Index

Note: Figures and Tables are indicated by *italic page numbers*

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC powder electroluminescence</td>
<td>252–4</td>
</tr>
<tr>
<td>(ACPEL) compared with DCPEL</td>
<td>250</td>
</tr>
<tr>
<td>light emission mechanism</td>
<td>257–61</td>
</tr>
<tr>
<td>AC powder electroluminescent (ACPEL) devices applications</td>
<td>253–4, 267</td>
</tr>
<tr>
<td>limitations</td>
<td>254, 265–7</td>
</tr>
<tr>
<td>high operating voltages</td>
<td>266</td>
</tr>
<tr>
<td>lifetime and luminance degradation</td>
<td>254, 265–6</td>
</tr>
<tr>
<td>low luminance</td>
<td>266</td>
</tr>
<tr>
<td>moisture sensitivity</td>
<td>266–7</td>
</tr>
<tr>
<td>materials</td>
<td>262–5</td>
</tr>
<tr>
<td>operational characteristics</td>
<td>253, 261–2</td>
</tr>
<tr>
<td>phosphors used</td>
<td>252, 255</td>
</tr>
<tr>
<td>structure</td>
<td>255</td>
</tr>
<tr>
<td>accelerating point charge</td>
<td>2–3</td>
</tr>
<tr>
<td>electric field emanating from</td>
<td>2–3</td>
</tr>
<tr>
<td>magnetic field emanating from</td>
<td>3</td>
</tr>
<tr>
<td>activators (for phosphors)</td>
<td>34, 43, 81, 103, 255, 263, 264</td>
</tr>
<tr>
<td>active matrix OLED (AMOLED) displays</td>
<td>111–12, 124, 125, 126, 127–8, 136</td>
</tr>
<tr>
<td>manufacturing processes</td>
<td>149–55</td>
</tr>
<tr>
<td>ADS108GE luminescent polymer</td>
<td>177</td>
</tr>
<tr>
<td>in planar LECs</td>
<td>190, 199, 201</td>
</tr>
<tr>
<td>AllInAsP LEDs color triangle (on CIE diagram)</td>
<td>77</td>
</tr>
<tr>
<td>properties compared with other light sources</td>
<td>144</td>
</tr>
<tr>
<td>AllInGaN LEDs, properties</td>
<td>208</td>
</tr>
<tr>
<td>AlInGaP LEDs, properties</td>
<td>208, 209</td>
</tr>
<tr>
<td>alkaline earth metal oxo-nitride phosphors</td>
<td>102</td>
</tr>
<tr>
<td>alkaline earth metal silicate phosphors</td>
<td>94–5</td>
</tr>
<tr>
<td>alkaline earth metal silico-nitride phosphors</td>
<td>101</td>
</tr>
<tr>
<td>alkaline earth metal sulfide phosphors</td>
<td>96–7, 234</td>
</tr>
<tr>
<td>alkaline earth metal thiogallate phosphors</td>
<td>97–9</td>
</tr>
<tr>
<td>alternating current . . . see AC . . .</td>
<td></td>
</tr>
<tr>
<td>anthracene electroluminescence</td>
<td>162, 166, 257</td>
</tr>
<tr>
<td>in OLEDs</td>
<td>114, 118, 120, 121, 162</td>
</tr>
<tr>
<td>photoluminescence</td>
<td>257</td>
</tr>
<tr>
<td>anti-Stokes shift</td>
<td>32</td>
</tr>
<tr>
<td>artificial atoms (quantum dots)</td>
<td>23, 25</td>
</tr>
<tr>
<td>atomic layer deposition (ALD) process</td>
<td></td>
</tr>
<tr>
<td>phosphor films in TFEL devices</td>
<td>243–4</td>
</tr>
<tr>
<td>thin-film encapsulation</td>
<td>154–5</td>
</tr>
<tr>
<td>atomic layer epitaxy (ALE)</td>
<td>243</td>
</tr>
<tr>
<td>Auger electrons</td>
<td>21, 35</td>
</tr>
<tr>
<td>Auger recombination process</td>
<td>31, 35, 56</td>
</tr>
<tr>
<td>avalanche breakdown, in TFEL devices</td>
<td>224, 226</td>
</tr>
<tr>
<td>BaAl$_2$S$_3$:Eu phosphor</td>
<td>244, 246</td>
</tr>
<tr>
<td>backlighting applications</td>
<td>228, 262</td>
</tr>
<tr>
<td>band edge emission</td>
<td>31–2</td>
</tr>
<tr>
<td>improvement in CdS Qdots</td>
<td>51</td>
</tr>
<tr>
<td>band gap</td>
<td>19, 20, 26–7</td>
</tr>
<tr>
<td>effect of quantum confinement (Qdots)</td>
<td>25, 26–30</td>
</tr>
</tbody>
</table>

