CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>xix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 OUTLINE OF THE BOOK</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Reliability Assessment of Power Systems</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Generation System Reliability Assessment</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Transmission System Reliability Assessment</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3 Distribution System Reliability Assessment</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Organization of the Chapters</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Conclusions</td>
<td>10</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
</tbody>
</table>

2 FUNDAMENTALS OF PROBABILITY AND STATISTICS	13
2.1 Concept of Frequency	13
2.1.1 Introduction	13
2.1.2 Concept of Class	15
2.1.3 Frequency Graphs	15
2.1.4 Cumulative Frequency Distribution Model	15
2.2 Important Parameters of Frequency Distribution	15
2.2.1 Mean	16
2.2.2 Median	16
2.2.3 Mode	16
2.2.4 Standard Deviation	16
2.2.5 Variance	17
2.3 Theory of Probability	17
2.3.1 Concept	17
2.3.2 Probability Laws and Theorems	18
2.4 Probability Distribution Model	19
2.4.1 Random Variable	19
2.4.2 Probability Density Function	20
3.6 Concepts of Availability and Dependability 65
 3.6.1 Mean Time to Repair 65
 3.6.2 Availability Model 66
 3.6.3 Markov Model 66
 3.6.4 Concept of Dependability 67
 3.6.5 Design Considerations 68
3.7 Reliability Measurement 68
 3.7.1 Concept 68
 3.7.2 Accuracy of Observed Data 69
 3.7.3 Confidence Limit of Failure Rate 69
 3.7.4 Chi-Square Distribution 70
3.8 Conclusions 77
References 77

4 APPLICATIONS OF SIMPLE RELIABILITY MODELS 79
 4.1 Equipment Failure Mechanism 79
 4.1.1 Introduction 79
 4.1.2 Utilization of Forced Outage Statistics 80
 4.1.3 Failure Rate Computation 80
 4.2 Availability of Equipment 81
 4.2.1 Availability Considerations and Requirements 81
 4.2.2 Availability Model 82
 4.2.3 Long-Run Availability 83
 4.3 Oil Circuit Recloser (OCR) Maintenance Issues 85
 4.3.1 Introduction 85
 4.3.2 Study Methods 85
 4.4 Distribution Pole Maintenance Practices 86
 4.5 Procedures for Ground Testing 87
 4.5.1 Concept 87
 4.5.2 Statistical Methods For Ground Testing 87
 4.6 Insulators Maintenance 87
 4.6.1 Background 87
 4.6.2 Inspection Program for Insulators 87
 4.6.3 Voltage Surges On Lines 88
 4.6.4 Critical Flashover 89
 4.6.5 Number of Insulators in a String 91
 4.7 Customer Service Outages 93
 4.7.1 Background 93
6.6 The Application of Conditional Probability Theory to System Operating Configurations 146
6.7 Conclusions 151
References 151

7 DESIGNING RELIABILITY INTO INDUSTRIAL AND COMMERCIAL POWER SYSTEMS 153
7.1 Introduction 153
7.2 Example 1: Simple Radial Distribution System 154
 7.2.1 Description of a Simple Radial System 155
 7.2.2 Results: Simple Radial System Example 1 155
 7.2.3 Conclusions: Simple Radial System Example 1 155
7.3 Example 2: Reliability Analysis of a Primary Selective System to the 13.8 kV Utility Supply 156
 7.3.1 Description: Primary Selective System to the 13.8 kV Utility Supply 157
 7.3.2 Results: A Primary Selective System to the 13.8 kV Utility Supply 158
 7.3.3 Conclusions: Primary Selective System to 13.8 kV Utility Supply 159
7.4 Example 3: A Primary Selective System to the Load Side of a 13.8 kV Circuit Breaker 161
 7.4.1 Description of a Primary Selective System to the Load Side of a 13.8 kV Circuit Breaker 161
 7.4.2 Results: Primary Selective System to Load Side of 13.8 kV Circuit Breaker 162
 7.4.3 Conclusions: A Primary Selective System to the Load Side of a 13.8 kV Circuit Breaker 163
7.5 Example 4: Primary Selective System to the Primary of the Transformer 163
 7.5.1 Description of a Primary Selective System to the Primary of the Transformer 163
 7.5.2 Results: A Primary Selective System to the Primary of the Transformer 164
 7.5.3 Conclusions: Primary Selective system to Primary of Transformer 164
7.6 Example 5: A Secondary Selective System 164
 7.6.1 Description of a Secondary Selective System 164
 7.6.2 Results: A Secondary Selective System 165
 7.6.3 Conclusions: A Secondary Selective System 165
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>Example 6: A Simple Radial System with Spares</td>
<td>166</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Description of a Simple Radial System with Spares</td>
<td>166</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Results: A Simple Radial System with Spares</td>
<td>167</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Conclusions: Simple Radial System with Spares</td>
<td>167</td>
</tr>
<tr>
<td>7.8</td>
<td>Example 7: A Simple Radial System with Cogeneration</td>
<td>168</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Description of a Simple Radial System with Cogeneration</td>
<td>168</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Results: Simple Radial System with Cogeneration</td>
<td>168</td>
</tr>
<tr>
<td>7.8.3</td>
<td>Conclusions: A Simple Radial System with Cogeneration</td>
<td>169</td>
</tr>
<tr>
<td>7.9</td>
<td>Reliability Evaluation of Miscellaneous System Configurations</td>
<td>170</td>
</tr>
<tr>
<td>7.10</td>
<td>Conclusions</td>
<td>188</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>188</td>
</tr>
</tbody>
</table>

