Index

α-acetolactate synthase, 60, 137
α-acids, 316
α-amylase, 313
Aaps (acetate adaptation proteins), 405
ABC transport systems in lactic acid bacteria, 53–56
Abortive infection systems (Abi), 200
Accelerated ripening, 191
AcDH (acetaldehyde dehydrogenase), 403
Acetaldehyde, 119, 141, 401
Acetaldehyde dehydrogenase (AcDH), 403
Acetaldehyde-TTP, 137
Acetate adaptation proteins (Aaps), 405
Acetate oxidation pathway, 405
Acetate-specific stress proteins (Asps), 405
Acetic acid bacteria, 393–394, 411, 412, 414
Acetic acid fermentation, 403
Acetic acid formation, 409
Acetic acid oxidation, 415
Acetic acid pathway, 403
Acetic acid resistance (aar) operons, 405
Acetobacter, 37, 354, 393, 394, 398, 399, 401, 404, 405, 406, 407, 408, 411, 414
Acetobacteraceae, 37, 399
Acetobacter aceti, 37, 75, 140, 393, 405, 408
Acetobacterium, 399
Acetobacter orleanensis, 37
Acetobacter pasteurianus, 393, 399, 408
Acetobacter pasteurianus subsp. pasteurianus, 37
Acetous fermentation, of ethanol, 398
Acid-coagulated cheeses, 166–169
Acidification, 155, 439
Acidomonas, 399
Acidophilic organisms, 358
Acid-producing bacteria, 135
Acid-tolerance, 33
Actinobacteria, 19, 20, 39
Adapted cells, 405
Adjuncts, 313–314
Aeration, 257, 411
Aerobes, 210
Aerobic chemical reactions, 7–8
Aerobic metabolism, 324
Aerococcus, 25
Aflatoxin biosynthesis, 450
Aflatoxin genes, 453
AFLP (amplified fragment length polymorphism), 322
AfR gene, 453
Aged cheese, 158
Agglomerates, 392
Aging
  cheese, 165–166
  wine, 380–382
α-glucoside transporter (AGT1), 324
AGT1 (α-glucoside transporter), 324
Airborne microorganisms, 372
Air handling systems, 294
Akamiso, 434
Alcaligenes, 203
Alcohol and Tobacco Tax and Trade Bureau (TTB), 354
Alcohol dehydrogenase (ADH), 325, 403, 415
Alcoholic fermentations, 4
Aldehydes, 403
Acetate adaptation proteins (Aaps), 405
Acetate-specific stress proteins (Asps), 405
Acetic acid bacteria, 393–394, 411, 412, 414
Acetic acid fermentation, 403
Acetic acid formation, 409
Acetic acid oxidation, 415
Acetic acid pathway, 403
Acetic acid resistance (aar) operons, 405
Acetobacter, 37, 354, 393, 394, 398, 399, 401, 404, 405, 406, 407, 408, 411, 414
Acetobacteraceae, 37, 399
Acetobacter aceti, 37, 75, 140, 393, 405, 408
Acetobacterium, 399
Acetobacter orleanensis, 37
Acetobacter pasteurianus, 393, 399, 408
Acetobacter pasteurianus subsp. pasteurianus, 37
Acetous fermentation, of ethanol, 398
Acid-coagulated cheeses, 166–169
Acidification, 155, 439
Acidomonas, 399
Acidophilic organisms, 358
Acid-producing bacteria, 135
Acid-tolerance, 33
Actinobacteria, 19, 20, 39
Adapted cells, 405
Adjuncts, 313–314
Aeration, 257, 411
Aerobes, 210
Aerobic chemical reactions, 7–8
Aerobic metabolism, 324
Aerococcus, 25
Aflatoxin biosynthesis, 450
Aflatoxin genes, 453
AFLP (amplified fragment length polymorphism), 322
Antibiotics, in milk, 163
Anti-botulinum agents, 223
Anticarcinogenic constituents, 244
Anti-fungal agents, 274
Antimicrobial activity, 234
Antimicrobial compounds, 215
‘Anti-nutritional’ properties, 287
Antioxidant properties, in olives and olive oil, 254
AOC (Appellation d’Origine Contrôlée) laws, 353
Appellation d’Origine Contrôlée (AOC) laws, 353
ArcD (arginine transporter), 51
Archea, 1
Arginine transporter (ArcD), 51
Arrest germination, 310
Arthrobacter, 182
Aschyta, 252
Asci-containing spores, 321
Ascomycetes, 17
Ascomycota, 17, 41
Asian foods. See Oriental foods
Aspergillus, 41, 43, 62, 220, 258, 292, 294, 389, 390, 425, 450
Aspergillus flavus, 450
Aspergillus nidulans, 154
Aspergillus niger, 154, 338, 346
Aspergillus oryzae, 43, 76, 422, 423, 424, 431, 434, 444, 450, 455
Aspergillus parasiticus, 450, 455
Aspergillus sojae, 43, 76, 422, 423, 424, 435, 450, 453
Asps (acetate-specific stress proteins), 405
ATP-binding cassette (ABC) systems, 54, 55–56, 317
ATP synthase, 21
ATP synthase reaction, 376
AVA (American Viticulture Areas), 355
avrA gene, 453
AWA1 gene, 446
A. xylinum, 409
Bacillus cereus, 131
Bacillus licheniformis, 293
Bacillus mesentericus, 293
Bacillus subtilis, 19, 37, 293
Bacillus subtilis var. natto, 456
Backslopping, 67–68, 163, 210–211, 367
Bacteria, 18
surface-ripening of cheese by, 181–182
used in manufacture of fermented foods, 19–20
wine spoilage by, 393–395
Bacterial starter cultures, 74–75
Bacteriocin nisin, 247
Bacteriocins, 105, 215, 217
Bacteriophage genomics, 71–72
Bacteriophage problem, 95
Bacteriophages, 71, 94–96, 116, 194–202, 239
Bacterium Güntheri, 77
Bacterium lactis, 19, 77
Bacterium lactis acidii, 77
Baked sherries, 386
Bakers’ yeast, sugar metabolism by, 278–280
Baking bread, 282–283
Balsamic vinegar, 409
β-amylase, 313
Barley, 12, 309
Barley malt, 340
Base wines, 387–388
Basidiomycota, 17, 18
Beaujolais nouveau, 381
Beef fat, 222
Beer, 301–347
defects, 333–335
enzymatic reactions, 308–316
adjuncts, 313–314
malt enzymology, 313
overview, 308–313
wort, 314–316
fermentation, 319
fermentors, 319–320
defects, 333–335
flocculation, 325–326
hops, 316–319
industry, 303–307
and biotechnology, 340–347
recent developments in beer, 336–340
waste management in, 335–336
inoculation, 320–323
carbonation, 331–332
clarification, 329–330
conditioning, 328–329
overview, 326–328
packaging and pasteurization, 332–333
process aids, 330–331
spoilage and origins of modern science, 303
yeast metabolism, 323–325
Berlin, Irving, 233
β-galactosidase, 12, 53, 127, 134
β-glucanases, 335, 346
Bifidobacterium, 20, 37–39, 104, 109
Bifidobacterium adolescentis, 37
Bifidobacterium bifidum, 37
Bifidobacterium bifidus, 130
Bifidobacterium breve, 37
Bifidobacterium infantis, 37
Bifidobacterium lactis, 37
Bifidobacterium longum, 37
Binary fission, 321
Biogenic amines, 221, 259
Biological oxygen demand (BOD), 204
Biological preservatives, in dough, 274
Biological spoilage, 294
Biomarkers, 132
Biomass fermentations, 370
Biotechnology, and brewing, 340–347
examples of modified brewing strains, 346–347
overview, 340–342
strain improvement strategies, 343–346
Bitter peptides, 192–193
Blobers, 249
Blue-mold ripened cheese, 182–184
Bock beer, 336
BOD (biological oxygen demand), 204
Boerhaave, Hermann, 412
Bordeaux wines, 351
Botrytis cinerea, 385
Bottom-fermenting yeast, 320
Bovine milk, 155
Brandy, 388–389
Bread, 261–299
baking, 282–283
biological spoilage, 291–294
bread quality, 295–299
cooling, 283
dividing, 282
fermentation, 277–282
end products, 280–282
factors affecting growth, 282
glycolysis, 280
overview, 277–278
sourdough fermentation, 285–290
sugar metabolism by bakers’ yeast, 278–280
sugar transport, 280
flour composition, 265–269
carbohydrates, 268–269
overview, 265
protein, 265–268
history of, 261–263
hydration, 277
ingredients, 272–277
manufacturing principles, 272
milling, 263–265
mixing, 277
overview, 261
packaging, 283
panning, 282
preservation, 294–295
proofing, 282
rounding, 282
staling, 290–291
technology, 283–285
Chorleywood process, 285
liquid sponge process, 284–285
overview, 283–284
sponge and dough process, 284
