Alternative feed, 294, 298
deterministic planning guidelines, 294
25 kV buses, 294
industrial customers, 295
large users, 295
towns/cities, 295
economic life, 298
requirements, 294
Annual cost concept, 101–102
different life times alternatives, 102–103
ANSI/IEEE Standard 446, 454
CBEMA curve, 454
input power quality, 454
range of, 455
Automatic outage management system (AOMS), 268–251
customer-oriented indices, 269
data, 268
interruption classification, 270
performance indices, 269
utility, 268
Availability, 82
concepts, 65
design considerations, 68
mean time to repair, 65
definition, 82
equipment, 81–85
availability considerations/requirements, 81
availability model, 82
long-run availability, 83–85
model, 66
predictions, 153
problems, 82
Average service availability index (ASAI), 94, 270, 418
Average service unavailability index, 270
Average system availability index, 94, 287
Bathtub curve, 46–47, 81
infant mortality period, 46
useful life period, 46
wear-out period, 46
wear-out stage, 81
Bayes’ theorem, 60–62, 129–139
conditional probability, 129
example, 130–132
in reliability, 129
Benefit-cost ratios, 367
Binomial probability distribution, 23, 25, 91
Binomial theorem, 22
Blackout, 2, 9, 257, 306, 375–376
Bridge network, 114, 115
configuration, 117–119
reliability, 118
tie sets definition, 117
state enumeration, 115
event tree diagram, 115
Bulk power system operations, interruptions, 307
Bus tie analysis, 402
capacity, 408
cost-benefit analysis of, 402
transformer failure simulation, 408
Canadian Electricity Association (CEA), 93, 256, 303, 461
annual service continuity report, 257
broad codes, 305
CAIDI vs. CEA, 313
distribution system performance, 322
SAIDI/SAIFI, 313
Canadian integrated utility (IU), 309, 330
customer interruptions, 312
transmission system problems, 312
customer outages code, 330
load duration curve, 399
SAIFI vs. CEA, 312
SAIFI/SAIDI indices, 309–310
crew center (CC) level, 309
feeder level indices, 310
high load density, 314
regional level, 309
small urban utility (UU), 314
system level, 309
urban/rural systems, 309, 310
low load density system, 312
voltage-constrained system, 311
voltage-constrained system, 311
Catastrophic transformer failure, 446, 448
12/16/20/22.4 MVA 72 kV transformer, 448
transformer MVA ratings, 446
Chi-square distribution, 70–75, 80
Poisson cumulative probability, 70
uncertainty factor, 80
values, 72
Circuit breakers, 3, 155, 199
fuse, 219
load point, 212
reliability data, 199
switches, 260
transmission system, 3
Cloud cover, definition, 146–147
Commercial power systems, 153, 191
cost, 191
fault, 458
reliability designing, 153
Complex network, See Complex systems
Complex systems, 55, 111
Bayes’ theorem, 60–62, 129–130
configurations, 111
conditional probability theory, 146–147
network reduction methods, 111
path enumeration methods, 111
state enumeration methods, 111
parallel systems, 56–58
connection, 56
exponential reliability functions, 56, 57
failure rates, 57
partially redundant systems, 58
binomial redundancy factors, 59
reliability, 58
reliability analysis, 55, 111
series systems, 55–56
connection, 55
definition, 55
failure rate, 55
reliability, 55
Composite index (CI), 282
development, 282
reliability performance analysis, 282
Computer business electronic manufacture association (CBEMA) curves, 456
Computer input power quality parameters, 454, 460
Computing interest, 98
computing formulas, 98–101
period, 98
Conditional probability theory, 19, 146
application, 146
system operating configurations, 146
Confidence limit concept, 32
Contingency enumeration approaches, 3
Cost-benefit analysis, 106–107, 285, 293, 400
framework, 296
reliability assessment, 295, 298
strategy, 291
substation reliability, 106–107
Cost-effective reliable electric power supply, 397
Cost of power interruptions to an individual load point (COLPI), 340
Crew center-level analysis, 282
Critical flashover (CFO) voltage, 89
Cumulative frequency histogram, 15
Cumulative present value (CPVs), 360, 418, 449