8 ZONE BRANCH RELIABILITY METHODOLOGY

8.1 Introduction 191
8.2 Zone Branch Concepts 192
8.3 Industrial System Study 196
8.4 Application of Zone Branch Methodology: Case Studies 201
 8.4.1 Case 1: Design “A”—Simple Radial Substation Configuration 202
 8.4.2 Case 2: Design “B”—Dual Supply Radial—Single Bus 208
 8.4.3 Case 3: Design “C”—Dual Supply Radial with Tiebreaker 215
 8.4.4 Case 4: Design “D”—Dual Supply Loop with Tiebreaker 219
 8.4.5 Case 5: Design “E”—Dual Supply Primary Selective 225
 8.4.6 Case 6: Design “F”—Double Bus/Double Breaker Radial 232
 8.4.7 Case 7: Design “G”—Double Bus/Double Breaker Loop 235
 8.4.8 Case 8: Design “H”—Double Bus/Breaker Primary Selective 242
8.5 Conclusions 251
References 252

9 EQUIPMENT OUTAGE STATISTICS

9.1 Introduction 255
9.2 Interruption Data Collection Scheme 256
9.3 Typical Distribution Equipment Outage Statistics 259
9.4 Conclusions 265
References 265

10 HISTORICAL ASSESSMENT

10.1 Introduction 267
10.2 Automatic Outage Management System 268
 10.2.1 Definitions of Terms and Performance Indices 269
10.2.2 Customer-Oriented Indices 269
10.2.3 Classification of Interruption as to Causes 270
10.3 Historical Assessment 271
10.3.1 A Utility Corporate Level Analysis 272
10.3.2 Utility Region-Level Analysis 279
10.4 Crew Center-Level Analysis 282
10.5 Development of a Composite Index for Reliability Performance Analysis at the Circuit Level 282
10.6 Conclusions 283
References 283

11 DETERMINISTIC CRITERIA 285
11.1 Introduction 285
11.2 Current Distribution Planning and Design Criteria 286
11.2.1 Outage Data Collection and Reporting 287
11.2.2 Reliability Indices 287
11.2.3 Targets for Customer Service Reliability 288
11.2.4 Examples of Distribution Reliability Standards in a Deregulated Market 288
11.3 Reliability Cost Versus Reliability Benefit Trade-Offs in Distribution System Planning 290
11.4 Alternative Feed Requirements for Overhead Distribution Systems 293
11.5 Examples of Deterministic Planning Guidelines for Alternative Feed Requirements 294
11.5.1 Reliability of Supply to 25 kV Buses 294
11.5.2 Reliability of Supply to Towns/Cities 295
11.5.3 Reliability of Supply to Large Users and Industrial Customers 295
11.6 Value-Based Alternative Feeder Requirements Planning 295
11.6.1 Customer Interruption Cost Data 297
11.6.2 An Illustrative Example for Justification of an Alternate Feed to a Major City 298
11.7 Conclusions 299
References 299

