- Biot number 137
- black box model 10, 35
 - example exploration of 142
- Black-Scholes equation 287
- body force 297, 304
- book software 317
- boundary condition 133, 140, 148, 149, 160
 - flatness 307
 - no displacement 307
 - no flow 248, 254
 - no slip 298
 - periodic 254, 292
 - slip 299
 - symmetry 248, 254, 298
- boundary element method 272
- boundary value problem 147, 148
 - solvability 149
- BTCS method 263

\textbf{c}
- CAD software 272
- CAELinux 306, 317
 - cd 321
 - how to use 317
 - Konsole 321
 - Live-DVD 317
 - ls 321
 - R 321

Mathematical Modeling and Simulation: Introduction for Scientists and Engineers. Kai Velten
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40758-8
Index

Calc 33, 47–49, 58, 75, 317
 – AVEDEV() 51
 – AVERAGE() 49
 – Chart menu 51
 – compared to R 48, 51
 – CORREL() 51
 – formula 49
 – Function Wizard 49
 – GEOMEAN() 50
 – graphical capabilities 51
 – introduction 49
 – MAX() 51
 – MEDIAN() 50
 – MIN() 51
 – NORMDIST 58
 – ods 49
 – RAND() 101
 – sorting data 101
 – STDEV() 50

case study approach 111

cellular automata 310

central difference approximation 259

central limit theorem 57

CFD 258, 266, 272, 275, 296

classification of mathematical models 39

classification of PDE's 244

cipping plane 279

closed form model 44

closed form solution 154, 173
 – “well-known functions” 154
 – of PDE 254
 – compared with numerical solution 169
 – vs. numerical solution 169, 172