interruptions cost, 360
distribution system configuration, 360
reliability benefits, 418
Customer-minutes of interruptions, definition, 269
Customer average interruption duration index (CAIDI), 94, 270, 273, 279, 280, 281, 287, 301
customer-oriented reliability, 303
definition of, 94
major cause contribution, 312
Customer average interruption frequency index (CAIFI), 287, 433
computer model, 433
definition of, 287
Customer cost benefits, 368
cumulative present value, 368
Customer damage functions, 359
Customer interruption(s), 270
contributing components, 276
definition, 269, 270
major causes, 270–271, 274
utility costs, 359
Customer interruption costs (CICs), 292, 299, 337, 338, 358
component forced outage data, 340
curve, 296
cost-benefit reliability planning method, 338
customer reliability indices, 358
basic concepts, 358
data, 294
in distribution system planning, 337
information, 290
key load point reliability indices, 339
parallel system model equations, 339
average repair time equations, 339
failure rate equations, 339
reliability analyses, 338
distribution feeder configurations, 338–339
series system model equations, 339
average repair time equations, 339
failure rate equations, 339
value-based methodology, 292
Customer/load-oriented system, 268, 271
interruption statistics, 268
performance indices, 271
Customer minutes of interruption(s), 275, 276
component contributions, 276
major causes, 275
Customer purchasing decisions, 337
Customer service outages, 93–95
background, 93
cost, 95
distribution reliability indices, 93
frequency of, 94
interruption concept cost, 95
reliability criteria, 94
time, 414
Customer service reliability, 93, 288
SAIFI, 93
targets for, 288
Customers experiencing multiple interruptions (CEMI), 303
Cut combinations, 125
probability expressions, 125–129
Cut set, 121
definition, 121–124
example, 122
reliability methodology, 122
Dead zone, 321
sensitivity analysis of, 323
standard deviation, 321, 325
Decision-making process, See Statistical decision-making process
Decision rule, 37, 38, 40–42, 291
Degree of freedom, 70, 71, 73
chi-squared distributions, 71, 73
continuous probability distribution, 70
Dependability concept, 65, 67
design considerations, 68
mean time to repair, 65
Deterministic planning criteria, 285, 286, 295, 298
Distributed generation (DG), 427, 434
conventional/nonconventional energy solutions, 429
duration of interruptions, 436
expected energy not supplied (EENS), 434, 437
frequency of interruptions, 435
independent power producer (IPP), 427
probabilistic method, 438
reliability enhancement, 434
Distribution circuit, 378
line sections, 378
average/peak composite loads, 378
dual switching devices, 378
manual/automatic switching device, 378
Distribution circuit interruptions (DCI), 288, 290
Distribution code, performance requirements, 290
Distribution equipment, 259
outage statistics, 259
Distribution feeder, 261, 262, 263, 419
average failure rate statistics, 261, 262
average repair duration statistics, 262, 263
characteristics, 379
 looped radial feeder circuits, 379
 circuits, 430
 looped radial, 378
line section substations lengths, 368, 379, 380
loads, 370
manually sectionalized OCRs, 372
reliability assessment, 419
annual unserved energy, 422
base case reliability circuit description, 421
circuit tie 102-3 capacity, 421, 422
circuit tie 43-2 capacity, 421
circuit tie 46-1 capacity, 420, 421
circuit tie 47-2 capacity, 419, 420
reliability program, 417
Distribution load transfer
characteristics, 379
Distribution pole, maintenance practices, 86
Distribution radial feeder configuration,
 340–341, 361, 430
annual cost of outages, 341
 load point reliability indices, 346
cost of interruptions, 344
 for load point, 344
customer load points, 341
DG additions, 432
 load points, 432
industrial load point, 340
multiple customers, 342
 automatic sectionalizing, 345–346
 manual sectionalizing, 342–345
 oil circuit recloser (OCR), 345
peak/average loads, 361, 430
