Contents

Foreword xv
Preface and Overview xvii
Acronyms xxv
Contributors List xxxi

1 Broadband Optical Access Technologies and FTTH Deployment in NTT 1
1.1 Introduction 1
1.2 History of Optical Technology in Japan 2
 1.2.1 The First Research on Subscriber Optical Transmission Systems 2
 1.2.2 From Multi-Mode Fiber to Single-Mode Fiber 2
 1.2.3 Development of CT/RT System 3
 1.2.4 Moving Towards FTTH 3
 1.2.5 Optical Systems at Metal-Wire Costs 4
 1.2.6 Access Network Optical Upgrading Program 4
1.3 Trends in Broadband Services 4
 1.3.1 Growth of Broadband Services in Japan 4
 1.3.2 Vision for a New Optical Generation 6
1.4 Optical Access Technology Behind Broadband Services 6
 1.4.1 Optical Access Technology for Current Broadband Services 6
 1.4.2 Broadband Access Network Technology in the Future 12
1.5 Conclusion 15
References 15

2 Today’s Broadband Fiber Access Technologies and Deployment
Considerations at SBC 17
2.1 Introduction 17
2.2 Fiber-to-the-Neighborhood (FTTX) Architecture 18
 2.2.1 FTTH Access Architecture 18
 2.2.2 FTTN Access Architecture 20
2.3 ITU-T PON Standards 20
 2.3.1 ITU-T G.983 B-PON Standards Series 21
 2.3.2 ITU-T G.984 G-PON for Higher Speeds 22
 2.3.3 The Role of Standards in Interoperability 23
2.4 PON Technology Background 24
 2.4.1 Upstream Bandwidth Assignment 24
 2.4.2 Ranging 25
 2.4.3 Splitters 25
3 FTTH: The Swedish Perspective