straight dough process, 284
wheat chemistry, 263–265
yeast cultures, 269–272
Breast-fed infants, 110
Brettanomyces, 334, 378, 379, 393, 394
Brettanomyces bruxellensis, 393
Brevibacillus, 130
Brevibacterium, 20, 39
Brevibacterium linens, 39, 75, 181, 195
Brewing. See Beer
Brie, 184, 185
Brine, 233, 246
Brining, 175
Brix, 357
Brochothrix, 216
Brochothrix thermosphacta, 231
Bromates, 274
Brown Ale, 336
B. thermosphacta, 232
Bulk culture tank, 196–197
Bulk fermentation, 282, 284
Bulk starter cultures, 91–93
Buttermilk. See Cultured buttermilk
Butts, 386
Cabbage, 233
Cabernet Sauvignon grapes, 352
Calcium carbonate, 370
Calcium-induced coagulation, 150
Calcium phosphate, 179
Calcium propionate, 275, 294
Calf chymosin, 152
California-style olives, 257–258
Camembert, 184, 185
Candida, 235, 393, 439
Candida milleri, 288, 289
Candida versitalis, 426
CAR1 gene, 297
Carbohydrates, 278, 335, 338, 419
in beer, 314
in flour, 268–269
Carbon aldehyde, 119
Carbonation, in beer, 331–332
Carbon dioxide, 175, 181, 317, 420
Carbon dioxide-evolving fermentation, 79
Carbon-utilization pathways, 64
Carboxylic acid, 358
Carlin, George, 121
Carlsberg Brewery, 69
Carnobacterium, 23
Casein, 58, 113, 149, 150, 170, 189, 191
Caseinate salts, 149
Casings, 225
Catabolic enzymes, 297
Catabolic pathways, 278
Catabolite control protein A (CcpA), 21, 56, 432
Catabolite repression element (CRE), 56, 324, 432
CcpA (Catabolite control protein A), 21, 56, 432
Complimentary DNA (cDNA), 153
Cell-containing gel beads, 103
Cell densities, 223
Cellulose filters, 330
Champagne, 353, 370, 386, 387–388
Charmelet method, 387
Cheddar cheese family, 169–172
Cheddar-like cheeses, 94
Cheese, 145–205
Mold-ripened cheese, 182–184
curds, 148–149
Dutch-type cheeses, 181
factories, 9
hard Italian cheese, 180–181
making, 155–166
aging, 165–166
curdl, 164–166
curd handling, 164–165
cutting and cooking, 164
milk, 155–161
overview, 155
salting, 165
starter cultures, 161–163
manufacturing principles, 147–155
converting liquid into solid, 148–154
overview, 147–148
squeezing out water, 154–155
microbial defects, preservation, and food safety, 202–204
mold-ripened cheese, 182
Mozzarella and pasta filata, 176–180
overview, 145–147
pickled, 185–186
process and cold pack cheese, 186–187
ripening, 187–190
overview, 187–188
proteolysis in cheese, 188–190
surface-ripened by bacteria, 181–182
Swiss, 172–176
technology, 190–202
bacteriophages, 194–202
bitterness and accelerated ripening, 191–194
overview, 190–191
types of, 166–172
acid-coagulated cheeses, 166–169
cheddar family, 169–172
overview, 166
whey utilization, 204–205
white-mold ripened cheese, 184–185
Chemical oxidation reaction, 257
Chemical pasteurization, 247
Chillproofing agents, 331
Chlorinated polyphenols, 391
Chorleywood process, 285
Chymosin, 150–151, 185
Chytridiomycota, 17
CitP (citrate permease), 60, 137
Citrate fermentation, 60–61, 137, 181
Citrate permease (CitP), 60, 137
Citrate salts, 93–94
Citrate-to-diacetyl pathway, 61
Citric acid cycle enzymes, 415
Clostridium, 354
Clostridium butyricum, 442
Clostridium sporogenes, 259
Clostridium tyrobutyricum, 202
Coagulation, in cheese-making process, 163–164
Cognac, 388
Colby cheese, 171
Cold pack cheese, 186–187
Cold-pasteurized beer, 330
Complimentary DNA (cDNA), 153
Compressed yeast, 269
Computer-generated meteorological models, 352
Concord grapes, 351
Conditioning, in beer-making, 328–329
Conidia, 17
Consejo Superior de Investigaciones Científicas, 128
Cooking
cheese, 164
sausage, 229–230
Coppers, 310
Corks, 389, 390, 391
Coronary disease, 360
Corynebacterium, 182
Coryneform bacteria, 39
Cottage cheese, 166, 168
Crabtree effect, 376
CRE (catabolite repression element), 56, 324, 432
Cream Ale, 337
Cream cheese, 166, 168–169
Crude hybrids, 263
Cryotolerance, 87
Cucumbers, 245, 246
Cultured butter, 69–70
Cultured buttermilk, 135
factors affecting diacetyl formation in, 138
manufacturing of, 135–138
Cultured dairy products, 107–144
consumption of, 107–109
cultured buttermilk, 135
factors affecting diacetyl formation in, 138
manufacturing of, 135–138
defects, 121–127
fermentation principles, 109–114
kefir manufacturing, 140–141
other cultured dairy products, 141–144
overview, 107
and probiotic bacteria, 108–109
sour cream, 138–140
yogurt
flavor and texture, 119–121
frozen, 134–135
manufacturing of, 114–119
styles, 127–134
Culture inoculum, 166, 372
Culture production, 370
Curds, 164–165, 168
Curing agents, in fermented meats, 223
C. versatilis, 434
Cyd genes, 22
Cylindrical fermentation vessels, 412
Cylindroconical fermentation vessels, 320
Cylindroconical fermentors, 320
Cytoplasmic membranes, 50, 275, 378, 403
Dairy products. See Cultured dairy products
Dairy starter cultures, 70
Dark beers, 311
Dark malts, 311
Debaryomyces, 334
Debaryomyces Hansenii, 230
De-bittering of cheese, 195
Decarboxylase enzymes, 359
Decarboxylating enzymes, 221
Decarboxylation, 250
Decoction heating, 512
Decoction mashing, 512
Dehydrogenases, 406
Dekkera, 378, 379
Dekkera Bruxellensis, 379
Deminerlization, 397
De novo synthesis, 215
Deuteromycetes, 17
Deuteromycota, 17
Dextrins, 346
DHAP (dihydroxyacetone phosphate), 341
Diacetyl, 136, 141, 334
Diacetilactis, 95
Diacetyl, 136, 141, 334
Diactellactis, 95
Diacetyl formation, in cultured buttermilk, 138
Diacetyl rest, 325
Diacetyl synthesis, 138
Diastase, 310
Diastaticus, 333
Diastatic yeasts, 333
Dihydroxyacetone phosphate (DHAP), 341
Di Origine Controllate (DOC), 410
Disgorgement, 388
Distillation, 388
Djordjevic, G.M., 200
DNA-DNA hybridization, 19
DNA microarray technology, 19
DNA residues, 373
DNA-RNA hybridization, 19
DOC (di Origine Controllate), 410
Dried malt, 310
Dry acid, 170
Dry active yeast, 272
Dry beer, 339
Dry curd, 168
Dunkel beer, 337
Dutch-type cheeses, 181
Economic value, 13
Eden, Karl J., 315
Egyptian pottery vessels, 4
Elastic dough, 274
Elenoic acid glucoside, 255
Embden-Meyerhoff (EM) pathway, 45, 280, 375
Embden-Meyerhoff-Parnas (EMP) pathway, 279, 323, 325
Emulsification, 187, 277
Emulsifiers, 277
Emulsifying salts, 186
Encapsulated cells, 101–104
Endogenous flora, 182
Endogenous lactic acid bacteria, 285
Endogenous microbial population, 255
Endogenous yeasts, 443
Endopeptidases, 59
Endosperm, 265
Endothelin-1 (ET-1), 361
Enterobacter, 235, 238, 242, 439, 440
Enterobacteriaceae, 221, 334, 441
Enterococcus, 23, 26, 33, 78, 235, 240
Enterococcus Solitarius, 33
Enterotoxins, 442
Enzymatic activities, 422
Enzymatic hydrolysis, 441
Enzymatic reactions, in beer, 308–316
adjuncts, 313–314
malt enzymology, 313
overview, 308–315
wort, 314–316
Enzyme-catalyzed reactions, 194
Enzyme chymosin, 69, 149
Enzyme hydrolyzes, 149
Enzyme nitrate reductase, 213–214, 218
Enzymes, 166, 272–273
Enzymes hydrolyze proteins, 331
Enzyme synthesis, 308
Epigenetic silencing, 328
Epiphytic flora, 235
Epiphytic yeasts, 367
EPS (exopolysaccharides), 378
epsD gene, 125
Ergosterol, 323
Erwinia, 238
Escherichia, 235
Index

