Algebra. See Linear algebra
ALOPEX (ALgorithm Of Pattern EXtraction), 283–306. See also Correlation-based learning
asymptotic analysis, 303–305
background, 283–284
discussed, 290–295
heuristics, 284
mathematical basis, 285–286
Monte Carlo sampling-based, 295–303
variants of, 286–290
Alternating free-energy maximization, 384–385
Aristotle, 5
Artificial neural networks, 333–340
background, 333–334
online option price prediction, 334–336
online system identification, 336–339
parameter setup, 334
Association cortex, described, 15
Associative learning, memory systems, 49–50
Associative memory, complex-valued domain, 257–258
Asymptotic analysis, ALOPEX, 303–305
Attention, temporal correlation theory, 57–59
Auditory cortex, described, 15
Auditory function modeling, computational neural models, 193–197
Auditory tonotopic maps. See Brain maps;
Cortical map reorganization
Autocorrelation functions, 363–364
of nonstationary process, eigenanalysis of, signal processing, 122–123
signal processing, 72
Autoencoder network, computational neural models, 187–189
Axon, defined, 9
Barlow’s postulate, neural learning, information-theoretic learning, 159–160
BCM learning rule, neural learning, mathematical basis, 135–136
Behavioral change, brain injury, 66–67
Behavioral training-induced STRF change, sensorimotor learning, 56
Bispectra analysis, higher order correlation-based, signal processing, 85–87
Blind source separation, neural learning, information-theoretic learning, 167–169
Boltzmann learning rule, neural learning, 146–147
Boltzmann machine, complex-valued domain, 258–259
Boutons (terminal buttons), defined, 9
Brain, 8–71
computational neural modeling (Kalman filtering), 340–355
computational neuroscience, xv–xvi
correlation detection:
ensembles of neurons, 25–31
single neuron, 19–25
function of, 3–5
future directions, 360–362
Hebbian learning, 357–358
hippocampus, 18–19
injury and stimulation, 59–67
memory systems, 47–52
neocortex, 14–16
novelty detection and learning, 31–38
receptive fields, 16–18
sensorimotor learning, 52–57
sensory systems, 38–47
spiking neurons, 8–14

Correlative Learning: A Basis for Brain and Adaptive Systems, by Zhe Chen, Simon Haykin, Jos J. Eggermont, and Suzanna Becker
Copyright © 2007 John Wiley & Sons, Inc.
Brain, (contd.)
 temporal correlation theory, 57–59
 thalamus, 18

Brain maps. See also Cortical map reorganization
 novelty detection and learning, 34–38
 sensory systems, 38–47
Brain-state-in-a-box model, computational neural
 models, 187

Canonical correlation analysis (CCA):
 kernel learning, 225–230
 neural learning, mathematical basis, 144
 signal processing, statistical analysis, 113–118
Case studies, 307–355
 artificial neural networks, 333–340
 background, 333–334
 online option price prediction, 334–336
 online system identification, 336–339
 parameter setup, 334
 computational neural modeling (Kalman
 filtering), 340–355
 background, 340–342
 implications, 354–355
 overview, 342–346
 shape and motion learning, 346–354
 cortical map reorganization, 308–319
 background, 308–309
 horizontal fibers, 313–315
 neural connections, 309–310
 neural correlation strength changes, 315
 pyramidal cell tuning, 310–311
 synaptic competition, 315–318
 synaptic depression, 311
 thalamocortical synapses, 311–313
 hearing compensation strategy, 320–333
 background, 320
 biological basis, 320–326
 experimental results, 330–333
 optimization, 326–329
Categorization, neural learning,
 information-theoretic learning, 178–179
Causation, correlation contrasted, 1
Cerebellar model articulation controller (CMAC),
 motor learning and, 205–207
Cholesky factorization, singular-value
 decomposition and, 375–376
Classical conditioning, temporal-difference (TD)
 models, 53–54
Coding:
 perceptual, sensory systems, 39
 sparse:
 memory systems, 49
 neural learning, 180–182
Coherent detection, signal processing, correlation
 detector, 104–105