3.1 Introduction

3.2 Contents

3.3 Definitions

3.3.1 Broadband Definition

3.3.2 FTTH Definition

3.3.3 Muni Net Definition

3.3.4 Residential Area Network, Definition

3.4 Background for the Swedish FTTH Boom

3.5 The Swedish Broadband Market Today

3.5.1 Broadband Penetration Compared to the OECD

3.5.2 The Broadband Market and Access Technologies in Sweden

3.5.3 Equipment Suppliers

3.5.4 The Swedish Broadband Industry

3.5.5 Collaboration Between Industry and Academia

3.6 Open Networks Versus Vertical Integration

3.6.1 The Open Network

3.6.2 Functions When Operating Muni Nets

3.6.3 Relationships and Monetary Flows in Muni Nets

3.6.4 Open Networks Versus Vertical Integration

3.7 Access Network Technologies

3.7.1 PON Versus Point-to-Point Ethernet

3.7.2 L2 Versus L3 Access Architectures

3.8 Drivers, Services and Trends for the Future Broadband Networks

3.8.1 Operators and Network Owners

3.8.2 Authorities

3.9 Description of Key Swedish FTTH Players

3.9.1 PacketFront

3.9.2 Ericsson

3.9.3 TeliaSonera

3.9.4 Svenska Bostäder in Vällingby: A Greenfield Deployment

3.9.5 Stockholm and the Vällingby Model: A Brownfield Deployment
4 Broadband Access Networks and Services in Korea

4.1 Changing Environments and FITL Plan

4.2 FLC-A as the First Member of the FITL

4.2.1 Services Considered

4.2.2 Hardware Configuration

4.2.3 Management System

4.2.4 FLC-B an FLC-A Upgrade

4.3 FLC-C

4.3.1 Services Considered

4.3.2 Hardware Configuration

4.3.3 Operation Support System

4.3.4 Multi-Vendor Interoperability

4.3.5 FLC-C Experience

4.4 Broadband Access-XDSL

4.4.1 Environment

4.4.2 Internet Services in Korea

4.4.3 Competing Technologies

4.4.4 Broadband Access Network

4.4.5 Network Architectures and Protocol

4.4.6 VDSL

4.4.7 Services

4.4.8 Interferences

4.4.9 IP-VDSL

4.4.10 Monumental Success of the XDSL

4.5 Ethernet to the Home and WLAN

4.5.1 Environments

4.5.2 Metro Ethernet

4.5.3 Wireless LAN

4.6 B-PON (Broadband Passive Optical Networks)

4.6.1 Environments

4.6.2 Management

4.6.3 Legacy OSS Interfaces

4.6.4 B-PON Deployment

4.7 WDM-PON

4.7.1 Next Generation Network

4.7.2 Bandwidth

4.7.3 QoS

4.7.4 Design Concept

4.7.5 WDM-PON System Based on ASE Injected FP-LD Scheme

4.7.6 Demonstration of Triple Play Service by WDM-PON

4.7.7 Now WDM-PON

References
5 Broadband Fiber-to-the-Home Technologies, Strategies, and Deployment
Plan in Open Service Provider Networks: Project UTOPIA

5.1 Introduction
5.2 Municipal Perspective
5.3 Operational Model: Open Service Provider Network™
5.4 Guiding Principles
5.5 Technology Position: Physical Media
5.6 Architecture Template: Outside Plant
 5.6.1 Type of Fiber
 5.6.2 Active Versus Passive
 5.6.3 Redundancy
 5.6.4 Fiber Strand Counts
 5.6.5 Optimal Fiber Aggregation
 5.6.6 Outside Plant Design
 5.6.7 The Distribution Network
5.7 Architecture Template: Standards
5.8 Architecture Template: Transport Layer Topology
 5.8.1 Reliability
 5.8.2 Traffic Management
 5.8.3 Scalable Bandwidth
 5.8.4 Plentiful Bandwidth
 5.8.5 Cost to Scale
 5.8.6 Architecture Template – Transport Layer Topology
5.9 Network Technology: Technology and Vendor Selection
5.10 Network Interfaces
5.11 Network Operations: Capacity Management
5.12 Conclusions

References

6 High-Speed FTTH Technologies in an Open Access Platform –
the European MUSE Project

6.1 Introduction
 6.1.1 A Different View of Networks
 6.1.2 Changing Architectures
 6.1.3 Future Applications and Service Requirements
 6.1.4 Network Convergence and Distribution of Intelligence
 6.1.5 Migration of Access Networks
6.2 Fiber Access Networks
 6.2.1 Access Network Design
 6.2.2 Techno-Economic Modeling
 6.2.3 Fiber Access Topologies
6.3 FTTX Technologies
 6.3.1 Improvement of Optical Access Multiplexers
 6.3.2 Future Deployment
6.4 Conclusions

References
8.6 An End-to-End Vision 208
8.7 Summary/Conclusions 209
8.A1 Appendix 1 210
 8.A1.1 B-PON General Characteristics 210
 8.A1.2 G-PON General Characteristics 212
References 213

9 An Evolutionary Fibre-to-the-Home Network and System Technologies: Migration from HFC to FTTH Networks 215
9.1 Introduction 215
9.2 Elements of Compatibility 215
9.3 The State of HFC Networks 216
9.4 Comparing the Technologies 217
 9.4.1 Broadcast Service 217
 9.4.2 Data Service 218
 9.4.3 Voice Service 219
 9.4.4 Element Management Systems 219
 9.4.5 Equipment Location 219
9.5 Introduction to the Architectures of HFC and FTTH Networks 219
 9.5.1 Elements of an FTTH Network 220
 9.5.2 Data Layer 220
 9.5.3 Optical Network 221
 9.5.4 Home Terminal 221
9.6 Elements of Compatibility 225
 9.6.1 Powering 225
 9.6.2 Bandwidth Compatibility 225
 9.6.3 Set Top Terminal Support 225
 9.6.4 Data Interfaces 226
 9.6.5 Voice Protocol 226
 9.6.6 Quality of Service (QoS) 227
9.7 Video Issues 228
 9.7.1 Comparing Broadcast to IPTV 229
 9.7.2 HFC Video Opportunities 231
9.8 Conclusion 231
References 232

