Contents

Preface
xiii

SECTION 1 PRINCIPLES

1 Background
1.1 Volatile Organic Compounds in the Earth’s Atmosphere
1.2 Volatile Organic Compounds in Other Environments
1.3 Techniques for VOC Measurements
1.3.1 Gas Chromatography
1.3.2 Ion Mobility Spectrometry
1.3.3 The Flowing Afterglow Technique
1.3.4 The Selected Ion Flow Tube
1.4 Emergence of Proton Transfer Reaction Mass Spectrometry
1.4.1 Historical Background
1.4.2 Compound Identification Using PTR-MS
1.4.3 An Introduction to Quantitative Aspects of PTR-MS
1.4.4 A Comparison between PTR-MS and SIFT-MS
References

2 Chemical Ionization: Chemistry, Thermodynamics and Kinetics
2.1 Introduction
2.2 Proton Transfer
2.2.1 Energy Units
2.2.2 Thermodynamics of Proton Transfer
2.2.3 Kinetics of Proton Transfer
2.2.3.1 Background
2.2.3.2 Theoretical Prediction of Proton Transfer Rate Coefficients
2.2.3.3 Illustrative Calculations of Proton Transfer Rate Coefficients and Comparison with Experiment
2.2.4 Reagents and Mechanisms
2.2.4.1 Chemistry of H$_3$O$^+$ Reactions
2.2.4.2 Reactions of Hydrated Hydronium Clusters
2.2.4.3 Alternative Proton Donors
2.3 Other Chemical Ionization Processes
References
3 Experimental: Components and Principles

3.1 Introduction

3.2 Ion Extraction and Ion Optics

3.2.1 Ion Acceleration

3.2.2 Ion Steering

3.2.3 Ion Lenses

3.2.4 Simulation of Ion Trajectories

3.3 Ion Sources

3.3.1 Hollow Cathode Discharge Ion Source

3.3.2 Ion–Molecule Chemistry Leading to H$_3$O$^+$ Production

3.3.3 Alternative Ion Sources

3.3.4 Generating Reagent Ions Other Than H$_3$O$^+$

3.4 Drift Tubes

3.4.1 Practical Aspects

3.4.2 Ion Mobility and Transit Times

3.4.3 Ion–Molecule Collision Energies

3.4.4 Ion Cluster Distributions

3.5 Mass Spectrometry

3.5.1 Some Important Definitions

3.5.1.1 Ion Mass and Mass-to-Charge Ratio

3.5.1.2 Mass Resolution

3.5.1.3 Transmission and Dynamic Range

3.5.2 Quadrupole Mass Spectrometry

3.5.2.1 Basic Principles of the Quadrupole Mass Spectrometer

3.5.2.2 Practical Issues

3.5.3 Quadrupole Ion Trap Mass Spectrometry

3.5.3.1 Basic Principles

3.5.3.2 Collision-Induced Dissociation

3.5.3.3 Three-Dimensional Quadrupole Ion Traps in PTR-MS

3.5.3.4 The Linear Ion Trap in PTR-MS

3.5.4 Time-of-flight Mass Spectrometry

3.5.4.1 Basic Principles of TOF-MS

3.5.4.2 Improving the Resolution: Spatial Focusing

3.5.4.3 Reflectron TOF-MS

3.5.4.4 Mass Calibration in TOF-MS

3.5.4.5 Advantages and Limitations of TOF-MS

3.5.4.6 TOF-MS Analysers in PTR-MS

3.6 Ion Detectors

3.6.1 Discrete Dynode Detector

3.6.2 Channel Electron Multiplier

3.6.3 Microchannel Plate Detector

3.7 Analogue versus Digital Signal Processing

References

4 Quantitative Analysis

4.1 Introduction

4.2 Extracting the Concentration of a Trace Gas from PTR-MS
4.3 Normalized Counts per Second
4.4 Why Calibrate?
4.5 Calibration Techniques
 4.5.1 Static Gas Calibration
 4.5.2 Dynamic Methods
 4.5.3 Alternative Dynamic Calibration Procedures
4.6 Effect of Humidity
4.7 Accuracy, Precision and Limit of Detection
4.8 Validation of PTR-MS
References