ET-1 (endothelin-1), 361
Ethyl carbamate, 359
Eubacterium, 398
Eukarya, 16, 17
Eukaryotic organisms, 321
Exogenous enzymes, 443
Exons, 152
Exopeptidases, 59
Exopolysaccharides (EPS), 121
Extracellular invertase, 325
Extrachromosomal element, 321
Facultative yeasts, 257
Fass, 310
Fat
  in beef, 222
  in cheese, 171
  in dough, 274
Fatty acids, 193
FDP (fructose-1,6-bisphosphate), 375
Fermentable carbohydrate, 324
Fermentable sugars, 291, 331
Fermentation acids, 231
Fermentation-derived vinegar, 415
Fermentation temperature, 304
Ferridoxin, 224
Feta cheese, 185
Filtration, 530, 380
Firmicutes, 19, 22
Fisher, M.F.K., 261
Fish-eyes, 249
Fish sauces, 447
Flash pasteurization, 332–333, 427
Flavici, 450
Flavobacterium, 235, 242, 248
Flavonoids, 363
Flavor-generating substrate, 193
Flavor-producing bacteria, 135
Flouters, 249
Flocculation, 91, 325–326, 330
Flocs sediment, 320
Flour, 12, 265–269
  carbohydrates, 268–269
  overview, 265
  protein, 265–268
Food poisoning, 11, 221
Food safety
  cheese, 202–204
  fungal fermented foods, 450–455
  tempeh, 441–443
Fortified wines, 385–386
FOS (fructooligosaccharide) molecules, 112
Free fatty acids, 183
Free sugars, 273
French bread, 297
French Paradox, 361
Frings generator, 413
Frozen cultures, 223
Frozen dough, 295
Frozen liquid cultures, 86
Fructooligosaccharide (FOS) molecules, 112
Fructose-1,6-bisphosphate (FDP), 375
Fungal cultures, 76
Fungal fermented foods, safety of, 450–455
Fungal spores, 293
Fungi, 17–18, 389–392
Furanone, 429
Fusarium, 252, 258, 333
G-3-P (glyceraldehyde-3-phosphate), 341
Galactooligosaccharides (GOS), 112
Galactose-6-phosphate, 53, 118, 174
Galactose efflux, 119
Galactose metabolism, 174
Galactose phosphorylation, 174
Galactosyltransferase, 393, 399
Garolla crusher, 366
Gaulle, Charles De, 155
Gene cluster, 124
Gene expression patterns, 345
Generally Regarded As Safe (GRAS), 78
Genetically engineered organisms, 102
Genetically modified organisms (GMOs), 101, 102, 103
Genomes, 63, 345
Geotrichum candidum, 141
German beer industry, 304
German Purity Law, 315
Gliadin, 268
Glomeromycota, 18
Glucamylase genes, 346
Glucokinases, 280
Gluconacetobacter europaeus, 399
Gluconacetobacter xylinus, 399
Gluconoacetobacter, 37, 393, 399
Gluconoacetobacter europaeus, 37
Gluconoacetobacter xylinus, 37
Gluconobacter, 37, 334, 393, 394, 399, 401, 406, 407, 410
Gluconobacter entanii, 399
Gluconobacter oxydans, 393, 399
Glucose, 53, 57, 222, 268, 272, 323, 324
Glucoside ester, 253
Glucosidic phenols, 254
Glutamic acid, 423, 425
Gluten, 277
Glutenin, 268
Glyceraldehyde-3-phosphate (G-3-P), 341
Glyceraldehyde-3-phosphate dehydrogenase (GPD), 341
Glycerol, 341
Glycerol-3-phosphatase (GPP), 341
Glycerol-3-phosphate, 376
Glycolysis, in bread fermentation, 280
Glycolytic Embden-Meyerhoff pathway, 45
Glycolytic flux, 49
Glycolytic pathway, 53, 375
GMOs (genetically modified organisms), 101, 102, 103
GMP (guanosine 5’-monophosphate), 430
Goat milk, 155
Goode, Jamie, 356
Gorgonzola, 182
GOS (galactooligosaccharides), 112
GPD (glyceraldehyde-3-phosphate dehydrogenase), 341
GPP (glycerol-3-phosphatase), 341
Grape cultivation, 350
Grapes, 351–357
  crushing, 366
domestication of, 350
  harvesting, 363–366
GRAS (Generally Regarded As Safe), 78
Greek-style olives, 257
“Green” barley, 309
Green beer, 326
Grist, 312
GroESL, 405
Guanosine 5’-monophosphate (GMP), 430
G. xylinus, 408
H^+–ATPase system, 250
H2S (Hydrogen sulfide), 359
HAACP (Hazard Analysis Critical Control Points), 203, 224
*Halobacillus*, 449
Hansen, Christian Ditlev Ammentorp, 69
Hansen, Emil Christian, 69, 303
*Hansenula*, 235, 378, 393, 436
Hard Italian cheese, 180–181
Hazard Analysis Critical Control Points (HAACP), 205, 224
Haze-forming proteins, 351
HDL (high-density lipoprotein) cholesterol, 361
Hemagglutinins, 443
Heme iron, 231
Hemiascomycetes, 17
Hesseltine, C.W., 437
Heterofermentation, 45–48
Heterofermentative leuconostocs, 241
Heterofermentative phosphoketolase pathway, 289
Heterofermentative products, 212
Heteropolysaccharides, 122
Hexokinases, 280, 289
Hexoses, 53
*Hibiscus* plant, 440
High beers, 304
High-density lipoprotein (HDL) cholesterol, 361
Highgravity fermentations, 340
High krausen, 325
High-moisture cheeses, 164
Histamine, 221
Homfermentation, 45
Homogenization, 169
Homogenous fermentation, 435
*HorA system*, 317
HSP30 gene, 329
Husk degradation, 312
Hybrid corks, 392
Hydraulic filter presses, 427
Hydrogenase, 224
Hydrogenated vegetable oils, 274
Hydrogen peroxide, 163, 212, 215, 231
Hydrogen sulfide (H2S), 359
Hydrolysis, 293
Hydrolysis products, 231
Hydrolases, 296, 366
Hydrolyze dextrins, 339
Hydrolyze milk proteins, 97
Hydrolyzing enzymes, 118
Hydrophilic polysaccharides, 120
Hydroxyl radicals, 231
Hydroxytyrosol, 255
IBU (International Bitterness Units), 316
Ice beer, 339
Immoblized cells, starter cultures, 101–104
Immoblized lactic acid bacteria, 104
Immunoglobulins, 163