reliability indices, 342, 344
cost of interruptions, 342
 for load points, 342
transferring loads, 431
 third feeder, 431
Distribution reliability standards, 301
 characteristics, 308
 corporate levels, 302
 crew center (CC) levels, 302
 customers, 302
development of, 301
 region levels, 302
relevant issues/factors, 304
data pooling process, 305–306
definitions of, 307
IEEE standard, 307
outage data collection systems, 308–309
SAIFI/SAIDI/CAIDI, 304
system characteristics, 308
time frame, 307
utility definition, 307
Distribution service reliability, 293
Distribution system configuration
characteristics, 360, 430
distribution circuit, 378
 manual/automatic switching device, 378
distribution looped feeder, 378
feeder circuits
 normal operating configuration, 378
reliability data, 380
feeder line section lengths, 379
line section outages, 380
load point, 361
 interruptions cost analysis, 381
 peak/average loads, 361
 reliability indices, 363
total cost of interruptions, 361
load transfer, 377, 379
 ability of, 377
restoration methodology, 375, 377
substation ratings, 385
 maximum pickup capacity, 385
value-based reliability, 360
Distribution system looped radial feeders, 347
 case study, 348–354
feeder characteristics, 347
 manual sectionalizing, 347
load point reliability indices, 354, 355
operating procedures, 347
peak/average load values, 348
substation capacity constraints, 381
 case studies, 381–389
load point interruption costs, 381, 383
maximum pickup capacity, 382
INDEX

advantages, 4
classification, 257
customer service reliability performance, 302
definition, 269
hierarchical level interruption causal analyses, 271
historical assessment, 5
lines, 292
load point reliability indices, 363
annual cost of outages, 363, 364, 365, 366
looped radial, 187
performance, 259, 279, 280, 293
planning/designing, 286–290
cost-benefit trade-off situations, 290
outage data collection/reporting, 287
reliability benefit trade-offs, 290
reliability cost, 290
reliability indices, 287
predictive reliability assessment, 5
component reliability parameters, 5
network physical configurations, 5
primary loop systems, 259
primary selective systems, 259
reinforcement scheme, 4
reliability, 256, 428
application, 3, 4
customer load requirements, 430
evaluation approaches, 267
future performance prediction, 256
historical assessment procedure, 256
levels, 296
past performance measurement, 256
performance, 304
predictive assessment, 256
standards, 288
system planning/operations, 428
targets, 289
SAIFI, 303
secondary grid networks, 303
single-line diagram, 119
state enumeration, 114
event tree diagram, 114
utility, 113
Distribution transformer, 263, 264
average failure rate statistics, 263
average repair duration statistics, 263, 264
Dual switching devices, 378
Economic planning, 97
fundamental approach, 97
Edison Electric Institute (EEI), 256, 303
Electric power distribution system, 317, 429, 432
customer, 319
reliability indices, 358
historical assessment, 267, 268, 271
utility corporate level analysis, 272–279
utility region-level analysis, 279–292
main effects of cost, 319
PBR plan, 317
performance-based rates, 319
reward/penalty structure, 319–322
reliability analysis, 432
reregulation, 317
Electric power industry, 10, 319, 396, 428
competition in, 319
deregulation of, 396
Electric supply system, 255, 454
data processing, 454
computer, 454
distribution system, 255, 358, 396
reliability importance, 396
Electric utilities, 303, 337, 338, 396
compny, 318, 427, 428
capital investments, 428
objective of, 427
jurisdictions, 318
deregulation, 338
distribution reliability performance,
benchmarking, 257
reliability performance indicators, 303
Electrical faults, utility system, 457
Engineering economics, 97
equivalent concept, 98
interest concept, 98
studies, 98
Equipment failure mechanism, 79–80
failure rate computation, 80
forced outage statistics utilization, 80
frequency of failure, 80
mode of failure, 80