Code-Saturne 298, 299, 317

Code_Aster 274, 276, 299, 306, 308

coefficient of determination
 – see R^2 68

coefficient of variation 51

collocation method 150

compartment model 225, 227

completely randomized design 100

complexity challenge 2

compressible flow 297, 298

computation time 154, 266

computational fluid dynamics 258, 266, 296

Computed Tomography 119

computer science 110

Comsol Multiphysics 274, 295, 308

conceptual model 8

conceptual system 41

confidence interval 83, 198

conservation law 242

conservation of energy 235

conservation principles 236

continuous model 44

continuous random variables 54

continuous system 42

control 41

control problem 43, 312, 313

control volume 238

convection 288

convection–diffusion equation 289

convective derivative 297

convergence order 178

Conway’s Game of Life 311

Conway.r 311

cornea 307

corneo-scleral shell 307

correlation 51

cover graphic 295

CRD 100

CRD.ods 101

CRD.r 102

critical ethnography 111

crop.csv 61

cross-validation 79, 99

csv data 52

CT 119

CubeTop 281, 284

cut plane plot 285, 301

cylindrical coordinates 253

d

DAE 314

Darcy 97, 290

Darcy, H. 290

Darcy velocity 290

Darcy’s law 290

Darwin, C. 312

data
 – conversion to function 222
 – importance of 142

data compression 114

data-driven model 35

Delaunay triangulation 273

density 55

dependent variable 66

descriptive statistics 48

design 41, 43

design of experiments 99
 – m^n design 108
 – m^n design 106
 – blocked design 103
 – completely randomized design 100
 – CRD 100
 – experimental units 101
 – factor 101
 – Factorial designs 106, 107
fractional factorial designs 108
full factorial design 107
Graeco-Latin square design 105
hybrid factorial designs 106
Latin square design 104
level 101
nuisance factors 100
optimal sample size 108
randomized balanced incomplete block design 106
randomized complete block design 103
RCBD 103
treatments 101	
two-level factorial designs 106
deterministic model 42
deterministic system 42
dfn 185
nonautonomous case 220
dfn1 196
difference equation 44, 309, 310
differential equation 40, 44, 117
boundary condition 133
discretization 176, 258
distinguished role of 118, 119
initial condition 131, 133
natural approach 117, 131
ordinary 118
partial 118
uniqueness of solution 133
differential-algebraic equation 258, 314
diffusion 288
diffusion equation 288
dimension 42
dimensionality 248, 250
dimensionless ODE/PDE 208
direct problem 43
direct solution method 265
Dirichlet boundary condition 247
discrete distributions 60
discrete event simulation 7, 44, 111
software 112
discrete model 44, 310
discrete random variables 54
discrete system 42
discretization method 176, 258
discriminant 244
dispersion 50
displacement vector 306
DISPO filter 114
distributed 38
distribution 55
discrete 60
Gamma 60
d – Gaussian 57
normal 57
Student's 60
uniform 57
DOE
see design of experiments 99
Don'ts of mathematical modeling 45
dynamic viscosity 290, 297
dynamical systems theory 207, 225
e
EDF 299
effective quantity 128
Einstein, A. 46
elasticity
linear static 306
Elmer 274
empirical model 35
equations
system of linear 26
transcendental 29
error
approximation 188
global 187
in numerical computations 188
local 187
roundoff 188
truncation 188
error function 155
Euler equations 297
Euler method 175
Euler–Tricomi equation 244
Euler.mac 177
event 54
simple 54
everything deforms 303
everything flows 303
evolution theory 312
evolutionary algorithms 109
evolutionary computation 110
examples
air pollutant 63
alarm clock 122, 194
asparagus cultivation 228, 233, 295
beer filtration 302
body temperature 120
car 2, 5
chemical reactor 106
cleaning of bottles 302, 303
ccomposite material 37
crop yield 61
diapers 296
drip irrigation 295
electrical insulations 291
Index

examples (contd.)
- electrostatic potential 264
- eye tonometry 306
- fermentation 289, 298
- filtration processes 302
- fluid mixtures 24
- fungicides 64
- GAG urine concentration 72
- game of life 311
- hardness testing 103
- herbicide resistance 312
- host-parasite interaction 309
- house paint 99
- hygienic materials 296
- investment data 81
- Martian 15
- mean age 13
- mechanical spring 31
- medical imaging 315
- metal rod 147
- oil exploration 97
- oil recovery 293
- option pricing 287
- paper machine 296
- pharmacokinetics 223
- planetary motion 40
- plant gas exchange 312
- plant growth 226
- plant maintenance 312
- portfolio optimization 110
- potatoes 107
- predator–prey interaction 41, 205
- queuing analysis 60
- relativistic mechanics 13
- reservoir simulation 293
- rose wilting 37, 75
- seashells 311
- soil moisture 295
- soil pollutant transport 289
- soil water dynamics 293
- Stormer viscometer 83
- survival of the fittest 312
- “system 1” 32, 35
- “system 2” 36
- tank 14, 16
- tank labeling 27
- technical textiles 296
- therapeutic drugs 223
- tin 14, 16, 18
- washing machine 111
- wear resistance 37
- wine fermentation 211, 312

Excel 48
- comparison with Calc 48

expected value 59
experimental design 83
- see design of experiments 99
experimental units 101
experiments
- vs. mathematical model
 - see mathematical model 18
- importance of 17, 143
explanatory variable 65
explicit FD method 263
explicit ODE 314
exponential function 130
exponential growth model 226
eye tonometry 306

f

FacBlock.r 107
factor 64, 101
factor level 64
factorial designs 106
FD method 258
- comparison with FE method 267
- computation time 154, 266
- stability 262
- von Neumann stability analysis 263
FE method 231, 258, 266
- a posteriori error estimates 273
- adaptive mesh refinement 273
- CAD software 272
- comparison with FD method 267
- computation time 154, 266
- Delaunay triangulation 273
- finite element 266
- geometry definition step 272
- grid 267
- idea 267, 269
- instationary case 273
- knot 267
- locally refined mesh 267
- main steps 272
- mesh 267
- mesh generation step 272
- mesh quality 273
- mesh refinement 273
- nonlinear case 273
- nonlinear PDE 273
- postprocessing step 273
- software 274
- solution step 273
- triangulation 267
- unstructured grid 267
- weak formulation 267
- weak problem formulation step 273