12 IMPORTANT FACTORS RELATED TO DISTRIBUTION STANDARDS 301
12.1 Introduction 301
12.2 Relevant Issues and Factors in Establishing Distribution Reliability Standards 304
12.2.1 Data Pool 305
12.2.2 Definitions of Terms 307
12.2.3 System Characteristics 308
12.2.4 Outage Data Collection Systems 308
12.3 Performance Indices at Different System Levels of a Utility 309
12.4 Performance Indices for Different Utility Types 314
12.5 Conclusions 314
References 315

13 STANDARDS FOR REREGULATED DISTRIBUTION UTILITY 317
13.1 Introduction 317
13.2 Cost of Service Regulation versus Performance-Based Regulation 318
13.3 A Reward/Penalty Structure in the Performance-Based Rates 319
13.4 Historical SAIFI and SAIDI Data and their Distributions 322
13.5 Computation of System Risks Based on Historical Reliability Indices 323
13.6 Cause Contributions to SAIFI and SAIDI Indices 329
13.7 Conclusions 334
References 335

14 CUSTOMER INTERRUPTION COST MODELS FOR LOAD POINT RELIABILITY ASSESSMENT 337
14.1 Introduction 337
14.2 Customer Interruption Cost 338
14.3 Series and Parallel System Model Equations 339
14.4 Dedicated Distribution Radial Feeder Configuration 340
14.5 Distribution Radial Feeder Configuration Serving Multiple Customers 341
14.6 Distribution Radial Feeder Configuration Serving Multiple Customers with Manual Sectionalizing 342
14.7 Distribution Radial Feeder Configuration Serving Multiple Customers with Automatic Sectionalizing 345
14.8 Distribution System Looped Radial Feeders 347
14.8.1 Operating Procedures 347
14.9 Conclusions 355
References 355
15 Value-Based Predictive Reliability Assessment

15.1 Introduction 357
15.2 Value-Based Reliability Planning 358
15.3 Distribution System Configuration Characteristics 360
15.4 Case Studies 362
15.5 Illustrative Example System Problem and Its Reliability Calculations 368
15.5.1 Operating Procedures 369
15.6 Conclusions 373
References 374

16 Isolation and Restoration Procedures

16.1 Introduction 375
16.2 Distribution System Characteristics 378
16.2.1 Distribution Load Transfer Characteristics 379
16.2.2 Operating Procedures: Line Section Outages 380
16.2.3 Feeder Circuit Reliability Data 380
16.2.4 Cost of Load Point Interruptions 381
16.3 Case Studies 381
16.3.1 Case Study 1 381
16.3.2 Case Study 2 384
16.3.3 Case Study 3 388
16.4 Major Substation Outages 389
16.5 Summary of Load Point Interruption Costs 391
16.6 Conclusions 392
References 393

17 Meshed Distribution System Reliability

17.1 Introduction 395
17.2 Value-Based Reliability Assessment in a Deregulated Environment 396
17.3 The Characteristics of the Illustrative Urban Distribution System 397
17.4 Discussion of Results 400
17.5 Feeder and Transformer Loading Levels 401
17.6 Bus and Feeder Tie Analysis 402
17.6.1 Tie Costs and Descriptions 402
17.7 Maintenance 403
17.7.1 Single Transformer 403
17.7.2 Conductor Sizing 403
17.8 Feeders with Nonfused (Lateral) Three-Phase Branches 404
17.9 Feeder Tie Placement 404
17.10 Finding Optimum Section Length 406
 17.10.1 Definition of Terms 407
17.11 Feeder and Transformer Loading 408
17.12 Feeder Tie Cost Calculation 409
17.13 Effects of Tie Maintenance 410
17.14 Additional Ties for Feeders with Three-Phase Branches 411
 17.14.1 Definition of Terms 412
17.15 Conclusions 413
References 413