IMP (inosine 5’-monophosphate), 430
Indigenous microflora, 367
Industry
  beer, 303–307
  and biotechnology, 340–347
  recent developments in, 356–340
  waste management in, 335–336
  fermented foods, 10–11
  meat fermentations, 208–210
  starter cultures, 105–106
Inoculum, 211
Inosine 5’-monophosphate (IMP), 430
International Bitterness Units (IBU), 316
Intracellular metabolism, 325
Introns, 152
Ionic compounds, 250
Iso-α-acids, 317
Isocohumulone, 316
Isohumulone, 316
Isomerized extracts, 319
Isomerized iso-α-acids, 335
Italian cheese
  hard, 180–181
  Mozzarella, 176–180
  Italian-type cheeses, 145
James, T.C., 344
Kappa casein, 149
Kefir, 104, 140–141, 142
Kegging, 332
Kegs, 332
Kettle boil, in beer-making, 319
Killer toxins, 378–379
Kilning, 333
Kimchi, 234, 242–244
Klaenhammer group, 199
Klatsky, 360
Klebsiella, 235, 334, 439
Klebsiella pneumoniae, 441, 442
Kloeckera, 378
Kloeckera apiculata, 371, 373, 393
Kluyveromyces, 41, 333, 378
Kluyveromyces lactis, 154
Kluyveromyces wickerhamii, 379
Kocuria, 20, 39, 213, 214, 218
Kocuria varians, 39
Koji, 423, 433–434
microorganisms, 422
overview, 421
raw materials preparation, 421
Koji-rice-water, 445
Krasner, R.I., 304
Krausen, 325
Krausening, 310, 328
LAB exopolysaccharide biosynthesis, 124
Lactobacillus sakei, 216
Lac operon, 57
LacR, 56–57
Lactate, 62
Lactate dehydrogenase, 49, 138
Lactate salts, 93
genera of, 22–25
Lactobacillus, 33–35
Lactococcus, 25–26
Leuconostoc, 29–30
Oenococcus, 30–31
overview, 20–22
Pedioococcus, 31–32
Streptococcus, 26–28
sugar transport by, 48–53
overview, 48–49
phosphoenolpyruvate-dependent phosphotransferase system, 49–53
symport and ABC transport systems in, 53–56
Tetragenococcus, 32–33
Lactic acid fermentation, 235–236
Lactic acid starter cultures, 99
Lactic culture, 114
Lactic fermentation, 235, 286
Lactobacillales, 22
Lactobacilli, 203, 241, 334
Lactobacillus, 33–35, 37, 74, 84, 104, 122, 131, 142, 190, 193, 194, 211–212, 218, 235, 239, 334, 382, 394, 395, 446
Lactobacillus acidophilus, 35, 86, 88, 109, 130
Lactobacillus brevis, 35, 240, 247, 257, 288, 317, 334, 394
Lactobacillus buchneri, 203
Lactobacillus bulgaricus, 86, 135
Lactobacillus casei, 35, 104, 109, 128, 190, 194, 257, 334, 439
Lactobacillus causasicus, 141
Lactobacillus curvatus, 202, 212
Lactobacillus curvatus, 240
Lactobacillus fermetum, 202, 257
Lactobacillus helveticus, 35, 45, 86, 92, 104, 122, 162, 173, 177, 178, 194
Lactobacillus kefir, 141, 142
Lactobacillus kefiranofaciens, 142
Lactobacillus kefirgranum, 142
Lactobacillus paracasei, 190, 194
Lactobacillus parakefir, 142
Lactobacillus-Pediococcus, 23, 35
Lactobacillus plantarum, 35, 190, 212, 215, 239, 240, 242, 244, 247, 248, 250, 251, 257, 287, 334
Lactobacillus reuteri, 122
Lactobacillus sake, 212, 231, 446
Lactobacillus sakei, 215
Lactobacillus sakei subs. sakei, 35
Lactobacillus sanfranciscensis, 35, 45, 75, 122, 287, 288, 289
Lactobacillus sanfrancisco, 288
Lactobacillus sporogenes, 130
Lactococcal-derived genes (LlAIr), 200
Lactococcal peptidases, 190
Lactococci, 133, 197
Lactococcus, 19, 23, 25–26, 74, 142, 166, 193, 194
Lactococcus garviae, 25
Lactococcus lactis, 18, 19, 21, 45, 52, 63, 74, 77, 78, 82, 89, 91, 103, 122, 135, 178, 183, 200
Lactococcus lactis subs. cremoris, 25–26
Lactococcus lactis subs. cremoris, 27–28, 45, 78, 82
Lactococcus lactis subs. cremoris, 93, 97
Lactococcus lactis subs. cremoris, 161, 169, 192
Lactococcus lactis subs. diacetilactis, 25
Lactococcus lactis subs. bordinae, 25
Lactococcus lactis subs. lactis, 27, 78, 82, 93, 96, 97, 135, 161, 169, 178, 188, 190, 192, 199
Lactococcus piscium, 25
Lactococcus plantarum, 25, 231
Lactococcus raffinolactis, 25
Lactoperoxidase reaction, 163
Lactose, 12, 55, 127, 165
Lactose:galactose exchange reaction, 55
Lactose-phosphate, 53
Lager beer, 357
Lager fermentation vessels, 320
Lagering, 310
Lager-style beer, 303
Lambic beer, 337
Lauter tun, 310
L. curvatus, 231
LDL (low-density lipoprotein), 254, 361
Leavened bread, 262, 264
Leavening, 262
Leloir pathway, 55, 119
Leuconostoc, 23, 29–30, 74, 84, 142, 181, 183, 239, 240, 248, 394, 446
Leuconostocaceae, 29
Leuconostoc cremoris, 135
Leuconostoc fallax, 29
Leuconostoc kimchii, 29, 45
Leuconostoc lactis, 29, 45, 135, 162, 181
Leuconostoc mesenteroides, 93, 122, 162, 181, 238, 242, 244, 247, 250, 257, 394
Leuconostoc mesenteroides subsp. cremoris, 29, 135
Leuconostoc mesenteroides subsp. mesenteroides, 29, 45
Levine, Philip, 207
Limburger cheese, 181
Linearization, 170
Lipases, 180
Lipid fraction, 188
Lipid hydrolysis, 440
Lipid phase, 155
Lipolytic, 214
Liquid fermentations, 103
Liquid sponge process, 284–285
Listeria, 20, 216, 217
Listeria-active non-lanthionine peptides, 215
Listeria monocytogenes, 31, 160, 185, 211, 216, 219, 220
LhaR, 200
Logarithmic growth phase, 319, 323, 325
Low-calorie beer, 357–359
Low-density lipoprotein (LDL), 254, 361
Low-moisture cheeses, 164
Lymphocytes, 128