feed-forward neural network 89
Index

fermentation 211
fermentation.csv 218
Fermentation.r 217
– data handling 203
FeverDat.mac 120
FeverExp.mac 121
FeverODE.mac 180
FeverSolve.mac 121
Fick’s first law 288
filter 114
filtration velocity 290
finite difference approximation 259
finite difference method 150, 258
– see FD method 258
finite element 266, 273
finite-element method
– see FE method 266
finite volume method 258, 299
finite volumes 275
fitting an ODE to data 194
floor() 60
Fluent 274
fluid-structure interaction 273, 288, 302
formal definition 3
Fourier analysis 256
fourier analysis 114
Fourier’s law 234
fractional factorial designs 108
free flow 302
FTCS method 263
full factorial design 107
gfungicide.csv 64
fuzzy model 109
– fuzzy subset 111

G
GAG 72
gag.csv 72
Galerkin method 272
Gamma distribution 60
gas flow 297, 298
gastro-intestinal tract 223
Gates argument 133, 140
Gauss, C.F. 57
Gauss–Seidel-method 265
Gaussian distribution 57
Gaussian elimination 265
Gear method 180
generealization property 96
genetic algorithm 110
– software 110
geometric mean 50
GI tract 223
glaucoma 306
global error 187
– control of 189
glycosaminoglycans 72
Goldmann applanation tonometry 306
Graeco-Latin square design 105
gray box model 10, 35
grid 267
growth model
– see plant growth model 226
GUI 52, 322
h
hammer-and-nail allegory 46
hat function 270
heat equation 137, 147
– general form 238
– problem 1 231
– problem 2 231
– problem 3 249
– problem 4 251
– problem 5 252
– problem 6 276
– with sinks/sources 284
heat flow rate 235
HeatClos.r 261
Heaviside step function 224, 228
Heraclitus 290
Hessian matrix 92, 94
heuristic error control 182, 189, 262
histogram 56, 58
holdout validation 79
homogeneous boundary condition 248
homoscedasticity 70, 76
Hooke’s law 305
host–parasite interaction model 44
hybrid factorial designs 106
hydraulic conductivity 293
hypothesis test 61
– power 62
– type I error 61
– type II error 61
i
ill posed 316
image processing 114
implicit FD method 263
implicit ODE 314
implicit solution 165
impregnation processes 291
incompressible flow 291, 297, 298
independent variable 65
indirect measurement technique 204
inertia in modeling 46
Index

inferenceal statistics 60
inhomogeneous boundary condition 248
initial condition 131, 133–135, 140, 143, 148, 149, 160
– why? 149
initial value problem 133, 136, 143
– definition 146
– definition for ODE system 151
input–output system 9
instationary 38
– model 42, 44
– PDE 273
integral equation 44, 272
inverse problem 43, 204, 314, 315
inviscid flow 297
IOP 306
isosurface plot 285, 301
isotropy 239, 305
iteration 244
– nested 265
iterative methods 264, 265

j
Jacobi method 265
jemula 112

k
klein.csv 81, 91
Krylov subspace methods 272

l
Label.mac 29
Lame’s constant 305
Lame’s equations 306
laminar flow 298
Laplace operator 234
Latin square design 104
law of inertia 46
leap frog scheme 263
least squares filter 114
level 101
levels of measurement 63
limit cycle 225
linear equations
– arising from PDE’s 265
– direct solution 264, 265
– Gauss–Seidel-method 265
– Gaussian elimination 265
– iterative methods 265
– iterative solution 264
– Jacobi method 265
– LU decomposition 265
– relaxation methods 265
linear model 43
linear programming 30
– example 30
– solution using Maxima 31
linear regression 65
– as hypothesis test 63
linear static elasticity 306
LinRegEx1.r 67, 70, 78
LinRegEx2.r 76, 78
LinRegEx3.r 79
LinRegEx4.r 73
LinRegEx5.r 74
Lipschitz continuity 147, 151
local error 187
locally refined mesh 267
logical variable 92
logistic function 90
logistic growth model 226
loop 261
Lotka-Volterra model 173, 205, 207
low pass filters 114
LS-DYNA 274
LSD.r 105
LU decomposition 265
lumped 38
lumped model 42, 137, 225

