Index

ABS (see acrylonitrile-butadiene-styrene terpolymer) 112
Acetaldehyde (keto-enol tautomerism) 9
Acrylic acid 9, 76
Acrylonitrile-butadiene-styrene terpolymer 112
Activator (see cocatalysts) 35
Activity expressions (for transition metal catalysts) 20, 35
Addition reactions (of aluminum alkyls) 46
Additives x, 4, 99–104
Akzo Nobel x, 30, 31, 47, 52, 58
Albemarle x, 47, 52
Alkylation 40, 49, 55
Alpha (α) olefins 6, 9–10, 94
Aluminum alkyls 3, 34–36, 41, 45–52, 56, 58–59, 76–77, 80, 88
Aluminum phosphate (as catalyst support) 66–67, 69
American Chemical Society 61
American Society for Testing and Materials 7, 8, 15, 16
Amoco 61
Antiblocking agents 101
Antioxidants 101–105
Arkema 31
 Arylboranes 55, 72, 77, 80–81
Ate complexes 81
Atofina (see Arkema) 36
Autobau reaction 33–34
Autoclave process 23–24, 85–91
Backbiting mechanism 24–28
Banks, R. 2, 3, 61, 62, 65, 68
Barron, A. 78
Basell (see LyondellBasell) 102
Beard, W. 78
Beatles, The 4
Beaulieu, B. x, 65
Bennett, A. 74
Benzaldehyde 1
BHT (see butylated hydroxytoluene) 41
Bimodal molecular weight distribution 11, 18, 19, 65, 85–87, 93, 96, 106
Biodegradeability 100, 112–113
Bioplastics 100, 114
Biopolymers 100, 113, 114
Blocking 101
Boor, J. 35–36, 61
Boranes 22, 55, 72, 77, 80–81
Borealis 86, 96, 110
Borstar (see Borealis)
Boyd, R. 51
BP Chemicals 61
Breit, H 34–35
Brookhart, M. 2–3, 74
Butane (as chain transfer agent) 24
Butene-1 as comonomer 9, 10, 12, 108–109
Butylated hydroxytoluene 62, 102, 104
Butylethylmagnesium 51–52
Butyllithium (n-C₆H₄) 54
Butyllithium (sec-C₆H₄) 54–55
Butyllithium (tert-C₆H₄) 54, 57
Butyl octyl magnesium 51–52
Carbon monoxide as reducing agent 64
Catalyst activity 20, 35, 39, 50, 65
CGC (see controlled geometry catalysts)
Chain branching 5–6, 8–10, 12, 25, 27, 74, 75
Chain transfer 5, 24–25, 40, 42–43, 50, 56, 69, 76, 83
Chain-walking mechanism 75
Chemsurf 47, 52
Chen, E. 81
Chevron Phillips x, 69, 92, 110
Chien, J. 39
Chromium catalysts 3, 8, 10–11, 17–18, 20–22, 40, 45, 57, 61–69, 88, 92–93
Chromocene 67–69
Ciba Chemical x, 102
COC (see cyclic olefin copolymer)
Co catalysts x, 4, 35, 45, 49, 53, 55, 67, 71, 75–78, 80–82, 88
Compact process 87
Composition distribution 6, 8, 10, 21, 26
Composting 113
Controlled geometry catalysts 72–74, 86
Copolymerization 6, 8–11, 25–27, 36, 88
Cossee–Arman mechanism 40–41
Coupling as termination reaction 24–25
Crompton (see Chemtura)
Cross-linked polyethylene 11
Cross-propagation 26
Crystalsev 113
Cyclic olefin copolymers 11–12, 15, 29–30
Dart Chemicals 38
Davison Chemical 62
Decomposition
of aluminum alkyls 58, 59
of ethylene 28, 91
of organic peroxides 29–30
Degree of polymerization 4
Density 1, 4–11, 15, 21, 23, 24, 39, 40, 48, 67, 88–90, 92, 94, 108–109, 111
Des Lauriers, P. 65
Dialkyl magnesium compounds 51–53
Diazomethane 1
Diborane 55
Dibutyl magnesium 51, 54
Dicyclopentadiene 6
Diethyl aluminum chloride 38, 47, 49, 73
Diethyl aluminum ethoxide 59, 67
Diethylzinc 56, 58, 75–76
Di-n-butyl magnesium 51, 54–55
Direct process (for trialkylnitruniums) 46–47
Di-sec-butylin magnesium 51, 55
Dispersion index (see polydispersity index)
Di-tert-butyl peroxide 29, 30
Dow Chemical Company x, 3, 62, 109
Dowlex 86
DuPont–Canada 87, 94–95, 109
LAA (see ethylene-acrylic acid copolymer)
Eisch, J. 77
Elastomers 6, 8, 53
Elimination reactions 34, 42, 58, 69, 75, 83
EMA (see ethylene-methacrylic acid copolymer)
End groups 4, 5, 25, 43
Environment x, 10–11, 110, 112–113
Environmental stress crack resistance 10–11
EPDM (see ethylene-propylene-diene monomer rubber)
EPR (see ethylene-propylene rubber)
Equistar 109–110
Ethylaluminum dichloride 49
Ethylaluminum sesquichloride 47, 49
Ethylene-acrylic acid copolymer 9, 12, 14–15, 87
Ethylene-methacrylic acid copolymer 9, 12, 14–15, 87
Ethylene-propylene rubber 6
Ethylene-propylene-diene monomer rubber 6
Ethylene-vinyl acetate copolymer 6, 8–9, 12–13, 15, 28, 74, 86–87
Ethylene-vinyl alcohol copolymer 9, 12, 14–15
EVA (see ethylene-vinyl acetate copolymer)
EVOH (see ethylene-vinyl alcohol copolymer)
Exchange process (of trialkylaluminum compounds) 46–47
ExxonMobil x, 3, 87, 89, 93, 108, 110
FAB (see tris(pentafluorophenyl)borane)
Fabrication methods 4, 105
Fawcett, E. 1, 3
Federal Drug Administration 7
Ferrocene 72–73
Film properties 8–10, 106–107
Fink, J. 101, 104
Fischer-Tropsch reaction 2
Frankland, E. 56
Free radicals x, 1, 4, 6–12, 20, 23–31, 37, 72, 88–90, 102
Friedrich, M. 2, 3
Gas phase process 2, 3, 18–19, 23, 39–40, 48, 67, 72, 92–94
Gel permeation chromatography 17
Generations of Phillips catalysts 65
Genesis of polyethylene 1
GEO Specialty Chemicals 31
Gibson, R. 1, 3
Global warming 112
Goodall, B. x, 76
Greenpeace 112
Grignard, V. 51
Half-life 29–31
HDPE (see high density polyethylene)
Hercules, Inc. 46
Heterogeneity index (see polydispersity index)
Hexene-1 as comonomer 9, 12, 67, 92, 108–109
High density polyethylene 7, 10–15, 111
High load melt index 16
High molecular weight high density polyethylene 11
High pressure polyethylene 1, 91
Hindered phenols 102–105
Hlatky, G. 72
HLMI (see high load melt index)
HMW-HDPE (see high molecular weight high density polyethylene)
HMWPE (see high molecular weight high density polyethylene)
Hoehst 39, 92–93
Hogan, J. 2, 61–62, 65, 68–69, 92
Hostalen process 86, 93
Hydrogen response of catalysts 20, 65, 68, 74
Hydrogenation reaction 46
Hydrogenolysis 42, 56, 83