Event space methods, See State enumeration methods
Event tree technique, 112
Expected value, 108
Exponential density function, 27, 51, 65
areas under, 27
Exponential reliability function, 52, 63
memory-less characteristics, 63

Failed zone branch array, 194
Failure rate, 45, 47, 53, 69, 71, 74, 80, 81, 158, 194, 195
bathtub curve concept, 45–47
confidence limit factors, 74
definition, 45
formula, 45
probability, 53
Fault tree diagram, 139–146
AND gate, 140, 141
construction, 139
failure events, 139
OR gate, 141
probability combination rules, 140
Feeder improvement alternatives, 423
Feeder loads, 376, 401
cost-benefit analysis model, 402
distribution automation (DA) switch, 422
energy costs, 401
switchgear addition, 425
transformer loading comparison, 401
Feeder reliability data, 434
cost-benefit analysis, 425
distribution network generation, 434
performance improvement, 425
Feeder section fault, 386
load point reliability indices/interruptions
cost, 387–389
duration of interruptions, 386
substation, 386
restoration table, 386
Feeder tie analysis, 402
cost-benefit analysis, 402
end of location, 405
evenly/unevenly spaced, 405, 406
location near source, 405
three-phase branch, 411
adding ties benefits, 411
switch failures, 411
three-phase nonfused lateral, 404
adding ties, 404
benefit of additional tie, 404
transformer loading, 408

Feeder tie capacity, 408
cost calculation, 409–410
capacity charges, 409
maintenance, 410
effects of, 410
frequencies of, 410
service area, 410
tie placement, 410
Financial risk assessment, 107–108
concept, 107
principles, 107
risk aversion concept, 108
Flashover probability, calculation, 91
Frequency concept, 13–15
class concept, 15
cumulative frequency distribution model, 15
frequency graphs, 15
Frequency distribution
objective of, 15
parameters, 15–17
mean, 16
median, 16
mode, 16
standard deviation, 16
variance, 17
voltage sags, 463
Frequency histogram, 14

Grid blackout(s), 376, 384, 387
distribution system, 384, 387
electrical characteristics, 376
load point interruptions, 384
Ground testing, 87
concept, 87
procedures, 87
statistical methods, 87

Herringbone network, 214
High-speed computer technology, 80
High-speed digital computing systems, 259
High-voltage transmission line insulator, 88
Hydraulic generators, 67
Hypergeometric distribution, 91

IEEE Distribution Subcommittee, 94
IEEE reliability survey, industrial plants, 166
2.5 beta method, 306
customer, 307
MAIFI, 304
SAIDI value, 306
sustained outage, 307
IEEE Standard 493-1997, 192, 196, 214
IEEE Standard 493-2007, 155, 158, 339, 455
power conscious computer manufacturers, 456
goals of, 456
protective devices, 460
typical clearing times of, 460
radial distribution system, 459
single-line diagram, 460
voltage sag, 455
basic feeder circuit, 458
faults/fault clearing, 457
impedance diagram for feeder circuit, 458, 459
radial distribution system, 461
Independent power producer (IPP), 427
distributed generation, 427
electric utility company, 429
incentives, 429
Index of reliability (IOR), 270, 272
Index of unreliability (IOU), 272
Industrial customer benefits, 368
cumulative present value of, 368
Industrial load point interruptions, 357
Industrial plant supply system, 184
circuit breaker, 184
Industrial power system, 173, 191–193, 195–197, 200
configuration, 170
on-site cogenerator unit, 170, 173
reliability evaluation, 170
distribution system, 153, 173, 357, 471, 472
examples, 154
low-voltage, 154
single-line impedance diagram, 472
value-based assessment, 357
protective equipment, 192
protective schemes, 200
protective zone branches, 193, 195
assumptions, 192
single-line diagram, 194
reliability data, 173
reliability design, 153
single-line diagram, 196, 197
study, 196
Infant mortality period, 47
Insulated motor bus, reliability data, 199
Insulated switchgear bus, reliability data, 199
Insulators, 87, 89
background, 87
critical flashover, 89–90
inspection program, 87–88
distribution lines, 88
high-voltage transmission lines, 88
power equipment, 88