m
M-Plant 112
Macsyma 323
Magnetic Resonance Imaging 119
management model 43
mass balance 223
material derivative 297
material law 304
Mathematica 165
mathematical model 12
– algebraic equation 40
– and experiments, XIII 18, 28, 142
– as door opener 20
– as hypothesis generator 142, 143
– careful interpretation 142
– check units 22
– classification 39
– differential equation 40
– generalization property 96
– heuristic procedure 23, 25
– in three steps 20
– law of inertia 46
– limitations 142
– main benefit 16
– mechanistic vs. phenomenological 36
– naturalness 11
– practical recommendations 20
– pragmatic approach 34
Index

– to visualize data 99
mathematics
– role of 9, 20
Maxima 18, 317
– . operator 121
– : operator 177
– = operator 177
– [...] 18, 24
– %e 162
– %i 18
– %pi 18
– assignment operator 177
– batch 323
– batch mode 323
– command mode 323
– complex number 18
– conditional execution 126
– constants 159
– decimal results 27
– define 18
– desolve 166
– diff 18, 158
– do 177
– equation operator 177
– expand 161
– find_root 29
– foolproof commas 24
– for...thru...do 29, 177
– function definition 18
– ic1 160
– ic2 160
– if...then 126
– imaginary number 18
– initial condition 160
– integrate 161, 168, 171
– iterations 177
– limit 172
– linear programming 31
– list 18, 24
– load 31
– loops 29, 177
– maximize_lp 31
– numer 18, 27
– numerical integration 161
– ode2 158
– plot2d 120
– plotdf 210
– pred 18
– print 30
– QUADPACK 161
– read_nested_list 120
– rhs 18, 181
– rk 179, 181
– limitations 179
– scalar product 121
– simplex 31
– solution of ODE’s 158, 160
– solve 18, 24, 29, 121, 132
– vs. Mathematica 165
– wxMaxima 324
maximum likelihood estimate 66
measurement errors 53, 70
measures of position 49
measures of variation 50
mechanics
– Newtonian 13
– quantum 46
– relativistic 13
mechanistic model 35, 38, 117, 229
– analogy with archeology 118
– comparison with phenomenological approach 36
– example “a priori” information 35
– interpretable parameters 137
– to explain “strange effects” 123
median 50
mesh 267
– generation 272
– quality 273
– refinement 273
method of lines 258
Michaelis-Menten kinetics 213
Microsoft Office 48, 274
Minsky’s model definition 3
mirror symmetry 252
Mix.mac 24
Mix1.mac 26
MMS.zip 317
model
– analytical 44
– autonomous 44
– best 4
– black box 10, 35
– conceptual 8, 124
– continuous 44
– data-driven 35
– definition 3
– deterministic 42
– discrete 44
– distributed 38, 39
– empirical 35
– gray-box 35, 127
– instationary 38, 42, 44
– linear 43
– lumped 38, 39, 42
– management 43
– mechanistic 35, 38, 117, 229
– nonautonomous 44
Index

model (contd.)
 – nonlinear 43
 – numerical 44
 – phenomenological 35, 38, 42, 47
 – physical 8
 – regression 47
 – research 43
 – semiempirical 35, 127
 – stationary 38, 42
 – statistical 35
 – white box 35
modeling 4
 – idea 1
 – using effective quantities 128
modeling and simulation project 5
modeling and simulation scheme 4
 – car example 2, 5
 – engine example 8
 – fermentation example 212
 – room temperature example 123
modulus of elasticity 305
modulus of rigidity 305
moving average approach 114
MRI 119
Mualem, r 293
Mualem/van Genuchten model 293
mucopolysaccharidosis 72
multiphase flow 293, 296
Multiple R Squared 69
multiple regression 75
multiple shooting method 150