Imperial Chemical Industries (ICI) 1, 3, 24
Impurities 21, 29, 50, 56, 82, 86, 88
Induction period for Phillips catalysts 21, 64–65, 67, 88
INEOS 39, 63, 87, 93, 110
Infrared spectroscopy 12
Initiation of polymerization 20, 24–25, 40, 64, 82, 88, 102
Initiators x, 2, 4, 6, 8, 10, 15, 23–24, 29
Insite (see controlled geometry catalysts)
International Union of Pure & Applied Chemistry 4, 7, 12, 102
Ionomers 9, 14, 15
Isobutane 64, 92
Isobutylaluminoxane 77
Isoprenylaluminum 47, 48
Iritel, S. 74
IUPAC (see International Union of Pure & Applied Chemistry)

Johnson, L 74

Kaminsky, W. 2, 3, 73
Kaus, M. x, 89, 101
Keto-enol tautomerism (of “vinyl alcohol”) 9
Kiefer, D. 2
Kinetic profiles for polymerization 21, 64, 68, 85
Kinetics of organic peroxides decomposition 29–30
King, R. x, 101–102
Krentsel, B. 88

Lactic acid 113–114
LCB (see chain branching)
LDPE (see low density polyethylene)
Lee, C. x, 107, 109
Linear low density polyethylene 2–3, 6, 8–13, 15, 18–24, 34, 48, 67, 86–94, 102, 106–111
Lithium alkyls 2, 3, 53, 54
LLDPE (see linear low density polyethylene)
Long chain branching (see chain branching)
Lupotech G 86
Lupotech T 86
Lyondell (see LyondellBasell)
LyondellBasell 31, 39, 86, 93, 108–110