Coincident firing, ensembles of neurons, 30–31
Columnar organization, sensory systems, brain,
 42–47
Common spatial pattern analysis, signal
 processing, 119–121
Competitive learning rule, neural learning,
 133–135
Complexity pursuit, information-theoretic
 learning, 172–173
Complex-valued domain, 249–282
ALOPEX optimization, 292–295
correlation-based learning, 257–277
 associative memory, 257–258
 Boltzmann machine, 258–259
 constant-modulus algorithm, 271–277
 independent-component analysis (ICA),
 269–273
 least means square (LMS) rule, 259–262
 principal-component analysis (PCA),
 262–269
 kernel methods for data, 277–280
 overview, 249, 280
 preliminary observations, 250–257
Computational neural learning models, 182–207.
 See also Neural learning
 auditory function modeling, 193–197
 autoencoder network, 187–189
 brain-state-in-a-box model, 187
 cerebellar model articulation controller
 (CMAC) and motor learning, 205–207
 correlation matrix memory, 182–184
 elastic net, 200–204
 Hopfield network, 184–186
 neuronal synchrony and binding, 191–193
 novelty filter, 190–191
 olfactory system correlation, 198–199
 oscillatory correlation, 193
 visual system correlation, 199–200
Computational neural modeling (Kalman
 filtering), 340–355
 background, 340–342
 implications, 354–355
 overview, 342–346
 shape and motion learning, 346–354
Computational neuroscience:
 defined, xv–xvi
 rationale for study of, 357–359
Confucius, xv
Constant-modulus algorithm (CMA),
 complex-valued domain, 273–277
Content-addressable memory (CAM), Hopfield
 network, 184–186
Correlation:
 brain, 3–5
INDEX

de

fi
defined, xiii, 1–3
ensembles of neurons, 25–31
future directions, 359–362
learning, 5–7
mutual information versus,
information-theoretic learning, neural
learning, 159
rationale for study of, 356–359
single neuron, 19–25
Correlation-based learning, 257–277. See also
ALOPEX (ALgorithm Of Pattern
EXtraction)
associative memory, 257–258
Boltzmann machine, 258–259
constant-modulus algorithm, 273–277
independent-component analysis (ICA),
269–273
least means square (LMS) rule, 259–262
principal-component analysis (PCA), 262–269
Correlation coefficient, defined, 1
Correlation detector (signal processing), 104–108
coherent detection, 104–105
spatial target detection, 106–108
Correlation function, kernel learning, 238–242
Correlation matrix memory, computational neural
models, 182–184
Correlative brain. See Brain
Correlative firing, ensembles of neurons, 25,
27–29
Correlative synapse, single neuron, 19–21
Correntropy, kernel learning, 238–242
Cortical map reorganization, 308–319. See also
Brain maps
background, 308–309
horizontal fibers, 313–315
neural connections, 309–310
neural correlation strength changes, 315
pyramidal cell tuning, 310–311
synaptic competition, 315–318
synaptic depression, 311
thalamocortical synapses, 311–313
Covariance rule, neural learning, mathematical
basis, 131–132
Crick, Francis, 356
Cross-correlation, 72, 364–367
Cyclostationary process, signal processing, 83
Decorrelative learning, local, neural learning,
information-theoretic learning, 164–166
Dendrite, defined, 9
Descartes, René, xv, 20–21
Differential Hebbian learning, temporal learning
rule, 149–152. See also Hebbian learning
Discriminant analysis, kernel learning, 232–235
Doppler, higher order functions of, signal
processing, 87–89
Edgeworth expansion, 381
Eigenanalysis:
autocorrelation function of nonstationary
process, 122–123
linear algebra, 372–374
Eigenvalue problem, generalized, linear algebra,
375
Elastic net, computational neural models,
200–204
Energy-efficient Hebbian learning, neural
learning, 176–178. See also Hebbian
learning
Entropy estimators, See Probability density and
entropy estimators
Error-correcting learning rule, neural learning,
147–149
Excitatory postsynaptic potential (EPSP),
defined, 10
Experience-maximization algorithm, 384–386
Experience-dependent synaptic plasticity,
neocortex, 22
Exploratory projection pursuit (EPP),
information-theoretic learning, 172
Eye, sensory systems, brain, 42–44
Factor analysis:
signal processing, statistical analysis, 112–113
wake-sleep learning rule, neural learning, 145
Feature binding, temporal correlation theory,
57–59
Filtering. See also Computational neural
modeling (Kalman filtering)
higher order correlation-based filtering, signal
processing, 102–104
least-mean-square filter, signal processing,
95–99
matched filter:
kernel learning, 242–243
signal processing, 100–102
novelty filter, computational neural models,
190–191
recursive least-squares filter, signal processing,
99–100
Wiener filter:
kernel learning, 235–238
signal processing, 91–95
Fisher linear discriminant analysis, signal
processing, statistical analysis, 118–119
Frequency, higher order functions of, signal
processing, 87–89
Freud, Sigmund, 357
Functional brain maps, novelty detection and learning, 34–38