nabla operator 234
narrative analysis 111
natural system 41
naturalness of mathematical models 11
Navier’s equations 306
Navier–Stokes equations 296
NETGEN meshing algorithm 281
Neumann boundary condition 248
neural network 43, 47, 87, 88, 109
 – activation function 90
 – applications 88
 – approximation property 90, 92, 93
 – bias 88, 89, 92
 – biological interpretation 88
 – feed-forward 47, 89
 – fitting criterion 94
 – Hessian matrix 94
 – hidden layer 89
 – input layer 89
 – layer 88
 – net 90, 92
 – node 88
 – output layer 89
 – overfitting 92, 96
 – regularization 96
 – roughness 96
 – scaling of inputs 92
 – skip-layer connections 90
 – software 110
 – starting values 92
 – to visualize data 99
 – topology 89
 – vs. nonlinear regression 94
 – weight decay 96
 – weights 89, 92
Newton method 243
Newton’s law of cooling 137, 139
Newton’s second law 297
Newtonian fluid 297
Newtonian mechanics 13
Nicholson–Bailey model 44, 310
MNEx1.r 91, 98
MNEx2.r 98
no flow boundary condition 248, 254
no-slip condition 298
nominal level of measurement 63
non-newtonian fluid 297, 298
nonautonomous model 44
nondimensionalization 208
nonlinear model 43
nonlinear regression 80
NonLinRegress 195
NonRegEx1.r 82, 91
NonRegEx2.r 84
normal distribution 57, 60
notation convention 14
null hypothesis 61
numerical differentiation 113
numerical mathematics
 – significance of 174
numerical model 44
numerical solution 154
 – vs. closed form solution 169