SECTION 2 APPLICATIONS

5 PTR-MS in the Environmental Sciences
 5.1 Background
 5.2 Use of Reagent Ions Other Than H$_3$O$^+$
 5.3 Biogenic VOCs
 5.3.1 General Details
 5.3.2 Forest Emissions
 5.3.2.1 Tropical Rainforests
 5.3.2.2 Coniferous Forests
 5.3.2.3 Deciduous Forests
 5.3.2.4 Eddy Covariance Measuring Methodologies
 5.3.2.5 Forest VOCs and m/z Assignments
 5.3.3 Plantations
 5.3.4 Various Land Emissions
 5.3.4.1 Woodland and Grassland Savannas
 5.3.4.2 Shrubland
 5.3.4.3 Alfalfa and Grass Fields
 5.3.5 Oceans and Seas
 5.3.5.1 Norwegian Fjord
 5.3.5.2 Coastal Regions
 5.3.5.3 Indian Ocean
 5.3.5.4 Tropical Atlantic Ocean
 5.4 Anthropogenic VOCs
 5.4.1 Background
 5.4.2 VOCs in Urban and Rural Sites
 5.4.2.1 Innsbruck
 5.4.2.2 Caracas
 5.4.2.3 Houston
 5.4.2.4 Tokyo
 5.4.2.5 Barcelona
 5.4.2.6 Manchester and London
 5.4.2.7 Mexico City
 5.4.2.8 Toronto and Environs
 5.4.2.9 Paris
 5.4.2.10 Boston, New York and Los Angeles
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.3</td>
<td>Diesel Engine Emissions</td>
<td>164</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Aircraft Emissions</td>
<td>164</td>
</tr>
<tr>
<td>5.4.5</td>
<td>VOC Emissions Associated with Farming</td>
<td>164</td>
</tr>
<tr>
<td>5.4.5.1</td>
<td>Cattle</td>
<td>165</td>
</tr>
<tr>
<td>5.4.5.2</td>
<td>Pigs and Sheep</td>
<td>165</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Other Studies of Anthropogenic VOCs</td>
<td>166</td>
</tr>
<tr>
<td>5.4.6.1</td>
<td>Air Quality</td>
<td>166</td>
</tr>
<tr>
<td>5.4.6.2</td>
<td>Firework Emissions</td>
<td>166</td>
</tr>
<tr>
<td>5.5</td>
<td>Biomass Burning</td>
<td>166</td>
</tr>
<tr>
<td>5.6</td>
<td>Applications of PTR-MS to Laboratory Studies of Atmospheric Chemistry</td>
<td>169</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Laboratory Studies of Biomass Burning</td>
<td>171</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Reaction Products and Reactive Species</td>
<td>173</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Simulation Chamber and Container Measurements</td>
<td>176</td>
</tr>
<tr>
<td>5.7</td>
<td>Plant Studies</td>
<td>181</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Isoprene Emissions</td>
<td>182</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Acetaldehyde Emissions</td>
<td>185</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Pollination</td>
<td>187</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Roots and Soil</td>
<td>188</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Other Plant Studies</td>
<td>189</td>
</tr>
<tr>
<td>5.7.5.1</td>
<td>Root-secreted VOCs</td>
<td>189</td>
</tr>
<tr>
<td>5.7.5.2</td>
<td>Methanol Release and Bacterial Growth: Plant-Methylbacterium Association</td>
<td>190</td>
</tr>
<tr>
<td>5.7.5.3</td>
<td>Comparison of VOC Emissions from Young and Mature Leaves</td>
<td>190</td>
</tr>
<tr>
<td>5.7.6</td>
<td>Stress-Related Emissions</td>
<td>190</td>
</tr>
<tr>
<td>5.7.7</td>
<td>VOC Emissions Linked to Plant Damage</td>
<td>193</td>
</tr>
<tr>
<td>5.7.7.1</td>
<td>Mechanical Wounding</td>
<td>193</td>
</tr>
<tr>
<td>5.7.7.2</td>
<td>Weather Damage</td>
<td>194</td>
</tr>
<tr>
<td>5.7.7.3</td>
<td>Harvesting and Mowing</td>
<td>195</td>
</tr>
<tr>
<td>5.7.7.4</td>
<td>Biofuel Crops</td>
<td>196</td>
</tr>
<tr>
<td>5.7.7.5</td>
<td>Herbivore Attack by Small Predators</td>
<td>197</td>
</tr>
<tr>
<td>5.7.7.6</td>
<td>Large Herbivore Attack</td>
<td>202</td>
</tr>
<tr>
<td>5.7.8</td>
<td>VOC Uptake by Plants</td>
<td>202</td>
</tr>
<tr>
<td>5.8</td>
<td>Outlook for Atmospheric and Environmental Applications of PTR-MS</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>203</td>
</tr>
</tbody>
</table>