Luminescent Materials and Applications Edited by Adrian Kitai
© 2008 John Wiley & Sons, Ltd
listed for various semiconductors 28, 43, 46, 50, 56, 59

see also energy band diagram
barium sulfide (BaS) 19
Barix multilayers, thin-film encapsulation of OLEDs by 154, 155
Ba$_2$Y$_2$Si$_3$AlO$_{12}$:Ce phosphor 93
BDOH-PF 179
BDOH-PF-based LECs 174, 178, 180, 182
binary oxide dielectrics, properties 235
bipolar field-emission model 260
applied to ZnS:Cu phosphor in ACPEL 258–60
experimental evidence 260
blackbody radiation 2, 12–15
 Planckian locus in CIE diagram 84, 112, 113
spectrum 15
blinking effect in quantum dots 35, 36
block copolymers, in LECs 180
blue LEDs 76, 208, 212
 wavelength for maximum efficiency 78, 80
Boltzmann statistics 12
bulk homojunction LECs 196–201
Ca$_3$Sc$_2$Si$_3$O$_{12}$:Ce phosphor 93
CaAlSiN phosphor 216
CaAlSiN$_3$:Eu$^{2+}$ phosphor 101
cadmium selenide (CdSe) 24, 26, 28
cadmium selenide (CdSe) quantum dots 56–9
 bioapplications 59
 blinking effect 35, 36
 doped CdSe Qdots 59
 electroluminescence device using 58
 optical properties 56–7
 surface passivation of 57–8
 cadmium sulfide (CdS) 24, 28, 50
cadmium sulfide (CdS) quantum dots 29, 50–5
 as bio-imaging probes 53–5
 doped CdS Qdots 51–2
 electroluminescence devices using 52–3, 54
 metal-coated 51
 optical properties 50–1
 cadmium sulfoselenide (CdS,Se$_{1-x}$) 24
cadmium telluride (CdTe), properties 28, 59
cadmium telluride (CdTe) quantum dots 59–62
 bioapplications 61–2
 in photonic devices 62
 surface passivation of 59–60
 type II 60–1
cathodoluminescence (CL) 2, 20, 21, 22
cathodoluminescent phosphors 83, 95, 97
ceramic sheet dielectric electroluminescent devices 225–6, 240
cerium-activated phosphors 81, 83–93, 94, 234, 234
chemical vapor deposition (CVD) 42, 154, 244
chemiluminescence 20
CIE chromaticity diagram 112, 113
 blackbody radiation locus 84, 112, 113
 coordinates, various phosphors 84, 86, 98, 234
emitters for white OLED 121
 LEDs 77
 Planckian Locus 84, 112, 113
tandem white OLEDs + improved color filters 139, 140
thiogallate phosphors 98
YAG phosphors 84, 86
color conversion phosphors 75–109
 activators for 81
 alkaline earth metal oxo-nitrides 102
 disadvantages of using LEDs without 76–8
 excitation wavelengths listed 103
metal nitrides 100–1
metal oxide based phosphors 83–95
metal sulfide based phosphors 95–100
problems outstanding 82–3
properties required 80
requirements 79–80
synthesis 83
white light generation using 76, 81–2
color correlation temperature (CCT)
 lighting applications 112, 146
 phosphors 83
 white LEDs 215
color displays
 RGBW 4-pixel patterning 127–8
 tandem OLEDs 136–7
 white emitter + RGB color filters 123, 124–6
color rendering 79, 213–14
color rendering index (CRI) 79
 improvement using tandem white OLEDs 144–5
 requirements for various situations 79
 various OLEDs 144
color-cathode LCDs 137, 246
complex oxide dielectrics, properties 236
computerized tomography (CT), contrast agents 53
‘conducting polymers’ 176
conduction band 19, 20, 227
conjugated polymers
INDEX 271