18 RADIAL FEEDER RECONFIGURATION ANALYSIS 415
 18.1 Introduction 415
 18.2 Predictive Feeder Reliability Analysis 416
 18.3 Reliability Data and Assumptions 418
 18.4 Reliability Assessment for an Illustrative Distribution Feeder 419
 18.4.1 Base Case Circuit Description 419
 18.4.2 Circuit Tie 47-2 419
 18.4.3 Circuit Tie 46-1 420
 18.4.4 Circuit Tie 43-2 421
 18.4.5 Circuit Tie 102-3 421
 18.4.6 Base Case Reliability 421
 18.5 Alternative Improvement Options Analysis 422
 18.5.1 Incremental Improvement Alternative 1: Add Distribution Automation Switch 422
 18.5.2 Incremental Improvement Alternative 2: Add Sectionalizing Switch 423
 18.5.3 Incremental Alternative 3: Relocate Recloser 255 424
 18.5.4 Incremental Improvement Alternative 4: Place 2 New Switches 425
 18.6 Summary of the Illustrative Feeder Reliability Performance Improvement Alternatives 425
 18.7 Conclusions 426
References 426

19 DISTRIBUTED GENERATION 427
 19.1 Introduction 427
 19.2 Problem Definition 428
19.3 Illustrative Distribution System Configuration Characteristics 430
19.4 Reliability Assessment Model 432
 19.4.1 Reliability Indices 433
 19.4.2 Reliability Data 433
19.5 Discussion of Results 433
 19.5.1 Equivalent Distributed Generation Reinforcement Alternative 434
19.6 Conclusions 438
References 438

20 MODELS FOR SPARE EQUIPMENT 441
20.1 Introduction 441
20.2 Development of Probabilistic Models for Determining Optimal Number of Transformer Spares 442
 20.2.1 Reliability Criterion Model for Determining the Optimal Number of Transformer Spares 442
 20.2.2 Mean Time Between Failures (MTBF_u) Criterion Model for Determining the Optimal Number of Transformer Spares 443
 20.2.3 Determination of Optimal Transformer Spares Based on the Model of Statistical Economics 444
20.3 Optimal Transformer Spares for Illustrative 72 kV Distribution Transformer Systems 445
 20.3.1 Determination of Optimal Transformer Spares Based on the Minimum Reliability Criterion 446
 20.3.2 Determination of Optimal Transformer Spares Based on the Minimum MTBF_u Criterion 447
 20.3.3 Determination of Optimal Transformer Spares Based on the Criterion of Statistical Economics 448
20.4 Conclusions 450
References 451

21 VOLTAGE SAGS AND SURGES AT INDUSTRIAL AND COMMERCIAL SITES 453
21.1 Introduction 453
 21.2.1 Typical Range for Input Power Quality and Load Parameters of Major Computer Manufacturers 454
 21.2.2 Typical Design Goals of Power Conscious Computer Manufacturers (Often Called the CBEMA Curve) 454
 21.3.1 Background 455
21.3.2 Case Study: Radial Distribution System 459

21.4 Frequency of Voltage Sags 461
 21.4.1 Industrial Customer Group 462
 21.4.2 Commercial Customer Group 463

21.5 Example Voltage Sag Problem: Voltage Sag Analysis of Utility and Industrial Distribution Systems 464
 21.5.1 Utility Distribution Systems 464
 21.5.2 Industrial Distribution System 470

21.6 Frequency and Duration of Voltage Sags and Surges at Industrial Sites: Canadian National Power Quality Survey 472
 21.6.1 Background 472
 21.6.2 Voltage Sags and Surges (Time of Day) 473
 21.6.3 Voltage Sags and Surges (Day of Week) 475
 21.6.4 Frequency of Disturbances Monitored on Primary and Secondary Sides of Industrial Sites 478

21.7 Scatter Plots of Voltage Sag Levels as a Function of Duration 479

21.8 Scatter Plots of Voltage Surge Levels as a Function of Duration 479

21.9 Primary and Secondary Voltage Sags Statistical Characteristics 480

21.10 Primary and Secondary Voltage Surges Statistical Characteristics 481

21.11 Conclusions 486

References 486

SELECTED PROBLEMS AND ANSWERS 489

Problem Set for Chapters 2 and 3 489
 Answers to Problem Set for Chapters 2 and 3 493

Problem Set for Chapter 4 494
 Answers to Problem Set for Chapter 4 496

Problem Set for Chapter 5 497
 Answers to Problem Set for Chapter 5 497

Problem Set for Chapter 6 498
 Answers to Problem Set for Chapter 6 504

Problem Set for Chapter 7 505
 Answers to Problem Set for Chapter 7 509

Problem Set for Chapter 8 510
 Answers to Problem Set for Chapter 8 512

Problem Set for Chapter 21 512
 Answers to Problem Set for Chapter 21 516

Index 519