CONTENTS

CHAPTER 1 SAFETY FIRST, LAST, AND ALWAYS 1

Accidents Will Not Happen 5
Disposing of Waste 5
 Mixed Waste 7
Material Safety Data Sheet (MSDS) 8
Green Chemistry and Planning an Organic Synthesis 8
An iBag for Your iThing 10
Exercises 10

CHAPTER 2 KEEPING A NOTEBOOK 11

A Technique Experiment 12
 Notebook Notes 12
A Synthesis Experiment 16
 Notebook Notes 17
The Six Maybe Seven Elements in Your Experimental Write-Up 20
The Acid Test 21
Notebook Mortal Sin 21
Calculation of Percent Yield (Not Yeild!) 22
Estimation Is Your Friend 24
Exercises 24

CHAPTER 3 MINING YOUR OWN DATA 25

Google and the Wiki 26
The Terphenyl Anomaly 29
Exercises 29

CHAPTER 4 JOINTWARE 30

Stoppers With Only One Number 31
Another Episode of Love of Laboratory 33
Hall of Blunders and Things Not Quite Right 34
 Round-Bottom Flasks 34
 Columns and Condensers 34
The Adapter with Lots of Names 35
Forgetting the Glass 36
Inserting Adapter Upside Down 36
Inserting Adapter Upside Down sans Glass 37
The O-Ring and Cap Branch Out 38
Greasing the Joints 38
 To Grease or Not to Grease 38
 Preparation of the Joints 39
 Into the Grease Pit 39
Storing Stuff and Sticking Stoppers 40
Corking a Vessel 40

CHAPTER 5 MICROSCALE JOINTWARE 41
Microscale: A Few Words 41
Uh-Oh Rings 42
The O-Ring Cap Seal 42
 Skinny Apparatus 42
 Not-So-Skinny Apparatus 43
 Sizing Up the Situation 43
 Why I Don’t Really Know How Vacuum-Tight These Seals Are 44
The Comical Vial (That’s Conical!) 45
 The Conical Vial as Vial 45
 PackagingOops 46
 Tare to the Analytical Balance 46
 The Electronic Analytical Balance 46
 Heating These Vials 47
The Microscale Drying Tube 48
Gas Collection Apparatus 48
 Generating the Gas 49
 Isolating the Product 51

CHAPTER 6 OTHER INTERESTING EQUIPMENT 52
Funnels, and Beakers, and Flasks—Oh My! 53
The Flexible Double-Ended Stainless Steel Spatula 54
 Transferring a Powdered Solid with the Spatula 55

CHAPTER 7 PIPET TIPS 56
Pre-Preparing Pasteur Pipets 56
 Calibration 56
 Operation 57
 Amelioration 58
Pipet Cutting 58
Pipet Filtering—Liquids 60
Pipet Filtering—Solids 61
CHAPTER 8 SYRINGES, NEEDLES, AND SEPTA 63

The Rubber Septum 65

CHAPTER 9 CLEAN AND DRY 66

Drying Your Glassware When You Don’t Need To 67
Drying Your Glassware When You Do Need To 67

CHAPTER 10 DRYING AGENTS 68

Typical Drying Agents 68
Using a Drying Agent 69
Following Directions and Losing Product Anyway 70
Drying Agents: Microscale 70
Drying in Stages: The Capacity and Efficiency of Drying Agents 70
Exercises 71

CHAPTER 11 ON PRODUCTS 72

Solid Product Problems 72
Liquid Product Problems 72
The Sample Vial 73
Hold It! Don’t Touch That Vial 73

CHAPTER 12 THE MELTING-POINT EXPERIMENT 74

Sample Preparation 75
 Loading the Melting-Point Tube 75
 Closing Off Melting-Point Tubes 76
Melting-Point Hints 77
The Mel-Temp Apparatus 77
 Operation of the Mel-Temp Apparatus 79
The SRS DigiMelt 80
The Fisher-Johns Apparatus 82
 Operation of the Fisher-Johns Apparatus 83
The Thomas-Hoover Apparatus 84
 Operation of the Thomas-Hoover Apparatus 85
Using the Thiele Tube 88
 Cleaning the Tube 89
 Getting the Sample Ready 89
 Dunking the Melting-Point Tube 90
 Heating the Sample 91
Exercises 91
CHAPTER 13 RECRYSTALLIZATION 92
Finding a Good Solvent 93
General Guidelines for a Recrystallization 94
 My Product Disappeared 95
Gravity Filtration 95
The Buchner Funnel and Filter Flask 97
 Just a Note 100
The Hirsch Funnel and Friends 101
Activated Charcoal 101
The Water Aspirator: A Vacuum Source 102
The Water Trap 102
Working with a Mixed-Solvent System—The Good Part 103
 The Ethanol—Water System 103
A Mixed-Solvent System—The Bad Part 104
Salting Out 105
World-Famous Fan-Folded Fluted Paper 105
Exercises 107