electroluminescence from 142, 163–5, 167, 176
LECs based on 176
OLEDs based on 142–3, 164–5
contact electroluminescence 256
copper(I) chloride (CuCl) 24
Coulombic attraction 27
Coulombic interaction energy 17, 28, 29–30
crown ether–alkali metal complexes 182
crown ethers
in backbone of luminescent polymers 179, 180
as electrolyte in LECs 182, 188
as side groups on luminescent polymers 178
crystal field splitting 17–18
DC powder electroluminescence
(DCPEL) 249–52
compared with ACPEL 250
light emission mechanism 251, 252
DC powder electroluminescent (DCPEL) devices
operating mechanism 250–1
pulse-wave mode 251
structure 250
defect emission 32–3
degenerate orbitals
doubly degenerate 18
five-fold degenerate 18
triply degenerate 18
density of states (DOS) 22, 23
Destriau cell 252, 253
Destriau effect 161, 252–3
dielectrics
in ACPEL devices 255
in TFEL devices 235, 236
dipole–dipole energy transfer 15–16
dipole radiator 5
direct band gap semiconductor 20
direct current . . . see DC . . .
display applications
OLEDs 112, 122–30, 223
TFEL devices 245–7
dopants (for phosphors) see activators
dynamic bond percolation (DBP) theory 10
effective mass approximation (EMA) model 27–8
Einstein coefficients 8–9
electrical double layer, at LEC
electrode–polymer interface 171
electrochemical doping, in LECs 170, 171
electroluminescence, first reported 75
electroluminescence (EL) 2, 20, 21, 21, 161
applications 2, 161
conjugated polymers 142–3, 163–5
first observed 21, 75, 252
luminous efficiency 2
small organic molecules 114, 162–3
see also powder electroluminescence;
thin-film electroluminescence
electroluminescent (EL) devices
advantages in lighting applications 21
applications 2, 161, 223
compared with other devices 144, 224
materials used 223
quantum dots used 52–3, 54, 58
electroluminescent (EL) phosphors 95, 97,
233–4, 257
electroluminescent (EL) turn-n voltage, listed for various materials 166
electromagnetic radiation
energy released as 3–4, 7
selection rules and 7
electromagnetic spectrum
blackbody radiation 15
visible light 1
electron beam lithography 39
electron spin resonance (ESR) spectroscopy,
Mn-doped ZnS Qdots 47
energy band diagram
ACPEL device 259
DCPEL device 252
semiconductors 20
TFEL devices 227
see also band gap
energy level diagram, ZnS:Cu,Al phosphor 262–3
etching processes, Qdots manufactured using 39
europium-activated phosphors 81, 94–5, 96–100, 234, 234
exciton binding energy 27
listed for various semiconductors 28
exciton Bohr radius 27
excitons, relaxation processes 30–5
external quantum efficiency (EQE) 209
LECs 178, 188
LEDs 77, 209, 210
OLEDs 141
extrinsic luminescence 34
flash evaporation sources, OLED manufacture 152–3
flexible ACPEL lamps 267
flexible electroluminescent film 164, 241, 242
flip–flop bonding of LEDs 210
fluorescence 31
fluorescent lighting
 compared with other light sources 144, 219
requirements for OLEDs in competition 143
focused ion beam (FIB) technique 39
Förster resonance energy transfer (FRET) 59, 60
Fowler–Nordheim equation 259–60
frozen-junction LECs 171, 183–8
current/voltage/light intensity characteristics 184
drawback 187
EL turn-on response 184–5
operational stability 185
photovoltaic response 186–7
in planar configuration 185–6
room temperature operation 187–8
full-color displays
 FTEL 245–7
 LCD 128, 245
 OLED 127–8, 136–7, 156
full-color electroluminescence
 color-by-blue approach 246–7
 color-by-white approach 245–6
 patterned phosphors used 246
gadolinium-functionalized quantum dots 52, 54–5, 56
gallium aluminophosphate (GaaS) LEDs 28, 62
gallium arsenide (GaAs) 28, 62
 gallium arsenophosphate (GaAsP) LEDs 76
gallium nitrogen (GaN) 28, 62
 gallium phosphide (GaP) 20, 28, 62
germanium, properties 28
glass substrate thin film dielectric
electroluminescent devices 224, 225, 235–7
green LEDs 76, 208
harmonic perturbation 9–12
highest occupied molecular orbital (HOMO) 20, 29
hot-solution decomposition process, Qdots synthesized using 41
hydrothermal synthesis, of quantum dots 41
impact-excitation/ionization, electroluminescence caused by 161, 162, 233, 257
incandescent lamps, compared with other light sources 144, 219
indirect band gap semiconductor 20
indium antimonide (InSb) 28
indium arsenide (InAs) 28, 62
indium gallonitride (InGaN) LEDs 76, 208
color triangle (on CIE diagram) 77
luminous efficiency compared with other light sources 77
properties 208, 209
with ‘green’ and ‘red’ phosphors 102, 208
indium nitride (InN) 28, 62
indium phosphide (InP) 28, 62
ink paintings, illumination of 220
inkjet printing, color patterning of OLEDs using 124–5, 142
internal quantum efficiency (IQE) calculations 211
fluorescent vs phosphorescent emitters in OLEDs 140
LEDs 210–11
 plot vs emission wavelength 78
quantum dots 48, 49, 52, 56, 57, 61
Laporte selection rule 21, 34
large-area coatings, OLEDs, manufacturing processes 149–55
large-area displays, OLED-based 124–6
laser thermal printing, color patterning of OLEDs using 125
lateral epitaxy on patterned sapphire (LEPS) 209–10
LCAO-MO model 29–30
lead selenide (PbSe) quantum dots 63, 63, 64
lead sulfide (PbS) 24, 28
LEC s see polymer light-emitting electrochemical cells
LED lighting
 applications 219, 220
 characteristic features 217, 218, 220
 energy conservation benefits 221
 future prospects 220–1
‘light-emitting battery’, LEC as 174
light-emitting diodes (LEDs)
color conversion phosphors 79–83
 alkaline earth metal oxo-nitrides 102
 metal nitrides 100–1
 metal oxide based phosphors 83–95
metal sulfide based phosphors 95–100