Magnesium alkyls 45, 50–51, 53, 55
Manufacturers of polyethylene 8, 15, 30, 36, 48, 57, 77, 80, 85, 100, 102
MAO (see methylaluminoxane)
MMAO (see modified methylaluminoxanes)
Markets x, 88, 106
Marks, T. 82
Martin, H. 35
Marvel, C. 2, 3
Max Planck Institute 34
McDaniel, M. x, 65, 69, 92
McMillan, F. 2, 35, 36, 61
MDHDPE (see medium density high density polyethylene)
Mechanisms of polymerization with chromium-on-silica catalysts 64, 68, 88
with free radical initiators 24, 27–28
with single-site catalysts 74–76, 82–83
with Ziegler-Natta catalysts 35, 40–43, 45, 56
Medium density high density polyethylene 10
Melt flow index (see melt index)
Melt flow rate 16
Melt index 15–20, 105, 109
Melt index ratio 16–17
Melt processing 105
Melting point 5, 9
Metal alkyls 36, 45–59, 88
Metalloccenes 2, 3, 13, 36, 46, 72–76
Methacrylic acid 9, 12
Methylaluminoxanes 2, 3, 22, 71–82
Modified methylaluminoxanes 22, 79–80
MI (see melt index)
Microstructure 7, 12–14, 38, 74
Milan Polytechnic Institute 33
MIR (see melt index ratio)
Mirra, M. 90
Mitsui Petrochemical 39, 87
Modified methylaluminoxanes 22, 79–80
Molecular weight 2, 5–8, 11, 21, 25, 33, 48, 50, 56, 64–69, 74, 78, 85, 91, 93, 95, 96, 99, 105–106
Molecular weight distribution 11, 15–21, 49, 64–67, 85, 93, 95, 99, 106
Molybdenum catalysts 61
Monodisperse polymer 17
Montecatini Edison 33, 39
Morphology 37, 39–40, 52, 62, 72, 93–94, 96
Morrison, R. 51

Naphtachimie 87, 93
Natta, G. 33, 36, 41, 62
NatureWorks 113
Newtonian flow 5, 105
Nickel effect 34
Nobel Prize 33
Nomenclature 2, 4, 7–15, 35–36
Nonhydrolytic process for aluminoxanes 79–80
NORAC 31
Norbornene 11

Nova Chemical 87, 94–95, 109
Nuclear magnetic resonance spectroscopy 13
Number average molecular weight 17

Octene-1 as comonomer 6, 9, 10, 12, 74–76, 86, 108–109
Organic peroxides x, 8, 15, 24–25, 28–30, 58, 86–88, 90, 91
Organoboron compounds 55
Origins of polyethylene (see genesis of polyethylene)

Particle form loop slurry process 86, 92–93, 96
Particle size distribution 37, 62
Patel, R. x
PDI (see polydispersity index)
Perkin Medal 61
Perin, M. 1, 3
Personal protective equipment 57–58
PETE (see polyethylene terephthalate)
Phenols as antioxidants (see hindered phenols)
Phillips catalyst 4, 10–12, 20, 55, 61–68, 92
Phillips Petroleum 3, 61, 92
Phlegmatizers for organic peroxides 29
Phosphites as antioxidants 102–105
PLA (see poly (lactic acid))
Plastics in solid waste 100, 110–111
POE (see polyolefin elastomers)
POP (see polyolefin plastomers)
Poisons of transition metal catalysts 50, 56, 82, 88
Polar comonomers 6, 8–9, 23, 26, 74, 76, 88
Polimeri Europa 87, 90
Poly (lactic acid) 113
Poly (vinyl chloride) 103, 110–112
Polybutadiene 54
Polydispersity index 17, 20, 22, 67
Polyethylene terephthalate 110–111
Polyethylene 1, 4
Polyolefin elastomers 8
Polyolefin plastomers 8
Polypropylene 17, 33, 36, 43, 47–49, 62, 72–73, 102, 111
Polythene Pam 4
PQ Corporation 62
Prepolymerized catalysts 40, 86
Productivity of catalysts 35, 64
Propagation 24–26, 40, 82, 102
PVC (see poly (vinyl chloride))
Pyramid of plastics (Greenpeace)
Pyrophoricity of metal alkyls 45–46, 55–57, 77

Reactivity ratios 27–28, 88
Recycle of Ziegler-Natta catalysts 35
Regiochemistry in polypropylene 43
Reliance Industries 109
Repka, B. 35
Replication 37
Rheology 19, 100, 105
Rubber (see elastomers)