Lyophilization, 86, 87, 212
Lysogenic infection, 73
Lytic phages, 98, 201
Maceration, 366
Maillard reaction, 178, 298, 319
Major depressive disorder (MDD), 128
Malic acid, 358, 382, 383
Malolactic fermentation, 101, 380, 382–384, 386, 387
Malt, 313, 336
Maltase, 280
Malting houses, 308
Malt Liquor, 357
Maltose, 280, 308, 325
Maltotriose hydrolysis, 325
Malt-water mixture, 312
Mannose, 327
Mash, 310
Mash liquid, 314
Mash off, 310
Mash tun, 310
McKay, Larry, 98, 99–100
MDD (major depressive disorder), 128
MDR (multiple drug resistance) systems, 317
Meat fermentations, 207–232
defects and spoilage of fermented meats, 231–232
flavor of fermented meats, 230–231
industry, 208–210
ingredients, 222–224
culture, 223
curing agents, 223
meat, 222
overview, 222
salt, 222–223
spices, flavoring and other ingredients, 223–224
sugar, 222
meat composition, 210
Micrococcaceae cultures, 218
overview, 207–208
principles, 210–211
protective properties of cultures, 215–218
sausage manufacture, 224–230
cooking, drying, and smoking, 229–230
cutting and mixing, 224–225
fermentation, 226–229
mold-ripening, 230
overview, 224
principles of, 218–221
stuffing, 225–226
starter cultures, 211–215
Mechanical harvesting, 365
Mediterranean diet, 254
Mesophilic cultures, 162
Mesophilic lactic starter culture, 183
Metabolic engineering, 62–66
Metabolism. See Microorganisms and metabolism
Metabolome, 345
Methyl ketones, 187
Microbial classification, 15–19
bacteria, 18
fungi, 17–18
microbial taxonomy and methods of analysis, 19
nomenclature, 18–19
overview, 15–16
three domains of life, 16–17
Microbial cryoprotectants, 295
Microbiological quality, 159
Microbiological stability, 303
Micrococcaceae, 218, 221
Micrococcus, 20, 39, 75, 213, 214, 218, 425–426, 449
Micrococcus luteus, 39
Microflora, 222, 235–236, 367, 450
Microorganisms and metabolism, 15–66
Acetobacter, 37
Bacillus, 37
bacteria used in manufacture of fermented foods, 19–20
Bifidobacterium, 37–39
Brevibacterium, 39
Microorganisms and metabolism, (continued)
fermentation and metabolism basics, 43–44
Gluconoacetobacter, 37
Gluconobacter, 37
Kocuria, 39
lactic acid bacteria, 20–35
genera of, 22–25
Lactobacillus, 33–35
Lactococcus, 25–26
Leuconostoc, 29–30
Oenococcus, 30–31
overview, 20–22
Pediooccus, 31–32
Streptococcus, 26–28
Tetragenococcus, 32–33
metabolic engineering, 62–66
microbial classification, 15–19
bacteria, 18
fungi, 17–18
microbial taxonomy and methods of analysis, 19
nomenclature, 18–19
overview, 15–16
three domains of life, 16–17
Micrococcus, 39
other metabolic systems, 60–62
citrate fermentation, 60–61
metabolism of molds, 62
overview, 60
propionic acid fermentation, 61–62
overview, 15
Propionibacterium, 39–40
protein metabolism, 58–60
overview, 58
peptidases, 59–60
peptide transport systems, 58–59
proteinase system, 58
regulation of transport systems, 56–57
Staphylococcus, 39
sugar metabolism, 44–48
heterofermentation, 45–48
homofermentation, 45
overview, 44–45
by Saccharomyces cerevisiae, 57–58
sugar transport by lactic acid bacteria, 48–53
overview, 48–49
phosphoenolpyruvate-dependent
phosphotransferase system, 49–53
symport and ABC transport systems in lactic acid
bacteria, 53–56
yeasts and molds used in manufacture of fermented
foods, 41–43
Aspergillus, 43
overview, 41
Penicillium, 43
Saccharomyces, 41–43
Milk
in cheese-making process, 155–161
fat in, 191–192
in yogurt manufacture, 114
Milk-borne bacteria, 172
Milk protein casein, 58
Milling, 263–265, 312
Miso, 431–436
fermentation, 434–436
manufacture of, 434
overview, 431–434
spoilage and defects, 436
Modern fermented foods industry, 10–11
Mold-fermented sausages, 230
Mold-ripened cheese, 182–185
blue-mold ripened cheese, 182–184
white-mold ripened cheese, 184–185
Molds. See Yeasts and molds
Mold starter cultures, 76
Molecular archaeological analyses, 4
Moles, 280
Montiilla acetobutens, 414
Monilia, 390
Monosaccharides, 434
Moromi enzymology, 424–425
Moromi mash, 425
Mousy (tourne), 304
Mozzarella cheese, 176–180
MRNA, 152
Mucor, 17, 41, 294, 389, 390
Mucor miehei, 152
Mucor pusillus, 152
Müller-Thurgau, Hermann, 69
Multiple drug resistance (MDR) systems, 317
Mycotoxigenic aspergilli, 450
Mycoprotein formation, 294
Myriad enzymes, 309
NAD-dependent decarboxylase, 382
NADH-dependent lactate dehydrogenase, 56
Natto, 436
Natal milk flora, 194
Neolithic pottery vessels, 5
Neutralizing agents, 93
NewFlo phenotype, 328
Nitrate-reducing bacteria, 214
Nitrate-to-nitrite reaction, 214
Nitric oxide (NO), 222, 224
Nitrite, 222, 223, 224
Nitrite salts, 224
Nitrogen, 358, 377, 428
Nitrogenous compounds, in wine, 358–359
NO (nitric oxide), 224, 361
Non-alcoholic beer, 339–340, 341
Non-digestible food ingredient(s), 110
Non-enzymatic browning, 311
Nonfermentable oligosaccharides, 314
Non-fermented soy sauce, 430
Nonflavonoids, 363
Non-homogenized milk, 169
Non-lactic microorganisms, 237
N-terminal region, 327
Nutrition, 12