disadvantages without color conversion phosphors 76–8

green window problem 78

history of development 75–6

inorganic applications 207

compared with other devices 143, 144, 183, 224

mode of operation 207

RGB LEDs approach to white light 76, 81, 208, 212, 213

types 211–12

see also organic light-emitting diodes (OLEDs)

lighting applications

comparison of various light sources 144

white OLEDs for 112, 143–8

performance and cost goals 143–4

linear combination of atomic orbitals (LCAO) theory 29

see also LCAO-MO model

liquid crystal display (LCD) TV applications 128, 247

color filters 137, 139, 245

Lossev effect 252

lowest unoccupied molecular orbital (LUMO) 20, 29

LS coupling 17

luminessence

ACPEL devices 261

LECs 171, 173, 178, 182, 188, 189

OLEDs 118, 134, 144

quantum dots 58

luminance efficacy

OLEDs 117, 118

polymer OLEDs 143

tandem OLEDs 133, 134

 luminescence

principles 1–18

types 2, 20

see also cathodoluminescence; electroluminescence; photoluminescence

 luminescent conjugated polyelectrolytes (LCPEs) 183

 luminescent polymers

block copolymers with ion-conductive side groups 180

conventional conjugated polymers 142, 176, 177

with ion-conductive side groups 176, 178–80

in LECs 176–80

in OLEDs 142, 164

various phosphors (listed) 234

luminous efficacy/efficiency

thiogallate phosphors 99, 100

white LEDs 214, 219, 220, 221

white OLEDs, compared with other light sources 144

YAG:Ce phosphors 86–7

effect of praseodymium as co-activator 88–90

factors affecting 87–8, 92–3

(Y,Gd1-x)AG:Ce phosphors 91

magnetic resonance imaging (MRI) properties, quantum dots 52, 54–5, 56

manganese-activated phosphors 43, 46–7, 227–8, 233, 234

mechanoluminescence 20

medical applications, white LEDs 218, 220

MEH-PPV based LECs

blend with PEO + OCA 181–2

bulk homojunction LECs 198, 200, 201

device characteristics 171, 172, 173

factors affecting stability 185–6

planar LECs 188, 189, 191, 194–5

MEH-PPV based LEDs 142–3, 164, 166, 167

MEH-PPV polymer 177

electroluminescence from 142–3, 164–5, 166

photoluminescence 191

metal chalcogenide phosphors 96, 234

metal nitride based phosphors 100–1, 234

metal oxide based phosphors 83–95, 234

metal sulfide based phosphors 95–9, 234

micro-displays, OLED-based 124, 125

microemulsion techniques, Qdots synthesized using 40, 49

molecular beam epitaxy (MBE) 42, 243

molecular orbital (MO) theory see LCAO-MO model

moving point charge, magnetic field emanating from 1, 2

multicolor optical coding technique, quantum dots used 56–7, 59

Na2Gd3B2O7:Ce3+,Tb+ phosphor 94

nanomaterials 22–3

nanoparticles, size 23

nanostructure, categories 22

nanostructured materials 22–3
National Television System Committee (NTSC) color gamut ratio 135
listed for white tandem OLEDs 134, 136, 137
near-infrared-emitting quantum dots 61
near-ultraviolet LEDs 207
phosphors for 95 properties 208
in white light generation
four (OYGB) phosphor approach 215–16
three (RGB) phosphor approach 208, 214–15
nitride phosphors 100–1
non-radiative relaxation process 34–5
octyl cyanoacetate (OCA), as additive to electrolyte in LECs 181–2
office lighting requirements 144
OLEDs see organic light-emitting diodes
oligo(ethylene oxide) in backbone of luminescent polymers 179, 180
as side groups on luminescent polymers 178, 179
on–off bioswitches 59
operational stability
LECs 174
OLEDs 117–19
organic light-emitting diodes (OLEDs) 111–59 compared with other light sources 143, 144
display applications 112, 122–30, 163, 223
driving voltage of various configurations 165, 166
early developments 111, 163
electron-transport layer (ETL) in 114, 163
hole-transport layer (HTL) in 114, 163
lighting applications 112, 143–8
manufacturing processes 149–55, 156
flash evaporation sources 152–3
thin-film encapsulation 153–5
vacuum-thermal evaporation using linear sources 150–1
photon emission modes 145–6, 145
two-layer 113–14, 163
see also white OLEDs
Ostwald ripening 41