station dead-end insulators, 88
subtransmission lines, 88
maintenance, 87
motor bus, 199
number in string, 91
strength, 89
switchgear bus, 199
types, 88
voltage surges on lines, 88–89
voltage withstand criterion, 89
Integrated utility (IU), 322
urban/rural systems, 322
Interest rate(s), 103, 105
Interruption(s), 269, 274, 275, 307
causes of, 274
contributing components, 275
definition, 269
distribution utilities, 307
duration, 269
frequency, 286
data collection scheme, 256
Latent defects, 87
Live line method, 93
Load distribution system, 392
critical variables, 392–393
Load point interruptions, cost, 191, 366, 391–392
Load point reliability indices, 337, 383, 388
applications, 337
cost of interruptions, 383, 388
distribution line section outages, 383
line section outages, 388
Loss of load expectation (LOLE), 2
reliability index, 2
Low-voltage circuit breaker, 260
Maintenance, 81, 403
 conductor sizing, 403–404
 voltage limitations, 404
 cost-benefit analysis, 403
 scheduling, 81
 single transformer, 403
Manual switching/isolation devices, 343
 feeder section, 344
Markov model, 66
Mean time between failures (MTBFu), 446
 criterion model, 443
Mean time to failures (MTTF), 54–55, 65, 66, 68, 73, 75, 80
 confidence intervals, 75
 confidence level limit, 73
Mean time to repair (MTTR), 65, 66, 68
Meshed urban distribution systems, 396
 characteristics, 397
MidAmerican urban distribution system, 397
 features, 397–398
Modeling distribution feeders, 376
 network configurations, 376
Momentary average interruption event
 frequency index (MAIFIE), 304
 customer satisfaction measures, 305
 electric utility industry, 304
Momentary average interruption frequency
 index (MAIFI), 282, 304
Monte Carlo simulation, 3
Network configuration, 130
 reliability block diagram, 130
Network protectors, 257
Network reduction methods, 115–129
 path enumeration methods, 116, 121
 minimum cut set, 121
 minimum tie set, 116
North American Electric Reliability Council, 4
 deterministic criteria, 4
Oil circuit recloser (OCR), 85, 345
 maintenance issues, 85
 study methods, 85–86
Optimal transformer spares determination, 446
 cumulative present value, 450
 MVA ratings, 448
 MTBFu criterion, 448
 statistical economics criterion, 449
 probabilistic models, 446
 statistical economics criterion, 449
 72 kV transformers, 449
 MVA ratings, 449
Optimum section length, 406
 component failure rates, 407
 repair times, 407
 switch addition, 406
Outage data collection methods, 257
Overhead distribution systems, 293
 alternative feed requirements, 293
Parallel system, 56–57, 59, 64, 111, 115, 129, 339, 417
 configurations reliability analysis, 111
 connection, 56
 diode system configuration, 61
Performance-based rate making (PBR), 288, 306, 317
 financial penalties, 330
 mechanism, 95, 283
 reward/penalty rate structure, 320
 dead zone, 321
 without dead zone, 321
 RPS implementing method, 320
 SAIDI value, 320
Performance-based regulations, 318
 basic steps, 319
 cost of service regulation, 318–319
 reward/penalty structure, 318
Poisson cumulative probability, 70
Poisson probability distribution, 25, 52, 63, 70, 71, 82, 441, 443
 reliability assessments, 52
 transformer spares, 441
Poisson series, 82
Pole inspection schedule, 86
Pole maintenance program, policies, 86
Population, 29, 32, 35, 38, 47, 48, 50, 146
 definition, 29
 failure rate, 48
 principles, 47–49
 reliability concept, 47
 equal time steps reliability, 53–54
 Poisson probability distribution, 52
 reliability model, 50–51
 rotten poles probabilities, 38
 standard deviation, 32, 35
 statistic, 32, 33, 35
Power conscious computer manufacturers, 454–456
design goals, 456
Power system, 1, 2, 93, 108, 116, 174, 175, 376, 478
application, 108
basic function, 2
disturbances, 478
frequency, 478
types, 478
distribution system, 1, 4–5
cost-availability trade-off decisions, 154
cost-reliability trade-off decisions, 154
reliability assessment, 1, 4–5
generation system, 1–3
competitive market, 302