Galton, Francis, 1

Gaussian envelope, receptive fields, 18

Gaussian mixture model, 385–386

Gaussian process, correlation, 1–2

General correlative learning, neural learning, 156–158

Generalized eigenvalue problem, linear algebra, 375

Generalized Hebbian algorithm (GHA), kernel learning, 221–225

Gram-Charlier expansion, 379–381

Gram-Schmidt orthogonalization, 376–377

Grossberg’s gated steepest descent, neural learning, mathematical basis, 132

Hearing compensation strategy, 320–333

background, 320

biological basis, 320–326

experimental results, 330–333

optimization, 326–329

Hebb, Donald, 6, 21–22, 23, 32, 357

Hebbian learning:

ALOPEX compared, 291–292

correlation detection in single neuron, 21–22, 23

cortical map reorganization, 308–319

differential and temporal learning rule, neural learning, 149–152

energy-efficient, neural learning,

information-theoretic learning, 176–178

kernel learning, generalized Hebbian algorithm (GHA), 221–225

maximum entropy and, neural learning,

information-theoretic learning, 160–162

neural learning, mathematical basis, 130–131, 208–210

principal-component analysis (PCA),

information-theoretic learning, 169–170

Higher order correlation-based bispectra analysis, signal processing, spectrum analysis, 85–87

Higher order correlation-based filtering, signal processing, 102–104

Higher order functions of time, frequency, lag, and Doppler, signal processing, spectrum analysis, 87–89

Higher order independent-component analysis, neural learning, 173–174

Hilbert transform, signal processing, spectrum analysis, 83–85

Hippocampus:

brain, 18–19

memory systems, 50–52

Hopfield network, computational neural models, 184–186

Imax:

information-theoretic learning, 170–171

neural learning, information-theoretic learning, 163–164

Independent-component analysis (ICA):

complex-valued domain, correlation-based learning, 269–273

topology, 269–273

neural learning, information-theoretic learning, 169–174

Information-theoretic learning (neural learning), 158–182

Barlow’s postulate, 159–160

blind source separation, 167–169

generally, 158–159, 178–182

Hebbian learning, energy-efficient, 176–178

Hebbian learning and maximum entropy, 160–162

Imax algorithm, 163–164

independent-component analysis, 169–174

local decorrelative learning, 164–166

mutual information versus correlation, 159

slow feature analysis, 174–176

Inhibitory postsynaptic potential (IPSP), defined, 10

Intelligence, defined, 5

Intensity estimation, stationary random point process, 123–125

Interaural time difference, auditory function modeling, 193–197

James, William, 5–6, 19–20

Kalman filtering. See Computational neural modeling (Kalman filtering)

Kernel estimator, probability density and entropy estimators, 382–383

Kernel learning, 218–248

background, 218–220

canonical correlation analysis (CCA) and independent-component analysis (ICA), 225–230