particle-in-a-box model 27
passive matrix (PM) displays 111, 228
patterned phosphors, in full-color EL displays 246
phase transitions effects on optical properties of Qdots 26
factors affecting 26
phosphor-converted LEDs (pcLEDs) 76, 81–2
phosphorescence 31
phosphorescent emitters, OLEDs using 140, 141, 156
phosphors
in ACPEL 255
activators for 34, 43, 81, 103, 255, 263, 264
color conversion phosphors 75–109
electroluminescent 233–4, 257
thin-film growth 242–5
meaning of term 19
photoluminescent 79–83, 257
quenchers 264
synthesis 83, 96, 97, 99, 263–4
see also color conversion phosphors
photoluminescence (PL) 2, 20, 21, 21
photoluminescence quenching, in planar LECs 191
photoluminescent phosphor(s) 79–83, 257
photovoltaic systems 62
physical vapor deposition (PVD) 42
planar LECs 188–201
benefit of planar configuration 189
bulk homojunction LECs 196–201
with millimeter inter-electrode spacing 190–5
multiple 197–9
with relaxed p-n junction 195–6
temperature dependence of doping propagation speed 193–4
time-lapse fluorescence imaging studies 192–3, 194–5
plasma-enhanced chemical vapor deposition (PECVD) 154
point charge see accelerating point charge; moving point charge; stationary point charge
poly(ethylene oxide) (PEO), as electrolyte in LECs 180–2
polyfluorene-based LECs, ‘turn-on’ characteristics 173, 174
polyfluorene-based OLEDs 143
polymer light-emitting diodes (PLEDs) 142–3,
156, 164–5, 166, 167
compared with inorganic LEDs 167
compared with LECs 168, 173, 186
polymer light-emitting electrochemical cells (LECs) 161–205
INDEX