10 FTTH Systems, Strategies, and Deployment Plans in China 233
10.1 Current Status of Broadband Access 233
 10.1.1 China’s Broadband Users Growing Rapidly 233
 10.1.2 Access Service Requirements 233
 10.1.3 Access Technologies and Key Players 234
10.2 Driving Forces of FTTH 236
 10.2.1 Increased Bandwidth Demand 236
 10.2.2 Reduced System Cost 236
10.2.3 Competition 236
10.2.4 Market 237
10.2.5 Regulatory 237

10.3 Latest FTTH Initiatives 237
10.3.1 National FTTH Research Plan 238
10.3.2 FTTH Products 238
10.3.3 Early FTTH Field Trials 238
10.3.4 The First FTTH Equipment Testing by Carrier 239
10.3.5 Commercial FTTH Networks 239

10.4 FTTH Technology Considerations 240
10.4.1 EPON will Dominate Residential FTTH Market 240
10.4.2 GPON will be Mostly Used for FTTO 241
10.4.3 P2P will not be Widely Deployed 241
10.4.4 Multi-Service Support is Generally Required 242
10.4.5 FTTH Functionality Expansion 242

10.5 Major FTTH Players and Products 243
10.5.1 Major FTTH Service Providers 243
10.5.2 Major FTTH Vendors 243
10.5.3 FTTH Products 243

10.6 Market Barriers 245
10.6.1 High System Cost 245
10.6.2 Lack of Applications 246
10.6.3 Regulations 246
10.6.4 Competition from Other Technologies 246

10.7 Market Opportunities and Deployment Strategies 247

References 248

11 Integrated Broadband Optical Fibre/Wireless LAN Access Networks 251
11.1 Introduction 251
11.2 Directly Modulated Radio-Over-Fibre Systems 252
11.3 Radio-Over-Fibre Systems Deploying Optical Frequency Conversion 253
11.3.1 Heterodyning Systems 253
11.4 Optical Frequency Multiplying System 255
11.4.1 OFM System Analysis 256
11.4.2 Impact of Dispersion in Multimode Fibre Systems 258
11.4.3 Impact of Dispersion in Single-Mode Fibre Systems 259
11.4.4 Experimental Results 261
11.5 Bi-Directional Multiple-Access System 262
11.6 Installation Aspects of In-Building Radio-Over-Fibre Systems 263
11.7 Dynamically Allocating Radio Capacity 264
11.8 Concluding Remarks 265
Acknowledgement 266
References 266
12 Broadband Optical Access, FTTH, and Home Networks – the Broadband Future

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction – A Historical Perspective</td>
<td>267</td>
</tr>
<tr>
<td>12.2 The Broadband Access Technology Options – xDSL Versus Cable Modem, HFC Versus FTTH, PON Versus P2P Ethernet</td>
<td>269</td>
</tr>
<tr>
<td>12.3 Broadband FTTH Drivers, Triple-Play, Competition and IPTV</td>
<td>273</td>
</tr>
<tr>
<td>12.4 Broadband Competitions Worldwide: A Few Examples</td>
<td>275</td>
</tr>
<tr>
<td>12.4.1 Examples of Broadband Competition in Japan</td>
<td>276</td>
</tr>
<tr>
<td>12.4.2 Examples of Broadband Competition in Europe</td>
<td>278</td>
</tr>
<tr>
<td>12.4.3 Examples of Broadband Competition in the US</td>
<td>279</td>
</tr>
<tr>
<td>12.5 Broadband Competition in Hong Kong</td>
<td>282</td>
</tr>
<tr>
<td>12.6 Broadband Optical Home Networks: The Potential of Broadband Home Networking or ‘Giga-Homes’</td>
<td>285</td>
</tr>
<tr>
<td>12.6.1 HD Video ‘Blog’</td>
<td>286</td>
</tr>
<tr>
<td>12.6.2 Large-Screen High-Definition Display for Homes</td>
<td>286</td>
</tr>
<tr>
<td>12.8 The Broadband Future, with IP HDTV/VOD and HD Video Communications</td>
<td>293</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>294</td>
</tr>
<tr>
<td>References</td>
<td>294</td>
</tr>
</tbody>
</table>

Index 299