Oak barrels, 381
Oast house, 310
*Obesumbacterium proteus*, 335
*Oenococcus*, 23, 29, 30–31, 382, 383, 394, 395
*Oenococcus oeni*, 29, 45, 75, 104, 382, 394
Oiling off, 180
Oleuropein, 253, 254
Oligopeptide transport system (OPP), 58–59, 190
Oligosaccharide-multiple sugar transport system, 56
Olives, 253–259
composition, 253–254
defects and spoilage, 258–259
Greek-style, 257
manufacture of fermented olives, 254–255
overview, 253
ripe- or California-style, 257–258
Spanish-style, 255–257
OmtB gene, 453
Open vat process, of vinegar-making, 409–412
OPP (oligopeptide transport system), 58–59, 190
Optimum growth temperatures, 31
*OpuABCD* operon, 251
Organic acids, 358, 382
Organic nitrogen, 359
Organoleptic properties, 12, 415
Oriental foods, 419–455
fermented fish-type foods, 447–450
fish sauce microbiology, 449–450
manufacture of fish sauces and pastes, 447–449
overview, 447
history, 419–420
koji and tane koji manufacture, 421–422
microorganisms, 422
overview, 421
raw materials preparation, 421
miso, 431–436
fermentation, 434–436
manufacture of, 434
overview, 431–434
spoilage and defects, 436
natto, 436
overview, 419
plant-based fermentations, 421
safety of fungal fermented foods, 450–455
sake and rice wines manufacture, 443–447
soy sauce manufacturing, 422–431
fermentation, 425–427
flavor of soy sauce, 428–430
koji, 423
mashing, 423–424
moromi enzymology, 424–425
non-fermented soy sauce, 450
overview, 422–423
pasteurization and packaging, 427–428
pressing and refining, 427
product characteristics, 428
spoilage and defects, 431
tempeh, 436–443
biochemistry, 440–441
cultures, 440
fermentation, 439
inoculation, 439
manufacture of, 437
microbiology, 439–440
nutrition and safety, 441–443
overview, 436–437
spoilage and defects, 443
types of, 420–421
Orla-Jensen, S., 145
Orla-Jensen treatise, 77
Osmophilic wine yeast, 101
Osmotic homeostasis, 251
Osmotic problems, 404
Ovens, 283
Over-acidification, 119
Oxaloacetate decarboxylase, 137
Oxidation, 215, 222, 389, 406, 407, 412, 415
Oxidation-reduction potential (Eh), 351
Oxidative fermentation, 409
Oxidative pathways, 401
Oxygen-sparging, 324
Packaging
beer, 332–335
bread, 283
sauerkraut, 242
soy sauce, 427–428
Pale ale, 337
Parmesan cheese, 13, 180
Parmigiano Reggiano cheese, 81, 162–163, 180
Pasta filata cheese, 176–180
P Pasteur, Louis, 9, 15, 63, 69, 303, 304–305, 324, 350
Pasteurization, 121, 159, 436
of beer, 332–333
of soy sauce, 427–428
Pasteurized milk, 114, 160
Patent flour, 268
Pathogenic microorganisms, 229
Pathogen Reduction/Hazard Analysis Critical Control Point system (HAACP), 227–228
Pathogens, 11, 160, 210
Payne, Alexander, 349
PCR (polymerase chain reaction), 321–322
PDO (Protected Designation of Origin), 410
Pectic enzymes, 370
*Pectinatus*, 335
Pectinolytic enzymes, 252
Pediococci, 203