CHAPTER 14 RECRYSTALLIZATION: MICROSCALE 108
Isolating the Crystals 109
Craig Tube Filtration 109
Centrifuging the Craig Tube 113
 Getting the Crystals Out 113

CHAPTER 15 EXTRACTION AND WASHING 114
Never-Ever Land 115
Starting an Extraction 115
Dutch Uncle Advice 116
The Separatory Funnel 117
 The Stopper 117
 The Teflon Stopcock 118
How to Extract and Wash What 119
 The Road to Recovery—Back-Extraction 120
 A Sample Extraction 121
 Performing an Extraction or Washing 123
 Extraction Hints 124
 Theory of Extraction 125
Exercises 127

CHAPTER 16 EXTRACTION AND WASHING: MICROSCALE 128
Mixing 128
Separation: Removing the Bottom Layer 128
Separation: Removing the Top Layer 129
Separation: Removing Both Layers 130

CHAPTER 17 SOURCES OF HEAT 131
Boiling Stones 131
The Steam Bath 132
The Bunsen Burner 133
Burner Hints 134
The Heating Mantle 135
Proportional Heaters and Stepless Controllers 137
Exercise 139

CHAPTER 18 CLAMPS AND CLAMPING 140
Clamping a Distillation Setup 142
Clipping a Distillation Setup 147

CHAPTER 19 DISTILLATION 150
Distillation Notes 151
Class 1: Simple Distillation 151
Sources of Heat 151
The Three-Way Adapter 152
The Distilling Flask 152
The Thermometer Adapter 153
The Ubiquitous Clamp 153
The Thermometer 154
The Condenser 154
The Vacuum Adapter 154
The Receiving Flask 154
The Ice Bath 154
The Distillation Example 155
The Distillation Mistake 155
Class 2: Vacuum Distillation 156
Pressure Measurement 157
Manometer Hints 158
Leaks 158
Pressure and Temperature Corrections 159
Vacuum Distillation Notes 162
Class 3: Fractional Distillation 164
How This Works 164
Fractional Distillation Notes 167
Azeotropes 168
Class 4: Steam Distillation 168
External Steam Distillation 168
Internal Steam Distillation 170
Steam Distillation Notes 171
Simulated Bulb-to-Bulb Distillation: Fakelrohr 172
Exercises 173

CHAPTER 20 MICROSCALE DISTILLATION 175
Like the Big Guy 175
 Class 1: Simple Distillation 175
 Class 2: Vacuum Distillation 175
 Class 3: Fractional Distillation 176
 Class 4: Steam Distillation 176
Microscale Distillation II: The Hickman Still 176
 The Hickman Still Setup 176
 Hickman Still Heating 177
 Recovering Your Product 178
 A Port in a Storm 178

CHAPTER 21 THE ROTARY EVAPORATOR 179
Exercises 182

CHAPTER 22 REFLUX AND ADDITION 183
Standard Reflux 183
A Dry Reflux 185
Addition and Reflux 186
 Funnel Fun 186
 How to Set Up 188
Exercise 189

CHAPTER 23 REFLUX: MICROSCALE 190
Addition and Reflux: Microscale 190

CHAPTER 24 SUBLIMATION 192

CHAPTER 25 MICROSCALE BOILING POINT 195
Microscale Boiling Point 195
Ultractoscale Boiling Point 197

CHAPTER 26 CHROMATOGRAPHY: SOME GENERALITIES 199
Adsorbents 199
Separation or Development 200
The Eluatropic Series 200
CHAPTER 27 THIN-LAYER CHROMATOGRAPHY: TLC 202