reliability assessment, 1–3
key indicators, 2
reliability, 93
restoring process, 376
single-line diagram, 174
transmission system, 1, 3–4
competitive market, 302
reliability assessment, 1, 3–4
Predictive feeder reliability analysis, 416
ASAI, 418
customer load points, 417
customer outage cost, 417
SAIDI/SAIFI, 418
value-based distribution system reliability planning, 416
Predictive reliability assessment, 268
component reliability parameters, 268
network physical configurations, 268
Present value (PV) concept, 103–104
capitalization, 103
Preventive maintenance (PM), 80
Primary loop system, 256
Primary selective system, 156–161, 163, 165, 166, 260
13.8 kV circuit breaker, 161
13.8 kV utility supply, 156, 158
conclusions of, 159, 163, 164
description of, 157, 161, 163
duration of interruptions calculation, 160, 162, 163, 165, 166
failure rate calculation, 159
forced hours downtime calculation, 159
frequency calculation, 160, 162, 163, 165, 166
one-line diagram, 161
primary of the transformer, 163
reliability analysis, 156
results, 158, 162, 164
Probability, 2, 13
applications, 2
density function, 20–21, 26–28, 50, 54
fundamentals, 13
type, 2, 17
concept, 17–18
laws/theorems, 18
Probability distribution model, 19, 21, 70
binominal distribution, 22–23
exponential distribution, 26
mean, 27
graph, 19
mean, 21
normal distribution, 27
parameter, 21, 28
Poisson distribution, 25–26
probability density function, 20–21
random variable, 19–20
Protection-coordination schemes, 191, 192, 196
Protective devices, 193, 196, 197
Protective zone branch, 193
single-line diagram, 193
Prudent decision making, 286
Public Utility Commissions (PUCS), 317
performance-based regulation, 318, 319
reward/penalty structure, 318
Radial distribution circuits
customer energy requirement, 4, 415
Radial distribution feeder reliability, 415
component failures, 415, 420
data, 420
outage time, 415
duration curve approximation, 419
feeder configuration, 415
input data/assumptions, 418
Random variable, 19, 21, 25, 70
Rate of return, 105–106
formula, 105
service regulation, 319
theory, 105–106
Reliability, 1, 2, 63, 68
 availability analysis, 154
 benefits, 154
 study, 154
 block diagram, 130–132
 data, 69, 180, 185, 196, 198
 definition, 1, 2, 63, 68
 engineering, 68
 improvements, 422
 index, 259
 methodology, 415
 radial distribution feeder reliability
 performance, 415
 performance assessment, 267
 predictions, 153
 principles, 45
 programs, 4
 related problems, 293
 reporting, 302
 penalty payments, 331
 states reward/penalize utilities, 302
Reliability assessment model, 5, 79, 255, 432
 aid electric utility, 432
 applications, 5, 79
 ASAI, 433
 commercial grade computer model, 432
 electric distribution system, 432
 Monte Carlo simulation, 432
 reliability data, 433
 reliability indices, 433
 SAIDI/SAIFI, 433
 value-based, 5
Reliability calculations, 368
 load of distribution system’s, 368
 operating procedures, 369
 feeder characteristics, 369
 reliability data, 371
Reliability cost-reliability worth analysis, 293, 296, 298
Reliability measurement concept, 68–69
 chi-square distribution, 70
 confidence limit of failure rate, 69
 observed data accuracy, 69
Renewable energy source, 2
 photovoltaic systems, 2
 wind, 2
Restoration methodology, 375, 377
 distribution system configurations, 377
Reward/penalty structure (RPS), 318, 321
 mathematical model, 321
PBR plan, 323
Risk adjustment factor, 108
Rotten poles, 37, 38
 percentage, 37
Rural supply systems, 261
Sampling distribution, 32, 33, 37–40
 case types, 40–42
 curve, 40
 forms, 32
 mean, 32, 33, 37
 standard deviation, 40
Sampling theory, 29
 confidence limit concept, 32
 population concepts, 29
 population statistics estimation, 32–33
 random sampling model, 29
 sample concepts, 29
 sample size computation, 34–35
 sampling distributions, 29–32
Secondary grid network system, 259, 260, 397
Secondary network conductors, 261
Secondary selective system, 153, 164, 168, 169
 conclusions, 165
 description, 164
