Contents

1 Inorganic Semiconductors for Light-emitting Diodes 1
 E. Fred Schubert, Thomas Gessmann, and Jong Kyu Kim
 1.1 Introduction 1
 1.2 Optical Emission Spectra 2
 1.3 Resonant-cavity-enhanced Structures 7
 1.4 Current Transport in LED Structures 15
 1.5 Extraction Efficiency 19
 1.6 Omnidirectional Reflectors 23
 1.7 Packaging 27
 1.8 Conclusion 29
 References 30

2 Electronic Processes at Semiconductor Polymer Heterojunctions 35
 Arne C. Morteani, Richard H. Friend, and Carlos Silva
 2.1 Introduction 35
 2.1.1 Molecular Complexes and Exciplexes 37
 2.1.2 Review of Molecular Exciplexes in Solution 40
 2.1.3 Exciplexes at the Polymer Heterojunction 42
 2.1.4 The Polymers used in this Chapter 43
 2.1.4.1 Type-II Heterojunctions 43
 2.1.4.2 The PFB:F8BT Exciplex 46
 2.1.4.3 The TFB:F8BT Exciplex 49
 2.1.4.4 The F8:PFB Exciplex 51
 2.1.4.5 No F8:TFB Exciplex? 52
 2.1.4.6 Comparison with Model: a Reason that there is no Exciplex in F8:TFB 53
 2.2 Charge Capture at Polymer Heterojunctions 55
 2.2.1 Barrier-free Electron–Hole Capture in Polymer Blend LEDs 55
 2.2.2 Endothermic Exciplex-to-Exciton Energy Transfer at the F8:PFB Heterojunction 61
 2.2.3 Barrier-free Capture in Polymer Bilayer LEDs at Low Temperatures 62
 2.2.4 The High-voltage Limit of the Barrier-free Capture Regime 66
2.3 Exciton Dissociation at Polymer Heterojunctions 71
2.3.1 Exciton Dissociation and Exciton Regeneration 71
2.4 Morphology-dependent Exciton Retrapping at Polymer Heterojunctions 78
2.4.1 Predicted Similarity of EL and Delayed PL Spectra 83
2.5 Summary 86
2.5.1 Exciplex Formation is General in Polyfluorenes 86
2.5.2 Electron–Hole Capture can Occur Barrier-free via an Exciplex Intermediate 87
2.5.3 Dissociated Excitons can be Regenerated via Geminate-Pair and Exciplex Intermediates 88
2.5.4 High Interface Densities Lower the Barrier-free Capture and Exciton-Regeneration Efficiencies 88
2.5.5 Conclusion 89
Acknowledgments 89
References 90

3 Photophysics of Luminescent Conjugated Polymers 95
Dirk Hertel and Heinz Bässler
3.1 Introduction 95
3.2 Spectroscopy of Singlet States 96
3.2.1 Conventional CW Spectroscopy 96
3.2.2 Site-selective Fluorescence (SSF) Spectroscopy 106
3.2.3 Excitation Dynamics 109
3.2.3.1 Time-dependent Spectral Diffusion 111
3.2.3.2 Fluorescence Decay in Doped Conjugated Polymers 117
3.3 Optically Induced Charge Carrier Generation 125
3.3.1 Intrinsic Photogeneration 125
3.3.2 Geminate Electron–Hole Pairs 127
3.3.3 Sensitized Photogeneration 129
3.4 Triplet States 130
3.4.1 Phosphorescence 130
3.4.2 Decay, Annihilation and Migration of Triplet Excitons 135
3.5 Resumé 143
Acknowledgement 145
References 146

4 Polymer-Based Light-Emitting Diodes (PLEDs) and Displays Fabricated from Arrays of PLEDs 151
Xiong Gong, Daniel Moses and Alan J. Heeger
4.1 Introduction 151
4.2 LEDs Fabricated from Semiconducting Polymers 152
4.3 Accurate Measurement of OLED/PLED Device Parameters 155
4.4 Fowler–Nordheim Tunneling in Semiconducting Polymer MIM Diodes 158
6.2.5 Structure–Property Relationships in PAVs

- **6.2.5.1 Substituent Effects on Emission Color of PPVs**
- **6.2.5.2 Controlling Emission Color via the Degree of Conjugation in PPVs**
- **6.2.5.3 Effect of the Aryl Group on the Emission from PAVs**
- **6.2.5.4 Substituent Effects on Charge Injection**

6.3 Poly(arylene ethynylene)s

6.4 Polyarylenes

- **6.4.1 Oxidative Coupling of Arenes**
- **6.4.2 Reductive Coupling of Arenes (Yamamoto Coupling)**
- **6.4.3 Transition-metal-mediated Crosscoupling Reactions**
 - **6.4.3.1 Suzuki Polycondensation**
 - **6.4.3.2 Regioregular Polythiophenes by Crosscoupling**
- **6.4.4 Precursor Routes to Poly(para-phenylene)**
- **6.4.5 Polyarylenes by Heterocyclic Polysynthesis**
- **6.4.6 Structure–Property Relationships**
 - **6.4.6.1 Bridged versus Nonbridged Polyphenylenes**
 - **6.4.6.2 Effect of Alkyl Substituents in Polythiophenes**
 - **6.4.6.3 Homo- versus Copolymers**
 - **6.4.6.4 Optimizing Charge Injection into Polyarylenes**
- **6.5 EL Polymers with Isolated Chromophores**
 - **6.5.1 Polymers with Isolated Chromophores in the Main Chain**
 - **6.5.2 Polymers with Emissive Sidechains**
- **6.6 Stability of EL Polymers**
- **6.7 Conclusion**