observed significance level 62
OCC viewer 277
ODE 40, 118
 – abbreviated notation 143
 – absolute error control 188
 – as a challenge 131, 153
 – autonomous 146
 – boundary value problem 147, 148
– solution methods 150
– coupling 170, 174, 287
– dimensionless 208
– explicit 314
– family of solutions 157
– first order 143
 – definition 145
– first order system
 – definition 150
 – definition i.v.p. 151
– fitting to data 194
– general solution 157, 158
– hand calculation methods 173
– higher order
 – reformulation as first order 145
– implicit 314
– implicit solution 165
– initial condition 143
– initial value problem
 – definition 146
 – naturalness 150
– limitations 229
– linear 152, 171
– nonautonomous 220, 221
 – numerical solution 221
– nonlinear 152, 154
– notation 144
– notation convention 157
– numerical solution
 – Adams method 180, 210
 – adaptive stepsize 176
 – BDF method 180
 – choice of stepsize 182
 – convergence order 178
 – Euler method 175
 – Gear method 180
 – global error 187, 189
 – heuristic error control 182, 189
 – local error 178, 187
 – nonautonomous case 221
 – order of a method 179
 – Runge-Kutta method 179
 – step size 176
 – validation 177
– vs. closed form sol. 169
– order 134
– parameter estimation 194, 201
 – as indirect measurement procedure 204
– boundary value approach 199
– convergence region 199
– initial value approach 199
– particular solution 157
– phase plane plot 209
– relative error control 188
– second simplest 148
– separation of variables 161, 163, 173
– setup 138, 139
– phenomenological approach 138, 139
– rate of change approach 138, 139
– theoretical approach 138, 139
– simplest 148
– stiff 179
– structural stability 209, 211
– unique solvability 147
– used everywhere 153
– variation of constants 166, 167, 173
– variation of parameters 167
– well-posed 246
ODEEx1.mac 159
ODEEx1.r 184, 226, 228
ODEEx10.mac 166
ODEEx11.mac 167
ODEEx12.mac 169
ODEEx13.mac 170
ODEEx14.mac 171
ODEEx15.mac 172
ODEEx16.mac 173
ODEEx2.r 191
ODEEx3.mac 160
ODEEx3.r 224
ODEEx4.mac 160
ODEEx5.mac 161
ODEEx7.mac 162
ODEEx8.mac 162
ODEEx9.mac 165
ODEFitEx1.r 195
ODEFitEx2.r 198
ODEFitEx3.r 199
ods file format 49
oil recovery 293
one-dimensional model 147
one-dimensional problem 250
Open CasCade 277
open source software
 – vs. commercial software 274
OpenFoam 274
OpenModelica 112
Openoffice 274
optimal control problem 312, 313
optimal sample size 108
optimization 41, 312
 – qualitative 216, 221
 – using simulations 233
option pricing model 287
order
 – of ODE 134
 – of PDE 241
ordinary differential equation
 – see ODE 118
overfitting 92, 96
p
p() 54
p-value 61
panta paramorfonontai 303
panta thei 290, 296, 303
parallel computation 299
parameter estimation
 – as inverse problem 204
 – hand tuning 126, 141
 – heuristic 121
 – in ODE’s 194
 – general problem formulation 201
 – initial values 197
 – sensitivity analysis 200
parameter estimation problems 315
parameter identification 43
partial differential equation
 – see PDE 39
PDE 39, 40, 118, 229, 241
 – as a challenge 154
 – boundary condition
 – Dirichlet 247
 – Neumann 248
 – no flow 248, 254
 – periodic 254
 – Robin 248
 – role of physical intuition 247
 – symmetry 248, 254
 – classification 244
 – closed form solution 254
 – computation time 154
 – conservation law 242
 – coupled problems 233
 – coupling 287
 – definition 241
 – dimensionality 248
 – discriminant 244
 – elliptic 244
 – example derivation 235
 – first order 242
 – from conservation principles 236
 – homogeneous boundary condition 248
 – hyperbolic 244
 – importance of 231, 232, 241
 – importance of 1st and 2nd order 241
 – inhomogeneous boundary condition 248
 – initial/boundary conditions 245
 – “rule of thumb” 246
 – instationary 273
 – linear 243
 – vs. nonlinear 243
 – general form 244
 – linearization 243
 – nonlinear 243, 273
 – general form 242, 243
 – solution 243
 – numerical solution 257
 – error control 262
 – stability 262
 – one-dimensional problem 250
 – order 241
 – parabolic 244
 – second order 243
 – separation of variables 255
 – shock wave 242
 – solution
 – BTCS method 263
 – computational efficiency 264
 – existence 246
 – explicit FD method 263
 – finite difference method 258
 – finite-element method 258, 266
 – finite volume method 258
 – FTCS method 263
 – implicit FD method 263
 – leap frog scheme 263
 – method of lines 258
 – spectral method 258
 – stability 246
 – uniqueness 246
 – standard form 245
 – stationary solution 147, 245
 – symmetry 248, 252
 – three-dimensional problem 250
 – two-dimensional problem 250
 – variational formulation 269
 – weak formulation 269, 271
 – well-posed 246
periodic boundary condition 254, 292
periodicity cell 292
permeability 43, 290, 291
pharmacokinetics 223
phase plane plot 209, 225
phenomenological model 35, 38, 42, 47
 – vs. mechanistic model 127
physical model 8
 – physical system 41
plant growth model 226
 – exponential 226
 – logistic 226
Plant1.r 226
Plant2.r 226
Index

Plant3.r 228
Plato 45
Poisson equation 264, 268
Poisson’s ratio 305
polynomial regression 73
Pontryagin’s principle 313
population 50
population dynamics 205, 310
poroelasticity 296
porosity 291
porous medium 43, 290
power of a test 62
pragmatic approach 34
predator–prey model 41, 205
predicted measured plot 76, 77
– vs. conventional plot 85
prediction 41
predictor variable 65
pressure head 293
PrintConfidence 196
probabilistic networks 109
probability 52–54
– axiomatic definition 54
– classical approach 54
– relative frequency approximation 55
probability density 55
probability density function 56
probability distribution 56
probability function 54
Problem 1 231
Problem 2 231
Problem 3 249
Problem 4 251
Problem 5 252
Problem 6 276
pseudo-R² 69
pseudo-random numbers 79
Python 277