 failure rate, 165, 168, 169
 forced hours downtime, 168, 169
 one-line diagram, 164
 results, 165
Series-parallel methodologies, 111
Series system, 55–58, 339
 configurations reliability analysis, 111
 connection, 55
Service interruption report (SIR), 258, 259
 causes of, 274
 subcategories, 259
 system purpose, 259
Simple radial system, 154–157, 166, 168, 169, 171, 172
 conclusions, 155, 167, 169
 description, 155, 166, 168
 duration of interruptions calculation, 172
 failure rate calculation, 156, 157
 forced hours downtime ranking, 156, 157
 frequency calculation, 172
 results, 155, 167, 168
 with cogeneration, 168, 171, 172
 with spares, 166
Single output failure event (OFE), 140
Sinking fund, 98
Southern California Edison (SCE), 306
Standard deviation, 16, 28
definition, 16, 22
frequency distribution, 16
SAIFI/SAIDI indices, 323
variance, 17
Standard normal probability distribution, areas, 30–31
Standby system modeling, 62, 64
background, 62
failure rate, 64
multiple interchangeable units spares, 63
one unit spares, 62
State enumeration methodologies, 111–114
assumptions, 112
definition, 112, 113
State-space analysis, 66
Statistical decision-making process, 36–42
definition, 37
errors control, 42
types of error, 37–39
Statistics, 13
fundamentals, 13
theory, 69
Substation outages, 389
average annual costs, 391
duration, 389
feeder loads, 389
maximum pickup capacity, 390
Suspension string, defective units, 91
Switch addition, illustration of, 406
System average interruption duration index (SAIDI), 93, 269, 273, 276, 279–281, 287, 301
Canadian Electricity Association, 322
causal contributions, 330, 331, 333
integrated utility, 331, 333
urban utility, 332, 334
customer-oriented reliability, 303
standard deviation, 326–329
hypothetical reward/penalty framework, 326
integrated utility, 326, 328
urban utility, 327, 329
statistics, 278
system performance, 323, 324
cost-benefit analysis model, 401
cost-benefit analysis, 444
distribution transformers, 445
Customer outage costs, 444
distribution transformers, 445
cost-benefit analysis model, 401
cost-benefit analysis, 444
cost-benefit analysis, 445
criterion of statistical economics, 448
customer-oriented reliability, 303
distribution transformer systems, 445
distribution transformers, 445
cost-benefit analysis model, 401
cost-benefit analysis, 444
cost-benefit analysis, 445
criterion model, 443, 447, 448
criterion of statistical economics, 448
criterion model, 443, 447, 448
criterion of statistical economics, 448
minimum reliability criterion, 446
model of statistical economics, 444
MVA ratings, 448, 449
probabilistic models development, 442
reliability cost-benefits, 450
reliability criterion model, 442
Transmission system, 3, 4, 441, 445
 failure modes, 445
 failure statistics, 445
 probabilistic assessments, 4
 reliability application, 3
 repair/procurement time, 447
Tree trimming schedules, 291

Uncertainty factor, 81
Urban distribution system, 397
 characteristics of, 397
 component failure rates, 399
 five-step load duration curve approximation, 399
 optimal feeder loading, 399
 optimal section length, 399
 repair times, 399
 transformer loading, 399
Urban supply systems, 261
Urban utility (UU), 322
Utility cost-benefit analysis model, 418
Utility cost curve, 296
Utility customer cost damage functions, 359
Utility distribution system, 257, 267, 272, 273, 294
electric system, 267
 historical reliability performance, 267
 performance indices, 272
 rural/suburban/urban systems, 257
Utility’s bulk transmission system, 255
Utility sector customer damage functions, 297

Value-based alternative feeder requirements planning, 295–299
 alternative feed justification, 298
 customer interruption cost data, 297
Value-based distribution system, 355, 360
reliability planning, 360
 concept of, 296
 cost solution, 397
 steps, 360
Value-based reliability planning principle, 285, 286, 291, 293, 296, 358, 395, 397
case study, 362
 benefit-cost ratios, 367
 feeder circuits radial, 362