background to development 167–8
compared with inorganic LEDs 183
compared with polymer LEDs 168, 173
current/voltage/light intensity
characteristics 171–2
device characteristics 171–5
doping relaxation in frozen-junction planar LECs 186, 195–6
drawbacks 173–5, 183, 195
dynamic-junction compared with frozen-junction LECs 175, 184–5
early development 168
EL turn-on voltage 172–3
electrochemical doping in 170, 188, 192, 201
electrode–polymer interface in 170–1
frozen-junction LECs 171, 183–8
future developments 202
as ‘light-emitting battery’ 174
materials
luminescent polymers 176–80
polymer electrolytes 168, 180–3
nature of electric current in 171
operating mechanism 168–71, 190, 192, 201–2
phase morphology 174, 175, 178, 183
see also frozen-junction LECs; planar LECs
poly(p-phenylene vinylene) (PPV) 177
electroluminescence 142, 164, 166
see also MEH-PPV polymer
powder contact EL device 256, 257
powder electroluminescence 249–68
light emission mechanisms 224, 251, 252, 257–61
preparation of phosphors 263–4
see also AC powder electroluminescence; DC powder electroluminescence
Poynting vector 4
praseodymium-activated phosphors 88–90
quantum confinement 25
effects on band gap 25, 26–30
quantum deficit 79
quantum dots (Qdots) 23–30
advantages over organic dyes in
bioapplications 23–4, 35, 56–7, 59
blinking effect in 35, 36
as color converters for LEDs 103–4
core/shell Qdots 38, 45, 48, 57–8
double-shell nanostructures 58
future research 64
history 24–5
inorganically capped 37–8
meaning of term 22
non-radiative relaxation process 34–5
optical properties and applications
42–63
II-VI Qdots 42–62
III-V Qdots 62, 63
IV-VI Qdots 63, 64
organically capped 36–7
radiative relaxation processes 30–4
structure–properties relationship 25–6
surface passivation of 35–8, 45, 47–8, 57–8, 59–60
surface-to-volume ratio 25
synthesis processes 38–42
bottom-up approaches 39–42
top-down approaches 38–9
use in colored glasses 24
quantum efficiency see external quantum efficiency; internal quantum efficiency
quantum electrodynamics 9
quantum mechanics 5–6
quantum numbers 16
quantum well–quantum dot (QW–QD) nanostructures 58
quenchers (of phosphors) 264
radiation theory 1–4
radiation-induced sublimation transfer (RIST) process 125–6
radiative relaxation processes 30–4
activator emission 34
band edge emission 31–2
defect emission 32–3
reactive ion etching (RIE) 39
red LEDs 76, 207
relaxation processes 30–5
non-radiative relaxation 34–5
radiative relaxation 30–4
reverse micelle process 40
reverse micelle technique (for synthesis of quantum dots) 40, 51
RF magnetron sputtering, phosphor films in TFEL devices 244–5
RGBW 4-pixel pattern format
development of 126–7
full-color displays based on 127–8
roll-to-roll manufacturing, OLED devices 149, 153, 164
Ryberg energy 28
Sawyer–Tower method (of plotting charge–voltage relationship in EL devices) 231–2
output trace 232
scattering layer, OLED efficiency enhanced by 145–6