correlation function and correlogram, 238–242

discriminant analysis, 232–235

matched filter, 242–243

overview, 243–246

principal angles, 230–232
principal-component analysis (PCA) and
generalized Hebbian algorithm (GHA),
221–225
Wiener filter, 235–238
Lag, higher order functions of, signal processing,
87–89
Lateral geniculate nucleus (LGN):
novelty detection and learning, 32
thalamus, 18
Law of neural habit, correlation detection in
single neuron, 19–21
Learning. See also Neural learning
associative, memory systems, 49–50
computation-based machine learning, 358–359
correlation-based theories of, 5–7
Hebbian, correlation detection in single
neuron, 21–22
novelty detection and brain, 31–38
rules derivation, with quasi-Newton method,
signal processing, 125–126
temporal sequence, memory systems, 50
Least-mean-square filter, signal processing,
95–99
Least means square (LMS) rule, complex-valued
domain, 259–262
Linear algebra, 371–377
eigenanalysis, 372–374
generalized eigenvalue problem, 375
Gram-Schmidt orthogonalization, 376–377
principal correlation, 377
singular-value decomposition and Cholesky
factorization, 375–376
Local decorrelative learning, neural learning,
164–166
Locally stationary process, signal processing,
81–82
Local principal-component analysis (PCA). See
Principal-component analysis (PCA)
Long-term depression (LTD) phenomenon,
22–25
Long-term potentiation (LTP) phenomenon,
21–25
Markov process:
reinforcement learning, 6–7
spiking neurons, 13
Matched filter:
kernel learning, 242–243
signal processing, 100–102
Mathematics:
ALOPEX (ALgorithm Of Pattern EXtraction),
285–286
BCM learning rule, 135–136
Boltzmann learning rule, 146–147
canonical correlation analysis (CCA), 144
competitive learning rule, 133–135
covariance rule, 131–132
differential Hebbian and temporal learning
rule, 149–152
general correlation learning, 156–158
Grossberg’s gated steepest descent, 132
Hebbian and anti-Hebbian rules, 130–131,
208–210
perceptron learning rule, 147–149
principal-component analysis (PCA) learning
rule, 136–143
reinforcement learning, 153–156
temporal difference learning rule, 152–153
wake-sleep learning rule, 145
Maximum entropy, Hebbian learning and, neural
learning, 160–162
Medial geniculate nucleus (MGN), thalamus, 18
Medial temporal lobe (MTL), memory systems,
47–48
Memory systems:
associative memory, complex-valued domain,
257–258
brain, 47–52
computational neural learning models,
182–184
Mismatch negativity (MMN), novelty detection
and learning, 34
Modulatory neural systems, sensorimotor
learning, 55–56
Monte Carlo sampling-based, ALOPEX
(ALgorithm Of Pattern EXtraction),
295–303
Motor cortex, described, 15
Motor learning, cerebellar model articulation
controller (CMAC) and, 205–207
Motor systems, population coding, 26–27
Mutual information, correlation versus,
information-theoretic learning, neural
learning, 159
Myelin sheath, defined, 10
Natural gradient learning, information-theoretic
learning, 171–172, 210–211
Neocortex:
brain, 14–16
experience-dependent synaptic plasticity, 22
Neural adaptive information processing,
sensorimotor learning, 54–55
Neural assemblies:
cortical map reorganization, 309–310, 315
novelty detection and learning, 31–33
Neural learning, 129–217. See also
Computational neural learning models
computational models, 182–207
auditory function modeling, 193–197
autoencoder network, 187–189
brain-state-in-a-box model, 187
cerebellar model articulation controller
(CMAC) and motor learning, 205–207
correlation matrix memory, 182–184
elastic net, 200–204
Hopfield network, 184–186
neuronal synchrony and binding, 191–193
novelty filter, 190–191
olfactory system correlation, 198–199
oscillatory correlation, 193
visual system correlation, 199–200
computational neural modeling (Kalman
filtering), 340–355
information-theoretic learning, 158–182
Barlow’s postulate, 159–160
blind source separation, 167–169
generally, 158–159, 178–182
Hebbian learning, energy-efficient, 176–178
Hebbian learning and maximum entropy,
160–162
Imax algorithm, 163–164
independent-component analysis, 169–174
local decorrelative learning, 164–166
mutual information versus correlation, 159
slow feature analysis, 174–176
mathematical basis, 130–158
BCM learning rule, 135–136
Boltzmann learning rule, 146–147
canonical correlation analysis (CCA), 144
competitive learning rule, 133–135
covariance rule, 131–132
differential Hebbian and temporal learning
rule, 149–152
general correlative learning, 156–158
gradient descent, 210–211
Grossberg’s gated steepest descent, 132
Hebbian and anti-Hebbian rules, 130–131,
208–210
perceptron learning rule, 147–149
principal-component analysis (PCA)
learning rule, 136–143
reinforcement learning, 153–156
temporal difference learning rule, 152–153
wake-sleep learning rule, 145
overview, 129–130
Neural modeling. See Computational neural
modeling (Kalman filtering)
Neuron(s). See also Spiking neurons
anatomy of, 8–10
correlation detection in ensembles of neurons,
25–31
correlation detection in single neuron, 19–25
receptive fields, 16–18
Neuronal synchrony, computational neural
models, 191–193
Neuroscience. See Computational neuroscience
Nonstationary process, signal processing,
spectrum analysis, 79–81
Novelty detection, learning and, brain, 31–38
Novelty filter, computational neural models,
190–191
Olfactory system correlation, computational
neural models, 198–199
Online artificial neural networks. See Artificial
neural networks
Online option price prediction, 334–336
Online system identification, 336–339
Order statistics, probability density and entropy
estimators, 381–382
Oscillatory correlation, computational neural
models, 193
Oscillatory firing, hippocampus, memory
systems, 50–52
Pattern completion, memory systems, 49–50
Pattern separation, memory systems, 49
Perceptron learning rule, neural learning,
147–149
Perceptual coding, sensory systems, 39
Peripheral lesions, sensory systems, 62–66
Poggio, Tomaso, xv
Population coding, correlation detection in
ensembles of neurons, 25–31
Principal angles, kernel learning, 230–232
Principal-component analysis (PCA):
complex-valued domain, correlation-based
learning, 262–269
kernel learning, 221–225
neural learning:
information-theoretic learning,
independent-component analysis,
169–170
mathematical basis, 136–143
reconstruction error, 211–213
signal processing, statistical analysis, 110–111
Probability density and entropy estimators,
378–383
Edgeworth expansion, 381
Gram-Charlier expansion, 379–381
kernal estimator, 382–383
order statistics, 381–382
Pyramidal cell tuning, cortical map reorganization, 310–311