Pediococcus acidilactici, 31, 74, 212, 215, 216, 231, 240, 247, 334, 434, 436

Pediococcus cerevisae, 212

Pediococcus damnosus, 31, 74, 182, 183, 187

Pediococcus halophilus, 33

Pediococcus inopinatus, 334

Pediococcus pentosaceus, 31, 212, 240

Pellets, 319

Penicillium, 41, 43, 62, 202, 220, 258, 294, 389, 390

Penicillium camemberti, 43, 62, 182, 183, 230

Penicillium caseicolum, 184

Penicillium chrysogenum, 230

Penicillium nalgiovense, 221, 230

Penicillium roqueforti, 43, 62, 76, 182, 183, 187

Pentose-containing polysaccharides, 286

Pentose phosphate pathway, 375, 394

Pentose phosphoketolase (PK) pathway, 432

PEP (phosphoenolpyruvate)PTS ( dependent phosphotransferase system), 49, 117–118

Peptidases, 59–60

Peptide hydrolysis, 189–190

Peptide transport systems, 58–59

Peptostreptococcus, 399

Per (phage-encoded resistance), 200

Peroxidase oxidoreductase reactions, 84–85

PFGE (pulsed field gel electrophoresis), 19, 322

P. freudenreichii, 61

P. freudenreichii subsp. shermanii, 61

Pgpm gene, 125

pH, in starter cultures, 93–94

Phage-encoded resistance (Per), 200

Phage genome, 199–200

Phage infections, 95

Phage-resistant phenotypes, 96, 197

Phage-resistant systems, 82

Phage titer, 201–202

Phage infection, 95

Phage-inhibitory function, 92

Phage-resistant cultures, 96

Phage-resistant phenotypes, 96, 197

P. freudenreichii subsp. shermanii, 61

Phenotypic properties, 105

pH monitoring device, 93

Phenol compounds, 253

Phenolic compounds, 254, 359

Phenols, 359–363, 429

Phenylic acid, 287

Phytic acid, 287

Pickled cheese, 185–186

Pickles, 234, 245–253

defects, 249–253

fermentation, 246–249

manufacture of fermented pickles, 245–246

overview, 245

Pigment extraction, 366

Pilsner beer, 312, 337

Pimaricin, 183

Pip-defective cells, 199

Pip gene, 199

Pizza, 177–178

PK (pentose phosphoketolase) pathway, 432

Plant-based fermentations, 421

Plasmid-borne genes, 26

PMF (proton motive force), 21, 54

PMF-mediated citrate permease, 60

Poaceae, 263

Polymerase chain reaction (PCR), 321–322

Polypeptides, 344

Polyphasic taxonomy, 19

Polyphenol compounds, 253

Polyphenolic compounds, 359, 362

Polyphenols, 335

Polyolaccharide-hydrolyzing enzymes, 441

Polysaccharides, 203, 334, 359, 434

Polyvinylpolypyrrolidone (PVPP), 330

Porter beer, 337

Port wine, 386

Post-fermentation acidification, 90, 119, 121

Post-pasteurization contamination, 140

Post-processing contamination, 332

Potassium chloride, 429

PQQ (pyrroloquinoline quinone), 406

Preservation, 11–12

of bread, 294–295

of cheese, 202–204

Primary dehydrogenases, 403

Primary ethanolic fermentation, 323

Probiotic activity, 33

Probiotic bacteria, 108–109, 128

Probiotics, 104–105, 110

Process cheese, 186–187

Prokaryotic organisms, 321

Properties of fermented foods, 11–13

economic value, 13

functionality, 12

nutrition, 12

organoleptic, 12

overview, 11

preservation, 11–12

uniqueness, 12–13

Propionibacteria, 175

Propionibacterium, 39–40, 259

Propionibacterium acidopropionici, 40

Propionibacterium acnes, 40, 257

Propionibacterium avidum, 40
Propionibacterium freudenreichii, 15
Propionibacterium freudenreichii subsp. freudenreichii, 40
Propionibacterium freudenreichii subsp. shermanii, 40, 173, 175, 176
Propionibacterium jensenii, 40
Propionibacterium shermanni, 75
Propionibacterium zeae, 259
Propionic acid fermentation, 60, 61–62
Protected Designation of Origin (PDO), 410
Protein, in flour, 265–268
Proteinases, 58, 150, 179, 192
Protein cascades, 58
Protein hydrolysis, 188, 316, 425
Protein metabolism, 58–60
overview, 58
peptidases, 59–60
peptide transport systems, 58–59
proteinase system, 58
Protein synthesis, 345
Proteobacteria, 19, 20, 399
Proteolysis, 179, 188–190
Proteolytic enzymes, 162, 273, 422, 434
Proteome maps, 344
Proton motive force (PMF), 21, 54
Proton-translocating ATPase, 55
Provolone cheese, 180
PTS (phosphotransferase system), 433
Pulsed field gel electrophoresis (PFGE), 19, 322
Putative antimutagenic constituents, 244
PVPP (polyvinylpolypyrrolidone), 330
Pyroloquinoline quinone (PQQ), 406
Pyruvate, 49
Pyruvate decarboxylase, 325
Pyruvate-ferredoxin oxidoreductase, 224
Pyruvate-formate lyase, 49
Pyruvate reduction, 137
Quercus suber oak tree, 390
Racking, 380
Randomly amplified polymorphic DNA (RAPD), 19
rDNA sequences, 373
Red miso, 434
Red wines, 363, 372
Reinheitsgebot, 295
Relative humidity (RH), 229
Relevant decarboxylases, 259
Rennet paste, 185–186
Restriction fragment length polymorphism (RFLP), 19, 79, 322
Retrogradation, 290
RFLP (restriction fragment length polymorphism), 19, 79, 322
RH (relative humidity), 229
Rheological properties, 119
Rhizopus, 17, 41, 43, 294, 389, 440
Rhizopus microsporus, 76
Rhizopus microsporus var. chinensis, 440
Rhizopus microsporus var. oligosporus, 439
Rhizopus oligosporus, 15, 43, 439, 440, 441, 442
Rhizopus oryzae, 440
Rhizopus stolonifer, 440
Rhodotorula, 329, 333, 343, 371, 373, 375, 376, 377, 388, 445
Saccharomyces cerevisiae vardiastaticus, 346
Saccharomyces ellipsodeus, 41
Saccharomyces kefir, 142
Saccharomyces kudriavzevii, 42
Saccharomyces mikatae, 42
Saccharomyces paradoxus, 42
Saccharomyces pastorianus, 41, 320, 321, 343
Saccharomyces uvarum, 41, 321
Safety. See Food safety
Sake, 443–447
Salmonella, 218, 219, 358
Salmonella typhimurium, 429, 440
Salt, 222–223
in cheese, 165, 171
in sauerkraut, 236–237
Salt-tolerant yeasts, 237
Sarcina sickness, 334
Saturated fatty acids, 274
Sauerkraut, 236–244
end products, 240–242
fermentation, 238–240
kimchi, 242–244
mixing, 237–238
overview, 236
packaging and processing, 242
shredding and salting, 236–237
spoilage and defects, 242
Index

