Contents

Preface XIII

List of Contributors XV

1 Interfacial Heat Transport in Highly Permeable Media:
A Finite Volume Approach 1
Marcelo J.S. de Lemos and Marcelo B. Saito
1.1 Introduction 1
1.2 Governing Equations 3
1.2.1 Microscopic Transport Equations 3
1.2.2 Decomposition of Flow Variables in Space and Time 4
1.2.3 Macroscopic Flow and Energy Equations 5
1.2.4 Macroscopic Two-Energy Equation Modeling 8
1.2.5 Interfacial Heat Transfer Coefficient 10
1.3 Numerical Determination of h_i 12
1.3.1 Physical Model 12
1.3.2 Periodic Flow 14
1.3.3 Film Coefficient h_i 15
1.4 Results and Discussion 16
1.4.1 Array of Square Rods 16
1.4.2 Array of Elliptic Rods 16
1.4.3 Correlations for Laminar and Turbulent Flows 20
1.5 Conclusions 27
References 27

2 Effective Thermal Properties of Hollow-Sphere-Structures:
A Finite Element Approach 31
Andreas Öchsner and Thomas Fiedler
2.1 Introduction 31
2.1.1 Finite Element Method and Heat Transfer Problems 31
2.1.2 Hollow-Sphere Structures in the Context of Cellular Metals 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Combined Conductive and Radiative Heat Transfer</td>
<td>183</td>
</tr>
<tr>
<td>6.6</td>
<td>Combined Forced-Convective and Radiative Heat Transfer</td>
<td>186</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Analysis of Gas Enthalpy-Radiation Conversion System</td>
<td>187</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Analysis of Transpiration Cooling System in a Radiative Environment</td>
<td>189</td>
</tr>
<tr>
<td>6.7</td>
<td>Conclusions and Recommendations</td>
<td>194</td>
</tr>
<tr>
<td>7</td>
<td>Thermal Conduction Through Porous Systems</td>
<td>199</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>199</td>
</tr>
<tr>
<td>7.2</td>
<td>Theoretical Models</td>
<td>201</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Models for Thermal Conductivity</td>
<td>201</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Discussion</td>
<td>219</td>
</tr>
<tr>
<td>7.3</td>
<td>Experimental Techniques</td>
<td>221</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Thermal Conductivity Probe</td>
<td>221</td>
</tr>
<tr>
<td>7.3.1.1</td>
<td>Theory</td>
<td>223</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Differential Temperature Sensor Technique</td>
<td>224</td>
</tr>
<tr>
<td>7.3.2.1</td>
<td>Mathematical Analysis</td>
<td>225</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Probe-Controlled Transient Technique</td>
<td>227</td>
</tr>
<tr>
<td>7.3.3.1</td>
<td>Mathematical Analysis</td>
<td>227</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Plane Heat Source</td>
<td>230</td>
</tr>
<tr>
<td>7.3.4.1</td>
<td>Theory</td>
<td>230</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Transient Plane Source (TPS)</td>
<td>234</td>
</tr>
<tr>
<td>7.3.5.1</td>
<td>Theory</td>
<td>234</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Discussion</td>
<td>236</td>
</tr>
<tr>
<td>8</td>
<td>Thermal Property of Lotus-Type Porous Copper and Application to Heat Sinks</td>
<td>239</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>239</td>
</tr>
<tr>
<td>8.2</td>
<td>Effective Thermal Conductivity of Lotus-Type Porous Copper</td>
<td>241</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Measurement</td>
<td>241</td>
</tr>
<tr>
<td>8.2.1.1</td>
<td>Definition of Effective Thermal Conductivity</td>
<td>241</td>
</tr>
<tr>
<td>8.2.1.2</td>
<td>Experimental Method</td>
<td>242</td>
</tr>
<tr>
<td>8.2.1.3</td>
<td>Specimen Preparation</td>
<td>243</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Thermal Conductivity Parallel to Pores</td>
<td>244</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Thermal Conductivity Perpendicular to Pores</td>
<td>245</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Effect of Pore Shape on Thermal Conductivity</td>
<td>248</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Effect of Pore Orientation on Thermal Conductivity</td>
<td>251</td>
</tr>
<tr>
<td>8.2.5.1</td>
<td>Introduction</td>
<td>251</td>
</tr>
<tr>
<td>8.2.5.2</td>
<td>EMF Theory</td>
<td>251</td>
</tr>
<tr>
<td>8.2.5.3</td>
<td>Application of Extended EMF Theory to Lotus Metals</td>
<td>252</td>
</tr>
<tr>
<td>8.3</td>
<td>Application of Lotus-Type Porous Copper to Heat Sinks</td>
<td>255</td>
</tr>
</tbody>
</table>
8.3.1 Analysis of Fin Efficiency 255
8.3.1.1 Straight Fin Model 255
8.3.1.2 Numerical Analysis 256
8.3.2 Experiments of Heat Transfer Characteristics 258
8.3.2.1 Experimental Method 258
8.3.2.2 Investigated Heat Sinks 259
8.3.3 Predictions of Heat Transfer Characteristics 260
8.3.3.1 Conventional Groove Fins and Microchannels 260
8.3.3.2 Lotus-Type Porous Copper Fins 260
8.3.4 Comparison of Experiments with Predictions 261
8.4 Conclusions 264
References 265