q
qualitative models 111
qualitative optimization 216, 221
quantum mechanics 46

r
R 47, 48, 274, 317, 321
– > 321
– advantage of scripting 67
– agricolae 101
– anova 64
– array indexing 185
– as.data.frame 190
– atol 186
– atolDef 219
– batch mode 321, 322
– BHH2 108
– c() 185
– command mode 322
– command prompt 321
– compared to Calc 51
– confint 83
– curve 58
– data frames 190
– decompose 114
– design.ab 107
– design.bib 106
– design.crd 101, 102
– design.lsd 106
– design.rcbd 103
– Ecdat library 81
– executing programs 321
– expand.grid 107
– fdesMatrix 108
– for 261
– formula notation 71, 78, 84
– function 186
– conversion from data 222
– definition of 185
– GAGurine data 72
– genalg 110
– hist 58
– I() 74, 84
– list 185
– lm 71, 82
– log 98
– logical variable 92
– loops 261
– lsoda 180, 184, 221
– hmax 221
– lwd 52
– MASS library 72, 84
– nls 82
– weights 223
– nls.control 82
– nlsToDef 196
– nnet 90, 92, 110
– starting values 6, 93, 94
– par 52
– plot 52, 72
– power.anova.test 108
– power.prop.test 108
– predict 72, 79
– print 102
– programs 321
– R Commander 63, 66, 76, 322
– limitations 67
Index

R (contd.)
- read.table 62
- rnorm 58
- rtol 186, 188
 - rule of thumb 188
- rtolDef 219
- sample() 79
- scatterplot 52
- scripts 321
- seq 72, 190
- simcol 112, 311
- SoPhy 289
- source 321
- t.test 62
- wavelets 115
- wavethresh 115
- wavetools 115
R Commander 63, 322
- compared to Calc 51
- graphs menu 52
- import of csv data 52
- introduction 51
- regression 67
- script window 52
- statistics menu 52
- t-test 63
\(R^2 \) 68
 - adjusted 78
 - negative values 69
 - pseudo-\(R^2 \) 69
Radon transform 315
random processes 52
random sampling 50
random variable 53
 - continuous 54
 - discrete 54
randomized balanced incomplete block design 106
randomized complete block design 103
range 51
RANS equations 298
rapid prototyping 41
ratio level of measurement 63
RCBD.r 103
RCBD 103
recurrence relation 310
reduced system 16
refined mesh 267
regression 43, 47
 - function 65
 - assumptions 70
 - closeness condition 68
 - coefficients 65
 - dependent variable 65
 - explanatory variable 65
 - formula notation 71
 - independent variable 65
 - linear 32, 65
 - general form 73
 - multiple (linear) 74, 75
 - graphical interpretation 87
 - nonlinear 80
 - general form 86
 - polynomial 73
 - predicted measured plot 76
 - prediction 68
 - predictor variable 65
 - residuals 67
 - response variable 65
 - spline 74
regression line 67
relative error control 188
relative permeability 294
relativistic mechanics 13
relaxation methods 265
research model 43
reservoir simulation 293
residual sum of squares 66, 76, 202
residual water content 294
residuals 67
resin transfer molding 114, 292
response surface designs 106
response variable 65
Reynolds-averaged N.-S. equations 298
Richard’s equation 293
Robin boundary condition 248
rock.csv 97
RoomDat.mac 122
RoomExp.mac 126
RoomODE.mac 183
RoomODED.mac 141
rotational symmetry 253
roundoff error 188
RSQ 66
RTM 114, 292
Runge-Kutta method 179