We Don’t Make Our Own TLC Plates Any More, But… 202
 Pre-prepared TLC Plates 203
The Plate Spotter 203
Spotting the Plates 204
Developing a Plate 205
Visualization 206
Interpretation 207
Multiple Spotting 209
Cospotting 210
Other TLC Problems 210
Preparative TLC 212
Exercises 212

CHAPTER 28 WET-COLUMN CHROMATOGRAPHY 214

Preparing the Column 214
Compounds on the Column 216
Visualization and Collection 217
Wet-Column Chromatography: Microscale 218
Flash Chromatography 219
Microscale Flash Chromatography 220
Exercises 221

CHAPTER 29 REFRACTOMETRY 222

The Abbé Refractometer 223
Before Using the Abbé Refractometer: A Little Practice 224
Using the Abbé Refractometer 225
Refractometry Hints 226

CHAPTER 30 GAS CHROMATOGRAPHY 227

The Mobile Phase: Gas 227
GC Sample Preparation 228
GC Sample Introduction 228
Sample in the Column 230
Sample at the Detector 231
Electronic Interlude 232
Sample on the Computer 233
Parameters, Parameters 234
 Gas Flow Rate 234
 Temperature 234
Exercises 235
<table>
<thead>
<tr>
<th>CHAPTER 31</th>
<th>HP LIQUID CHROMATOGRAPHY</th>
<th>236</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Mobile Phase: Liquid</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>A Bubble Trap</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>The Pump and Pulse Dampener Module</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>HPLC Sample Preparation</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>HPLC Sample Introduction</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>Sample in the Column</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Sample at the Detector</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Sample on the Computer</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>Parameters, Parameters</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>Eluent Flow Rate</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Eluent Composition</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>244</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 32</th>
<th>INFRARED SPECTROSCOPY (AND A BIT OF UV-VIS, TOO)</th>
<th>245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecules As Balls On Springs</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>Ah, Quantum Mechanics</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>The Dissonant Oscillator</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>But Wait! There’s More</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>More Complicated Molecules</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>Correlation Tables to the Rescue</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Troughs and Reciprocal Centimeters</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>Some Functional Group Analysis</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>A Systematic Interpretation</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Infrared Sample Preparation</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>Liquid Samples</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>Solid Samples</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>Running the Spectrum</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>Interpreting IR Spectra—Finishing Touches</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>The Fourier Transform Infrared (FTIR)</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>The Optical System</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>A Reflectance Attachment: Something to Think About</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>And UV-VIS Too!</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Electrons Get to Jump</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>Instrument Configuration</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Sample (and Reference) Cells</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Solvents</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>271</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 32 ON THE DUAL-BEAM INFRA-RED INSTRUMENT (ONLINE) 1

The Perkin-Elmer 710B IR 2
Using the Perkin-Elmer 710B 4
The 100% Control: An Important Aside 5
Calibration of the Spectrum 6
IR Spectra: The Finishing Touches 7

CHAPTER 33 NUCLEAR MAGNETIC RESONANCE 272

Nuclei Have Spin, Too 272
The Magnetic Catch 273
Everybody Line Up, Flip, and Relax 273
A More Sensitive Census 274
The Chemical Shift 274
T For One and Two 275
Be It Better Resolved... 275
Incredibly Basic FT-NMR 276
NMR Sample Preparation 276
Some NMR Terms and Interpretations 280
The Chemical Shift and TMS Zero 280
Integration and Labeling 282
Threaded Interpretations: Spectrum #1 (t-butyl alcohol) 283
Threaded Interpretations: Spectrum #2 (Toluene) and Spectrum #3
(p-Dichlorobenzene) 283
Threaded Interpretations: Spectrum #4 (Ethylbenzene) and Spectrum #5
(A Double Resonance Experiment) 285
Use a Correlation Chart 288
Exercises 290

CHAPTER 34 THEORY OF DISTILLATION (ONLINE) 1

Class 1: Simple Distillation 1
Clausius and Clapeyron 3
Class 3: Fractional Distillation 5
A Hint from Dalton 5
Dalton and Raoult 5
A Little Algebra 6
Clausius and Clapeyron Meet Dalton and Raoult 7
Dalton Again 8
What Does It All Mean? 10
Reality Intrudes I: Changing Composition 12
Reality Intrudes II: Nonequilibrium Conditions 12
Reality Intrudes III: Azeotropes 13
Other Deviations 16
Class 4: Steam Distillation 16

INDEX 291