9 Thermal Characterization of Open-Celled Metal Foams by Direct Simulation 267
Shankar Krishnan, Suresh V. Garimella, and Jayathi Y. Murthy
9.1 Introduction 267
9.2 Foam Geometry 269
9.3 Mathematical Modeling 271
9.3.1 Effective Thermal Conductivity 271
9.3.2 Computation of Flow and Heat Transfer Through Foam 272
9.3.2.1 Flow and Temperature Periodicity 272
9.3.2.2 Governing Equations 273
9.3.2.3 Computational Details 274
9.4 Results and Discussion 274
9.4.1 Direct Simulations of Foams: BCC Model 275
9.4.1.1 Effective Thermal Conductivity 276
9.4.1.2 Pressure Drop and Heat Transfer Coefficient 278
9.4.2 Direct Simulations of Foams: Effect of Unit Cell Structure 283
9.4.2.1 Effective Thermal Conductivity 284
9.4.2.2 Pressure Drop and Nusselt Number 285
9.5 Conclusion 286
References 288

10 Heat Transfer in Open-Cell Metal Foams Subjected to Oscillating Flow 291
Kai Choong Leong and Liwen Jin
10.1 Introduction 291
10.1.1 Fluid Flow and Heat Transfer in Open-Cell Foams 292
10.1.2 Oscillating Flow Through Porous Media 295
10.2 Fluid Behavior of Oscillatory Flow in Open-Cell Metal Foams 296
10.2.1 Critical Properties of Open-Cell Foams 297
10.2.2 Analysis of Similarity Parameters 299
10.2.3 Oscillatory Flow Through a Channel Filled with Open-Cell Foams 302
Contents

10.2.3.1 Effects of Kinetic Reynolds Number and Dimensionless Flow Amplitude 303
10.2.3.2 Friction Factor in Metal Foam 306
10.3 Heat Transfer Characteristics of Oscillatory Flow in Open-Cell Foams 309
 10.3.1 Theoretical Analysis of Forced Convection in Oscillating Flow 309
 10.3.2 Oscillatory Heat Transfer in Open-Cell Metal Foams 313
 10.3.3 Effects of Oscillation Frequency and Flow Amplitude 315
 10.3.4 Heat Transfer Rate in Metal Foams 318
10.4 Thermal Management Using Highly Conductive Metal Foams 323
 10.4.1 Steady and Oscillating Flows in Open-Cell Metal Foams 323
 10.4.1.1 Thermal Performance of Open-Cell Metal Foams 323
 10.4.1.2 Comparison of Steady and Oscillating Flows 326
 10.4.2 Pumping Power of Oscillatory Cooling System 331
10.5 Conclusions 333
References 337

11 Radiative and Conductive Thermal Properties of Foams 343

Dominique Baillis and Rémi Coquard

11.1 Introduction 343
11.2 Description of Cellular Foam Structure 344
 11.2.1 Open-Cell Foams 344
 11.2.2 Closed-Cell Foams 344
11.3 Modeling of Foam Structure 346
 11.3.1 Cell Modeling 346
 11.3.2 Particle Modeling 347
11.4 Determination of Foam Conductive Properties 347
 11.4.1 Analytical/Semi-analytical Models 348
 11.4.1.1 Polymer Foams 348
 11.4.1.2 Ceramic, Metallic and Carbon Foams 350
 11.4.2 Numerical Models 352
 11.4.2.1 Polymer Foams 352
 11.4.2.2 Ceramic, Metallic and Carbon Foams 353
11.5 Determination of Cellular Foam Radiative Properties 355
 11.5.1 Theoretical Prediction of Radiative Properties of Particulate Media 356
 11.5.1.1 Single-Particle Properties 356
 11.5.1.2 Dispersion Properties 357
 11.5.2 Parameter Identification Method 357
 11.5.3 Application to Open-Cell and Closed-Cell Foams 359
 11.5.3.1 Open-Cell Carbon Foam 359
 11.5.3.2 Metallic Foam 361
 11.5.3.3 Closed-Cell Foam: Case of Low-Density EPS Foams 362
 11.5.3.4 Closed-Cell Foam: Case of XPS and PUR Foams 367
11.6 Combined Conductive and Radiative Heat Transfer in Foam 369
11.6.1 Heat Transfer Equations for Cellular Foam Insulation 369
11.6.2 Resolution of the Heat Transfer Equations 370
11.6.2.1 Resolution of the Radiative Transfer Equation/Rosseland Approximation 370
11.6.2.2 Resolution of the Radiative Transfer Equation/Discrete Ordinates Method 371
11.6.2.3 Resolution of the Energy Equation 372
11.6.3 Equivalent Thermal Conductivity Results 372
11.6.3.1 Closed-Cell EPS Foams 372
11.6.3.2 Closed-Cell XPS and PUR Foams 375
11.6.3.3 Metallic Open-Cell Foams 376
11.6.3.4 Open-Cell Carbon Foams 380
11.7 Conclusions 381
References 382

12 On the Application of Optimization Techniques to Heat Transfer in Cellular Materials 385
Pablo A. Muñoz-Rojas, Emilio C. Nelli Silva, Eduardo L. Cardoso, and Miguel Vaz Junior
12.1 Introduction 385
12.2 Optimization Approaches 386
12.2.1 Evolutionary Algorithms (EAs) 387
12.2.2 Mathematical Programming using Gradient-Based Procedures 389
12.3 Periodic Composite Materials 389
12.3.1 Homogenization of Heat Properties in Periodic Composite Materials 390
12.3.2 Functionally Graded Materials 394
12.3.3 Numerical Implementation of Homogenization 395
12.3.4 Material Design: Shape and Topology Optimization of a Unit Cell 397
12.3.4.1 Shape Optimization 398
12.3.4.2 Topology Optimization 401
12.4 General Applications Review 403
12.5 Results Obtained with the FGM Approach in this Work 410
12.6 Conclusions 413
References 414

Index 419