7 Charge-transporting and Charge-blocking Amorphous Molecular Materials for Organic Light-emitting Diodes

Yasuhiko Shirota

- **7.1 Introduction**
- **7.2 Amorphous Molecular Materials**
- **7.3 Requirements for Materials in OLEDs**
- **7.4 Amorphous Molecular Materials for Use in OLEDs**
 - **7.4.1 Hole-transporting Amorphous Molecular Materials**
 - **7.4.2 Electron-transporting Amorphous Molecular Materials**
 - **7.4.3 Hole-blocking Amorphous Molecular Materials**
- **7.5 Charge Transport in Amorphous Molecular Materials**
- **7.6 Outlook**

8 Dendrimer Light-Emitting Diodes

John M. Lupton

- **8.1 Introduction**
- **8.2 The Dendrimer Concept**
- **8.3 Electroluminescent Dendritic Materials**
8.4 Electronic Properties 274
8.4.1 Control of Emission Color 274
8.4.2 Control of Intermolecular Interactions 274
8.4.3 Control of Charge Transport 278
8.5 Dendrimer Devices 280
8.6 Dendronized Polymers 286
8.7 Conclusions 287
References 288

9 Crosslinkable Organic Semiconductors for Use in Organic Light-Emitting Diodes (OLEDs) 293
Klaus Meerholz, Christoph-David Müller, Oskar Nuyken
9.1 Introduction 293
9.2 Multiple-Layer Deposition 295
9.2.1 [2+2] Cycloaddition of Cinnamates 297
9.2.2 Radical Polymerization 299
9.2.3 Cationic Ring-Opening Polymerization (CROP) of Oxetanes 303
9.2.3.1 Hole Conductors 304
9.2.3.2 Emitters 308
9.2.3.3 Electron Conductors 309
9.2.4 Alternative Approaches 309
9.3 Patterning 311
9.4 Conclusion and Outlook 314
Acknowledgements 316
References 316

10 Hybrid OLEDs with Semiconductor Nanocrystals 319
Andrey L. Rogach and John M. Lupton
10.1 Introduction 319
10.2 LEDs in the Visible based on Composites of Semiconductor Nanocrystals and Polymers or Nanocrystals and Small Organic Molecules 321
10.2.1 Devices Processed from Nanocrystals in Organic Solvents 321
10.2.2 Devices Processed from Nanocrystals in Aqueous Solutions 327
10.3 Near-infrared LEDs based on Composites of Semiconductor Nanocrystals and Polymers or Small Organic Molecules 328
10.4 Concluding Remarks 330
References 331

11 Polymer Electrophosphorescence Devices 333
Xiaohui Yang and Dieter Neher
11.1 Introduction 333
11.2 Phosphorescent Dyes 335
11.3 Transfer Processes in Polymer Hosts Doped with Phosphorescent Dyes 338
11.3.1 Charge-Carrier Trapping 340
11.3.2 Dexter Transfer 342
11.3.3 Energy Back Transfer 344
11.4 Polymer Phosphorescence Devices based on PVK 345
11.4.1 Green PVK-based Devices 346
11.4.1.1 Excitation of the Dye in the PVK Matrix 347
11.4.1.2 Optimizing the Devices 348
11.4.1.3 Optimizing Charge Injection 351
11.4.2 PVK-based Devices with Red Emission 354
11.4.3 PVK Devices with Blue Emission 356
11.4.4 White Electrophosphorescence from PVK-based Devices 357
11.5 Phosphorescent Devices with Other Host Polymers 358
11.6 Fully Functionalized Polymers 362
11.7 Conclusion and Outlook 363
Acknowledgement 364
References 364

12 Low-threshold Organic Semiconductor Lasers 369
Daniel Schneider, Uli Lemmer, Wolfgang Kowalsky, Thomas Riedl
12.1 Introduction 369
12.2 Fundamentals of Organic Semiconductor Lasers 370
12.2.1 Stimulated Emission in Organic Materials 370
12.2.2 Resonators for Organic Lasers 374
12.3 Low-threshold Organic Lasing 375
12.3.1 Tunable Organic Lasers Based on G–H Systems Incorporating DCM and DCM2 Molecules 375
12.3.2 Spiro-linked Materials and Stilbenes 379
UV-emitting Spiro Materials 383
Applications for Optically Pumped Organic Lasers 384
12.4 Comparison of Organic Laser Properties 386
12.5 Electrically Driven Organic Lasers 388
12.6 Summary and Outlook 391
References 392

Subject Index 397