Schrödinger equation 16
selection rules 7–8, 21, 34
self-healing mechanisms, for thin-film electroluminescent devices 236–7
‘semi-conducting polymers’ 176
see also conjugated polymers
semiconductors
II–VI compounds 28, 42, 263–4
III–V compounds 28, 62
IV–VI compounds 28, 63
properties listed 28
shadow masking, color patterning using 122–3
Sialon-type phosphors 102
silicate garnet phosphors 93
silicon, properties 28
simple harmonic radiator 4–5
Snell’s Law 239
sol–gel techniques, nanoparticles synthesized using 40
solar cells 46, 62, 186
solid-state lighting (SSL) applications 148, 219–20
energy conservation benefits 221
panels 147–8
manufacture of 149
white OLEDs 112, 143–8
performance and cost goals 143–4
solvothermal synthesis, alkaline earth metal sulfide phosphors 97
sphere-supported thin-film electroluminescent (SSTFEL) devices 226, 241, 242
spherical harmonics 17
spin–orbit coupling 8, 16
spin selection rule 21, 34
spontaneous emission 9, 12, 30
sputter deposition, phosphor films in TFEL devices 244–5
SrBa phosphor 216
Sr,Ca,Ca:S:Eu phosphor 96
SrGa2S4:Eu2+ phosphor 97, 234
SrS:Ce,Eu phosphor 234, 245
properties 234
stationary point charge, electric field emanating from 1, 2
stimulated emission 9, 34
Stokes shift 31–2, 79
street lighting system 218, 219
strong field scheme (in crystal field theory) 18
‘superyellow’ luminescent polymer 177
LEC based on 188
surface passivation, quantum dots 35–8, 45, 47–8, 57–8, 59–60
surface states on quantum dots effects on optical properties 25
factors affecting 33
tandem OLEDs see white OLEDs, tandem Tang cell 163
terbium-activated phosphors 94, 234
thermoluminescence 20
thick dielectric electroluminescent (TDEL) devices 224–5, 237–40
in full-color displays 245
thick top dielectric electroluminescent devices 226, 240–1
thin film electroluminescence (TFEL) 21, 223–48
light emission mechanism 224
thin film electroluminescent (TFEL) devices charge–voltage relation 229–31
method of determining 231–2
equivalent circuit 228–9, 229
self-healing of damaged region 236
structure 224–6, 235–42
tandem OLEDs see white OLEDs, tandem
theory of operation 226–33
thin film encapsulation, OLEDs 153–5
thin film transistor (TFTs), in ACTFEL displays 254
thiogallate phosphors 97–9
total internal reflection 145, 146, 239
triplets, white OLEDs based on 140–2
tris-(8-hydroxyquinolinato)aluminium (Alq), in OLEDs 114, 163
ultrasound method for Qdot production 41
ultraviolet irradiation, luminescence quantum efficiency of ZnS Qdots affected by 48
ultraviolet LEDs 207
phosphors for 79, 82, 94
‘upconversion’ 32, 57
vacuum-thermal evaporation
linear sources, in OLED manufacture 150–1
thin film EL devices prepared using 242–3
valence band 19, 20, 227
vanadate garnet phosphors 94
wallplug efficiency, LEDs 209
waveguide emission
 in glass substrate EL device 239
 in OLEDs 145, 146
white LEDs 207–8
 applications 218–20
costs 219
design of lighting system 217–18
luminous efficacy 214, 219, 220, 221