SABIC 47, 109–110
SADT, see self-accelerating decomposition temperature
Safety and handling of metal alkyls 45, 57
San Francisco ban on plastic bags 100
Saudi Organometallic Chemicals 47
SCB (see chain branching)
Schering (see Chemtura)
Schuster, C. 89
SCLAIRTECH 87, 95
Scrivener, M. x
Self-accelerating-decomposition-temperature 29–31
Self-propagation 26–27
Seymour, R. 2, 35
Shear thinning 19, 105
Shell Chemical 39
Short chain branching (see chain branching)
Silica 3, 20, 39–40, 61–67, 92
Singh, B. x, 106–107, 113–114
Single-site catalysts 2–4, 6–11, 17–18, 20, 36, 45–46, 64, 71–83, 93, 95–96
Sinn, H. 2, 3, 73
Sinopec 109–110
Size exclusion chromatography 17
Slurry (suspension) process 52, 71, 85–86, 91–93
Slurry loop reactor process 86, 92–93
Small, B. 74
Society of Plastics Engineers 65, 73, 76
Society of the Plastics Industry 7–8, 111
Solid waste in USA 100, 111
Solution process 52, 59, 71, 74, 88, 94–96
Solvay & Cie 39
Spherilene 86
Standard Oil of Indiana 61–62
Stauffer Chemical 46
Stereochemistry in polypropylene 43
Stevens, J. x, 73–74
Stevens, M. 73
Strickler, J. x
Supported catalysts 2, 39, 45
Sustained development 100, 114
Swooger, K. 73, 75–76

Temperature rising elution fractionation 13
Termination reactions 24–25, 40, 42–43, 56, 69, 83
tert-Butyl per oxybenzoate 30–31
tert-Butylper oxy-2-ethylhexanoate 30–31
tert-Butylper oxy pivalate 30–31
Texas Alkyls, Inc. x, xi, 46–47, 52
Thermal stability of aluminum alkyls (see decomposition of aluminum alkyls)
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeline of 20th century polyethylene</td>
<td>2, 3</td>
</tr>
<tr>
<td>technology</td>
<td></td>
</tr>
<tr>
<td>Titanium tetrachloride</td>
<td>35, 38</td>
</tr>
<tr>
<td>Titanium trichloride</td>
<td>38</td>
</tr>
<tr>
<td>Tosoh Finechem Corporation</td>
<td>47</td>
</tr>
<tr>
<td>Total Petrochemical</td>
<td>110</td>
</tr>
<tr>
<td>Triethylaluminum</td>
<td>34–35, 46–50, 55, 58, 96</td>
</tr>
<tr>
<td>Triethylborane</td>
<td>55, 65, 67</td>
</tr>
<tr>
<td>Trisobutylaluminum</td>
<td>46–48</td>
</tr>
<tr>
<td>Trimethylaluminum</td>
<td>47–48, 58, 77, 80</td>
</tr>
<tr>
<td>Tri-n-hexylaluminum</td>
<td>48</td>
</tr>
<tr>
<td>Tris(pentafluorophenyl)borane</td>
<td>81</td>
</tr>
<tr>
<td>Tubular process</td>
<td>23–24, 85–91</td>
</tr>
<tr>
<td>UHMWPE (see ultrahigh molecular weight polyethylene)</td>
<td></td>
</tr>
<tr>
<td>ULDPE (see very low density polyethylene)</td>
<td></td>
</tr>
<tr>
<td>Ultra high molecular weight polyethylene</td>
<td>11, 15, 48, 105</td>
</tr>
<tr>
<td>Union Carbide Corporation</td>
<td>3, 62, 65, 93</td>
</tr>
<tr>
<td>Unipol process</td>
<td>3, 18–19, 23, 39, 67, 93–94</td>
</tr>
<tr>
<td>Vandenberg, E.</td>
<td>35</td>
</tr>
<tr>
<td>Very low density polyethylene</td>
<td>3, 8, 12–13, 15, 21–22, 34, 74, 86–88, 95, 102</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>6, 8–9, 12–13, 21–22, 34, 74, 86–88, 95, 102</td>
</tr>
<tr>
<td>Vinyl alcohol</td>
<td>9, 12, 14–15</td>
</tr>
<tr>
<td>VLDPE (see very low density polyethylene)</td>
<td></td>
</tr>
<tr>
<td>Von Pechmann, H.</td>
<td>1</td>
</tr>
<tr>
<td>Weight average molecular weight</td>
<td>17</td>
</tr>
<tr>
<td>Wiseman, K.</td>
<td>95</td>
</tr>
<tr>
<td>Witco Chemical (see Chemtura)</td>
<td></td>
</tr>
<tr>
<td>XLPE (see cross linked polyethylene)</td>
<td></td>
</tr>
<tr>
<td>Ziegler, K.</td>
<td>2, 3, 33–35, 46</td>
</tr>
<tr>
<td>Ziegler-Natta catalysts</td>
<td>2–4, 6, 10–12, 20, 33–44, 45–46</td>
</tr>
<tr>
<td>Zinc alkyls</td>
<td>45, 56</td>
</tr>
<tr>
<td>Zletz, A.</td>
<td>61</td>
</tr>
<tr>
<td>Zweifel, H.</td>
<td>101, 103</td>
</tr>
</tbody>
</table>