Quasi-Newton method, derivation of learning rules with, signal processing, 125–126

Random point process, signal processing, spectrum analysis, 89–91
Receptive fields, brain, 16–18
Reconstruction error, principal-component analysis (PCA), 211–213
Recursive least-squares filter, signal processing, 99–100
Reinforcement learning:
category of, 6–7
neural learning, mathematical basis, 153–156
Retina, sensory systems, brain, 42–44

Secondary repertoire, novelty detection and learning, 33–34
Sejnowski, Terrence, xv
Sensorimotor learning, brain, 52–57
Sensory systems:
anatomy of, 60–62
population coding, 26–27
Shannon, Claude, 2
Signal processing, 72–128
correlation-based, 358
correlation detector, 104–108
coherent detection, 104–105
spatial target detection, 106–108
eigenanalysis, autocorrelation function of nonstationary process, 122–123
higher order correlation-based filtering, 102–104
learning rules, derivation of, with quasi-Newton method, 125–126
least-mean-square filter, 95–99
matched filter, 100–102
overview, 72–73, 122
recursive least-squares filter, 99–100
spectrum analysis, 73–91
cyclostationary process, 83
higher order correlation-based bispectra analysis, 85–87
higher order functions of time, frequency, lag, and Doppler, 87–89
Hilbert transform, 83–85
locally stationary process, 81–82
nonstationary process, 79–81
random point process, 89–91
stationary process, 73–79
Spike-timing-dependent plasticity (STDP):
computational neuroscience, 357
correlation detection in single neuron, 22–25
temporal-difference (TD) models, sensorimotor learning, 53–54
Spiking neurons, brain, 8–14. See also Neuron(s)
Statistical analysis, signal processing, 110–121
canonical correlation analysis, 113–118
common spatial pattern analysis, 119–121
factor analysis, 112–113
Fisher linear discriminant analysis, 118–119
principal-component analysis, 110–111
time-delay estimation, 108–110
Wiener filter, 91–95
Singular-value decomposition, Cholesky factorization and, 375–376
Slow feature analysis, neural learning, information-theoretic learning, 174–176
Soma (cell body), defined, 9
Somatosensory cortex, described, 15
Sparse coding:
memory systems, 49
neural learning, information-theoretic learning, 180–182
Spatial target detection, signal processing, correlation detector, 106–108
Spectrotemporal receptive field (STRF):
behavioral training-induced changes, sensorimotor learning, 56
brain maps, 35–38
Spectrum analysis (signal processing), 73–91
cyclostationary process, 83
higher order correlation-based bispectra analysis, 85–87
higher order functions of time, frequency, lag, and Doppler, 87–89
Hilbert transform, 83–85
locally stationary process, 81–82
nonstationary process, 79–81
random point process, 89–91
stationary process, 73–79

Stochastic approximation, 368–370
Supervised learning, category of, 6
Synapse, defined, 9
Synaptic depression, cortical map reorganization, 311
Synaptic inhibition, neural learning, information-theoretic learning, 179–180
Synaptic plasticity, learning, 5
Synchrony, correlation detection in ensembles of neurons, 25–31
Temporal correlation theory, brain, 57–59
Temporal difference learning rule, neural learning, mathematical basis, 152–153
Temporal-difference (TD) models, sensorimotor learning, 53–54
Temporal sequence learning, memory systems, 50
Terminal buttons (boutons), defined, 9
Thalamocortical synapses, cortical map reorganization, 311–313
Thalamus, brain, 18
Thorndike’s law of effect, 22

Time, higher order functions of, signal processing, spectrum analysis, 87–89
Time-delay estimation, signal processing, 108–110
Tinnitus, 40–42
Tonotopic maps. See Brain maps; Cortical map reorganization
Topographic brain maps, novelty detection and learning, 34–38
Unsupervised learning, category of, 6
Visual cortex, described, 14
Visual system correlation, computational neural models, 199–200
Wake-sleep learning rule, neural learning, mathematical basis, 145
Wiener filter:
 kernel learning, 235–238
 signal processing, 91–95