 looped radial feeders, 362–368
deregulated environment, 396
 reliability performance, 296
urban distribution systems, 397
 optimal design, 397
 utility investment, 358
Value of loss of load (VOLL), 95
dependence factors, 95
Voltage dip, See Voltage sags
Voltage drop, 420, 455
critical load, 456
Voltage insulators, 93
 number, 93
 safety factor, 93
Voltage sags, 453, 461
 average number, 466
 commercial customer group, 465
 cumulative distribution, 463, 467
day in week function, 476
 primary side of industrial facilities, 476
 secondary side of industrial facilities, 477
 distribution of the magnitude, 482
 primary/secondary, 482
electrical faults, 457
 utility system, 457
feeder circuit, 458
 feeder length, 468
 impedance diagram, 458, 459
frequency distribution, 461, 463
 commercial customer groups, 463
 industrial customer group, 462
 industrial sites, 462
 utility primary voltage levels, 463–464
industrial sites database, 463
 magnitude scatter plots, 479
 monitor thresholds, 462
 predicting characteristics, 456
 radial distribution system, 460–461, 466, 468
short circuits, 455
 statistical characteristics, 480, 485
 primary/secondary, 480
substation feeder bus, 465, 469
time function, 474
 primary side of industrial facilities, 474
 secondary side of industrial facilities, 475
utility distribution system, 464, 466
utility industrial customers, 473
 vs. feeder physical length, 468
waveform, 456
Voltage surges, 453
day in week function, 476
primary side of industrial facilities, 476
secondary side of industrial facilities, 477
distribution of duration, 484
distribution of magnitude, 483
industrial sites, 472
database, 473
magnitude scatter plots, 479
statistical characteristics, 481
positive/negative, 485
primary/secondary, 481
time function, 474
primary side of industrial facilities, 474
secondary side of industrial facilities, 475
utility industrial customers, 473

Wear-out process, 47
Weibull distribution, 81

Zone branch methodology, 191, 192, 201
application, 201
case studies, 201
double bus/breaker primary selective, 242
duration of interruptions calculation, 243, 250
load point failure rate calculation, 243, 250
substation single-line diagram, 245
substation zone branch diagram, 246
zone branch calculations, 243, 245–250
double bus/double breaker loop, 235
duration of interruptions calculation, 241–242
load point failure rate calculation, 241–242
substation single-line diagram, 236
substation zone branch diagram, 237
zone branch calculation, 237–240
double bus/double breaker radial, 232
load point failure rate calculation, 233–235
repair duration calculation, 233–235
substation single-line diagram, 232
substation zone branch diagram, 233
zone branch calculations, 233, 234
dual supply loop with tiebreaker, 219
load point failure rate calculation, 221–225
repair duration calculation, 221–225
substation single-line diagram, 220, 223, 224, 226
substation zone branch diagram, 221
zone branch calculations, 221
dual supply primary selective, 225
load point failure rate calculation, 227–231
repair duration calculation, 227–231
substation single-line diagram, 227, 231
substation zone branch diagram, 228
zone branch calculations, 226
dual supply radial–single bus, 208
duration of interruptions calculations, 210–214
load point failure rate calculations, 210–214
substation single-line diagram, 209, 212
substation zone branch diagram, 210, 213
zone branch calculations, 209, 213
dual supply radial with tiebreaker, 215
load point failure rate calculation, 216–218
repair duration calculation, 216–218
substation single-line diagram, 216
substation zone branch diagram, 217
zone branch calculations, 215, 218
simple radial substation configuration, 202
duration of interruptions calculation, 207
load point failure rate calculation, 207
substation single-line diagram, 206
substation zone branch diagram, 207
zone branch calculations, 202–206
zone branch single-line diagram, 200
Zone branch parameters, 214, 215