properties 218
white light
generation strategies using LEDs 76, 81–2, 212–18
 blue LED + one (yellow-orange) phosphor 76, 82, 208, 213
 blue LED + two (green + red) phosphors 76, 81, 102, 208
near-UV LED + four (OYGB) phosphors 215–16
near-UV LED + three (RGB) phosphors 208, 212, 213, 214–15
OLEDs 113–22
 three (RGB) LEDs 76, 81, 208, 212, 213
UV LED + three (RGB) phosphors 82, 103
white light-emitting LEDs see white LEDs
white light-emitting OLEDs see white OLEDs
white OLEDs
display applications 112, 122–30
 color-patterning methods 122–3
emitter selection method 121–2
fluorescent and phosphorescent emitters in 141
four-layer 128, 129
 spectrum 129
large-area displays based on 124–6
lighting applications 112, 143–8
 low-voltage 128–30
polymer-based 142–3
tandem OLEDs
 architecture 131
fluorescent combined with phosphorescent emitters 141–2
full-color displays using 136–7, 156
 improved color filters for wide color gamut 137–9
optimization of tandem stacks 131–2
 performance 133–5
scattering layer 146, 147
 spectra 132, 133, 136, 138, 145
structures for improved color gamut 135–6
three-layer 112–13, 128, 129
 spectrum 129
triplet-based 140–2
two-layer 113–14
 color stability 117, 118, 119
 color stability compared with other colored LEDs 120
 half-life data 117–18, 119
 mechanism of operational stability 120–1
 operational stability 117–19
optimization of white color 114–17
 performance 117–19
 spectra 115, 118, 119
wurtzite crystal structure 43, 262
 semiconductors 28
YCa₃M₂B₄O₁₅:Eu³⁺ phosphor 94
(Y₂₋ₓ₋ᵧₓEuₓBiᵧ)O₃ phosphors 94
yttrium aluminium garnet (YAG)
 Ce³⁺-activated phosphor 83–5, 213
 theoretical limit of luminous efficacy 86–8
 Ce³⁺/Pr³⁺-co-activated phosphor 85–90
yttrium/gadolinium aluminium garnet, Ce³⁺-activated phosphor 90–2
zener diodes, in TFEL equivalent circuit 229
zener emission effect 161, 257
zero-dimension nanostructures see quantum dots
zinc blende crystal structure 43, 262
semiconductors 28
zinc oxide (ZnO)
 manganese-doped 44
 properties 28, 43
zinc oxide (ZnO) quantum dots 43–6
 applications in solar cells 46
 defect states in 33
 doped ZnO Qdots 44–5
 photoluminescence properties 43–4
 quantum efficiency 44
 surface passivation of 45
 synthesis of 40
zinc selenide (ZnSe), properties 28, 48
zinc selenide (ZnSe) quantum dots 48–50
 enhancement of luminescence in 49–50
 photoluminescence properties 48–9
zinc sulfide (ZnS)
 AC EL spectra of various activated powder phosphors 264–5
 copper-activated 252, 257, 265
 Cu,Al doped 255, 265
Cu,Cl doped 258–9, 265
Cu,I doped 255, 265
manganese-doped 43, 46–7, 227–8, 233, 234, 257
preparation of thin-film phosphors 242–3
Mn,Cu doped 249–50, 255
Mn,Cu,Cl doped 255, 265
properties 28, 46, 262
structural modifications 262
terbium doped 234
zinc sulfide (ZnS) quantum dots 46–8
doped ZnS Qdots 46–7
surface passivation of 47–8
UV irradiation effects 48
zinc sulfoselenide (ZnS$_{1-x}$Se$_x$) 20
Cu,Cl doped 255
zinc telluride (ZnTe) 28