Sausage, 209, 224–230
  cooking, 229–230
  cutting, 224–225
  drying, 229–230
  fermentation, 226–229
  mixing, 224–225
  mold-ripening, 230
  overview, 224
  principles of, 218–221
  smoking, 229–230
  stuffing, 225–226
Schizosaccharomyces pombe, 343
Schwann, Theodor, 7, 67
Sedimentation, 326
Selenomonas, 335
Shelf-life, 11–12
Sherman scheme, 77
Sherry, 386
Sherry vinegars, 410
Shiu-Ku, Yen, 419
Shoyu, 422, 431
Sicilian olives, 257
Simpson, Homer, 301
Single-pass milling, 267
Skimming, 326
Skunky beer, 355
Smoking sausage, 229–230
SO₂ (sulfur dioxide), 350, 359, 366–370
Sodium, 429
Soluble nitrogen concentration, 441
Sour cream, 138–140
Sourdough, 285–290
Soy-based fermentations, 420
Soybean koji, 421
Soybeans, 15, 428, 434
Soybean-wheat mixture, 423
Soy oligosaccharides, 441
Soy proteins, 421
Soy sauce, 422–431
  defects, 431
  fermentation, 425–427
  flavor of, 428–430
  koji, 423
  mashing, 423–424
  moromi enzymology, 424–425
  non-fermented, 430
  overview, 422–423
  packaging, 427–428
  pasteurization, 427–428
  pressing, 427
  product characteristics, 428
  refining, 427
  spoilage, 431
Spanish-style olives, 255–257
Sparkling wines, 386–387
Spectrophotometric methods, 298
Spectroscopy techniques, 344
Spent filter material, 336
Spent grains, 336
Spices, in fermented meats, 223–224
Spoilage, 394
  fermented meats, 231–232
  miso, 436
  olives, 258–259
  sauerkraut, 242
  soy sauce, 431
  tempeh, 443
  vinegar, 414
Sponge and dough process, 284, 285
Spontaneous phage-resistant mutants, 197
Sporangia, 443
Sporangiospores, 17
Sporolactobacillus, 130
Sporulating bodies, 294
Sprouts, 309
Stale beer, 335
Staphylococci, 221
Staphylococcus, 20, 39, 213, 214, 218, 449
Staphylococcus aureus, 31, 211, 218, 219, 429, 440
Staphylococcus carnosus, 39, 214
Staphylococcus xylosus, 39, 214
Starch-degrading enzymes, 308
Starter culture-mediated pickle fermentations, 70–71
Starter cultures, 67–106
  bacteriophages and their control, 94–96
  in cheese-making process, 161–163
  composition, 81–84
    defined cultures, 81–84
    mixed or undefined cultures, 81
    overview, 81
  encapsulated and immobilized cells, 101–104
  engineered phage resistance, 96–98
  evaluating performance, 90–91
  compatibility issues, 91
  overview, 90–91
  history, 68–70
  how used, 91–94
    bulk cultures, 91–93
    controlling pH, 93–94
    overview, 91
  industry, 105–106
  manufacture of, 84–90
  math, 79–80
  meat fermentations, 211–215
  microorganisms, 70–79
    bacterial starter cultures, 74–75
    mold starter cultures, 76
    overview, 70–74
    strain identification, 76–79
    yeast starter cultures, 75–76
    overview, 67–68
  probiotics and cultures adjuncts, 104–105
  propagation environment, 196
  role of, 68
  technology in twenty-first century, 98–101
Steam beer, 337
Steinkraus, Keith, 437
Sterols, 323, 344
Sticky gluten protein, 274
Stilton, 182
Stonegrinding, 267
Stout beer, 337
Straight dough system, 272, 284
Strain identification, 76–79
Streptococcus, 23, 26–28, 74, 84, 142, 235
Streptococcus acidilactici, 77
Streptococcus agalactiae, 78
Streptococcus durans, 26
Streptococcus faecalis, 26
Streptococcus faecium, 26
Streptococcus lactis, 19, 77
Streptococcus-Lactococcus, 23
Streptococcus mutans, 26
Streptococcus pneumonia, 78
Streptococcus pyogenes, 78
Streptococcus salivarius, 28, 122
Streptococcus thermophilus, 26, 28, 64, 71, 74, 78, 84, 90, 108, 110, 114, 116, 117–118, 119, 121, 122, 124, 128, 133–134, 135, 162, 173, 177, 178
Stress proteins, 88
Stress-response proteins, 405
Stuck fermentations, 374
Submerged fermentation systems, 413–414
Sucrose, 272, 280
Sugar
in beer, 325–326
in fermented meats, 222
metabolism, 44–48, 525
by bakers' yeast, 278–280
heterofermentation, 45–48
 homofermentation, 45
 overview, 44–45
 by Saccharomyces cerevisiae, 57–58
 transport
 in bread fermentation, 280
 by lactic acid bacteria, 48–53
 in wine, 357–358
Sulfites, 369
Sulfur compounds, in wine, 359
Sulfur-containing amino acid cysteine, 277
Sulfur dioxide (SO₂), 350, 359, 366–370
Superoxide, 361
Sweet wines, 384–385
Swiss cheese, 15, 172–176
Symport and ABC transport systems, in lactic acid bacteria, 53–56
Symport system transporters, 54
Syneresis, 164
Tane koji, 421–422
microorganisms, 422
overview, 421
raw materials preparation, 421
Tannins, 365
Taxonomy, microbial, 19
Taylor, Jim, 349
TCA (tricarboxylic acid) cycle, 324, 341, 375
TCA (trichloroanisole), 390
Tempeh, 436–443
biochemistry, 440–441
cultures, 440
fermentation, 439
inoculation, 439
manufacture of, 437
microbiology, 439–440
nutrition and safety, 441–443
overview, 436–437
spoilage and defects, 443
substrate preparation, 437–439
Temperature gradient, 283
Tetragenococcus, 23, 32–33, 45
Tetragenococcus batophilus, 33, 426, 427, 431, 434
Tetragenococcus muriaticus, 33
Tetragenococcus solitarius, 33
Thamnidium elegans, 230
Thermization, 160–161
Thermophilic bacteria, 374
Thermophilic cultures, 162, 173
Thermophilic sporeforming bacteria, 121
Thermophilic starter culture bacteria, 177
Thermoophilus, 26
Thiamine pyrophosphate (TPP)-dependent pyruvate decarboxylase, 60, 157
Three domains of life, 16–17
Titratable acidity, 117
Torulopsis holmii, 288
Tourne (mousy), 304
Toxicity, 404
Toxin deoxynivalenol, 353
TPP (thiamine pyrophosphate)-dependent pyruvate decarboxylase, 60, 157
Transmembrane electric charge, 50
Trehalose concentration in yeasts, 295
Tricarboxylic acid (TCA) cycle, 324, 341, 375
Trichinae, 229
Trichinella-free pork, 220
Trichinella spiralis, 220
Trichloroanisole (TCA), 390
Trichoderma, 390
Trichoderma longibrachiatum, 391
Trickling generator processes, of vinegar-making, 412–413
Trimannoside oligosaccharides, 327
Triticum aestivum, 263
Trub, 310, 319
TTB (Alcohol and Tobacco Tax and Trade Bureau), 354
Tunnel pasteurization systems, 333
Tyramine, 221
Vagococcus, 23, 25
Van Leeuwenhoek, Antonie, 6
Vegetable fermentation, 233–259
and biogenic amines, 259
olives, 253–259
composition, 253–254
defects and spoilage, 258–259
Greek-style, 257
manufacture of fermented olives, 254–255
overview, 253
ripe- or California-style, 257–258
Spanish-style, 255–257
overview, 233–234
pickles, 245–253
defects, 249–253
fermentation, 246–249
manufacture of, 245–246
overview, 245
production principles, 234–236
products and consumption, 234
sauerkraut manufacture, 236–244
end products, 240–242
fermentation, 238–240
kimchi, 242–244
mixing, 237–238
overview, 236
packaging and processing, 242
shredding and salting, 236–237
spoilage and defects, 242
Vegetative cell growth, 294
Vibrio cholerae, 71
Vin aigre, 397
Vinegar, 75, 397–417
definitions, 398
history, 397–398
manufacturing principles, 398
metabolism and fermentation, 401–409
microorganisms, 398–401
overview, 397
quality, 415–417
technology, 409–415
bacteriophages, 414–415
open vat process, 409–412
overview, 409
post-fermentation processing, 414
spoilage, 414
submerged fermentation, 413–414
trickling generator processes, 412–413
Vinyl guaiacol, 340
Viruses, 199, 220
Viscoelastic dough, 286
Vitamins, in dough, 274
Viticulture, 351–357
Vitis labrusca, 351
Vitis vinifera, 351
Wang, H.L., 437
Waste management, in brewing industry, 335–336
Water phase, of cheese, 171
Weissella, 25, 29, 239
Wheat beer, 340
Wheat chemistry, in bread, 263–265
Wheat kernels, 263–265
Wheat milling, 267
Whey, 168, 204–205
White-mold ripened cheese, 184–185
White wine, 363
Whole grain peasant breads, 297
Wild flora, 371
Wine, 349–395
adjustments after fermentation, 378–380
aging, 380–382
blending, 380
clarification, 380
consumption, 350
crushing and maceration, 366
defects, 389
fermentation, 372–375
grape composition, 357
harvesting and preparing grapes, 363–366
history, 349–350
malolactic fermentation, 382–384
manufacturing principles, 365
microbial ecology and spontaneous wine fermentations, 371–372
nitrogen metabolism, 377
nitrogenous compounds, 358–359
organic acids, 358
other pre-treatments, 370–371
overview, 349
phenols, 359–363
pigments, 363
polysaccharides, 359
pressing, 372
production, 350
separation, 372
spoilage, 389–395
by bacteria, 393–395
by fungi, 389–392
overview, 389
by yeasts, 393
stuck fermentations, 377–378
sugars, 357–358
sulfur compounds, 359
sulfur dioxide treatment, 366–370
sulfur metabolism, 377
tannins, 363
types of, 384–389
brandy, 388–389
Champagne, 387–388
fortified wines, 385–386
overview, 384
sparkling wines, 386–387
sweet wines, 384–385
  viticulture and grape science, 351–357
  yeast metabolism, 375–377
Woese, Carl, 16
Wort, 308, 314–316, 319

Xylan polysaccharides, 431
xyl genes coding, 432
Xylose-fermenting phenotype, 433
\textit{xylR} gene, 433
xynF1 gene encoding, 431

\textit{Yeast, The}, 41
Yeasts and molds, 41–43
  \textit{Aspergillus}, 43
  metabolism of mold, 62
  overview, 41
  \textit{Penicillium}, 43
  \textit{Saccharomyces}, 41–43
wine spoilage by yeast, 393
yeast cultures, 269–272
yeast metabolism

  in beer, 323–325
  in wine, 375–377
  yeast starter cultures, 75–76, 378
\textit{Yersinia enterocolitica}, 429, 440
Yogurt, 12, 108
  flavor and texture, 119–121
  frozen, and other yogurt products, 134–135
  manufacture, 114–119
  manufacturing of
    culture metabolism, 117–119
    milk treatment, 114
    overview, 114
    post-fermentation, 119
    yogurt culture, 114–117
    yogurt styles, 114
  styles, 127–134

  Zapatera spoilage, 258
  Zwickelbier beer, 337
  Zygomycetes, 17
  Zygomycota, 17, 41
  \textit{Zygosaccharomyces bailii}, 393
  \textit{Zygosaccharomyces rouxii}, 426, 434, 436
  \textit{Zymomonas}, 334
  \textit{Zymophilus}, 335