S
Salome-Meca 276, 301, 302, 317
 - arrow plots 285
 - batch mode 277
 - box construction 278
 - cut plane plot 285, 301
 - geometry definition 277
 - isosurface plot 285, 301
– mesh generation 281
– object browser 277
– OCC viewer 277
– clipping plane 279
– excision 279
– shading mode 279
– transparency 279
– wireframe mode 279
– point construction 278
– postprocessing step 285
– Python 277
– Python Console 277
– sample session 276
– solution step 283
– sphere construction 278
– streamline plot 285, 301
– vector plot 301
– VTK 3D viewer 281
sample 50
– random sampling 50
– stratified sampling 50
sample correlation coefficient 51
sample size 108
sample space 54
sample standard deviation 50
saturated water content 294
Savitzky-Golay filter 114
scale 43
sclera 307
seepage velocity 290
semiempirical models 35
sensitivity 155
sensitivity analysis 155
separation of variables
– ODE’s 161, 163
– PDE’s 255
shear modulus 305
shock wave 242
shooting method 150
signal processing 113
– software 114
significance 61
significance, statistical 61
SIMP/PROCESS 113
simul8 113
simulation 4, 5
– and experiments
 – see mathematical model, XIII
– definition 7
– discrete event 7
singular point 211
skip-layer connections 90
slip condition 299
sluggish fermentation 211
Sobolev space 157, 268, 271
soft computing 109
– software 110
software
– role of 19
software templates 319
soil moisture simulation 295
source term 289
space step 259
sparse matrix 265, 270
specific heat capacity 233, 234
spectral method 258
speculation 41, 43
SphereSurf 281, 284
spline regression 74
spreadsheet data 48
spring.csv 32, 67
spring.ods 49
SPSS 274
SQM space 40
stability 246, 262
standard deviation
– of random variable 59
– sample 50
state variable 16
– instantaneous changes 216
stationary 38, 147
stationary model 42
stationary solution 232, 245
statistical dispersion 50
statistical model 35
statistical significance 61
statistical tests 61
statistics 33
– descriptive 48
– inferential 60
stepsize 176
stiff ODE 179
Stiff.mac 179
stochastic system 42
stormer viscometer 83
stormer.csv 84
strain 304
stratified sampling 50
streamline plot 285, 301
stress tensor 304
structural mechanics 303
– software solution 306
structural stability 209, 211
stuck fermentation 211
Student’s t-distribution 60, 70
substantive derivative 297
superficial velocity 290
supersonic flow 243
Index

- support of a function 271
- survival of the fittest 110, 312
- symmetry 248, 252
 - mirror 252
 - rotational 253
 - translational 252
- symmetry boundary condition 248, 254
- symmetry condition 298
- system 1
 - conceptual 41
 - continuous 42
 - definition 8
 - deterministic 42
 - discrete 42
 - input-output 1, 31
 - natural 41
 - parameters 16
 - physical 41
 - reduced 16
 - stochastic 42
 - technical 41
- systems analysis 4, 5
- systems archeology 119
- t
 - distribution 70
 - t-test 62
 - independent 63
 - one-sample 63
 - one-sided 63, 108
 - paired 63
 - two-sample 62
 - two-sided 63
- technical system 41
- templates 319
- tensor 304
- test data 79
- thermal conductivity 233, 234
- three-dimensional problem 250
- three-step modeling procedure 20
- Tln.mac 18
- tInt 222
- title page 295
- trace of a matrix 305
- TraceProc 196
- training data 79
- transcendental equation 29
- translational symmetry 252
- transonic flow 244
- treatments 101
- triangulation 267
- truncation error 188
- TTest.r 62
- turbulence 298
- turbulent flow 298
- two-dimensional problem 250
- two-level factorial designs 106
- two-phase flow 293
- type I error 62
- type II error 62
- u
 - unconditionally stable 263
 - uniform distribution 57
 - unstructured grid 267
- v
 - validation 4, 5
 - holdout 79
 - importance of 33
 - qualitative 6, 127
 - quantitative 6
 - variation of constants 166, 167
 - variation of parameters 167
 - variational formulation of PDE 269
 - vector plot 301
 - virtual engineering 41
 - virtual prototyping 41
 - viscosity 290, 297
- visualization of datasets 99
- VolPhase.mac 210
- Volterra.r 206
- VolterraND.r 209
- volumetric flux density 290
- volumetric water content 293
- volz.csv 75
- von Neumann stability analysis 263
- w
 - water retention curve 293
 - wave equation 245
 - wavelet transform 114
 - weak derivative 269
 - weak formulation of PDE 269, 271
 - weak solution 269
 - weight decay 96
 - weighting factors 202
 - in ODE system 222
 - weights 92
 - well-posed problem 246
 - what-if studies 41
- WhichData 223
- white box model 10, 35
- wine fermentation 211
- wxMaxima 18, 158, 159, 324

- Young’s modulus of elasticity 305