6 PTR-MS in the Food Sciences

6.1 Background

6.2 Combined GC–MS and PTR-MS Studies for Food Analysis

6.3 Mass Spectral Fingerprinting

6.4 Flavour Release and Perception

6.4.1 Drinks

6.4.1.1 Coffee

6.4.1.2 Tea
Contents ix

6.4.1.3 Carbonated Drinks 232
6.4.1.4 Fruit Juices 233
6.4.1.5 Wine 233
6.4.1.6 Vodka 234
6.4.1.7 Infant Formula 235

6.4.2 Food 235
6.4.2.1 Cheese 235
6.4.2.2 Bread 237
6.4.2.3 Onions 237
6.4.2.4 Wheys 237
6.4.2.5 Fruit 238

6.4.3 Flavour Release: Food Texture, Composition and Physiological Effects 240

6.5 Food Classification, Food Quality and Food Control 245
6.5.1 Geographical Location 245
6.5.1.1 White Truffles 245
6.5.1.2 Butter 246
6.5.1.3 Olive Oil 247
6.5.1.4 Roe 247
6.5.1.5 Dry-Cured Ham 247
6.5.1.6 Cumin Cheese 248

6.5.2 Food Classification and Quality 249
6.5.3 Food Freshness and Ripening 250
6.5.3.1 Meat Degradation 250
6.5.3.2 Fruit and Vegetables: Ripening, Storage and Monitoring 251
6.5.3.3 Ripening of Cheese 253

6.5.4 Process Monitoring and Biochemical Processing 253

6.6 Outlook for Food Science and Technology Applications 256
References 257

7 PTR-MS in the Medical Sciences 267

7.1 Background 267

7.2 Breath Analysis 268
7.2.1 Smoking and Breath Volatiles 271
7.2.2 Isoprene in Breath 272
7.2.3 Acetone in Breath 275
7.2.4 Lung Studies: Cancer and Emphysema 276

7.2.5 Other PTR-MS Breath Studies 278
7.2.5.1 Crohn’s Disease and Ulcerative Colitis 278
7.2.5.2 Carbohydrate Malabsorption 278
7.2.5.3 High Mass-Resolution PTR-TOF-MS Breath Studies 278
7.2.5.4 Kidney Function and PTR-MS 280
7.2.5.5 Liver Disease 280

7.2.6 Drug Monitoring and Pharmacokinetics Using Breath Analysis and PTR-MS 281
Contents

7.2.7 Breath VOC Levels Measured Using PTR-MS versus Blood Concentrations 284
7.2.8 Breath Sampling and PTR-MS 285
 7.2.8.1 Offline Breath Sampling 286
 7.2.8.2 Online Breath Sampling 287
7.2.9 PTR-MS and Breath Analysis: Requirements and Future Directions 287
7.3 Online PTR-MS Measurements of Volatile Emissions from Microbial Cultures 290
 7.3.1 Bacteria 290
 7.3.2 VOC Emissions from Fungi 296
 7.3.3 Concluding Remarks on Microbial Emissions 297
7.4 Other Medical Applications 297
 7.4.1 Urine Headspace Analysis 301
 7.4.2 Skin Emissions 301
 7.4.3 VOC Emissions from Human Cells 301
 7.4.4 VOCs in Clinical Environments 302
References 302

8 Applications of PTR-MS to Homeland Security: The Detection of Threat Agents 311
 8.1 Background 311
 8.2 Explosives 312
 8.2.1 Forensic Issues 312
 8.2.1.1 The Unambiguous Detection of TNT 315
 8.2.1.2 High Mass Resolution PTR-TOF-MS Measurements of TNT 318
 8.2.1.3 Reagent Ion Switching and Explosives Detection 319
 8.2.1.4 PTR-MS and the Detection of Traces of Explosives 320
 8.2.2 Environmental Aspects and Explosives 320
 8.3 Chemical Warfare Agents and Toxic Industrial Chemicals 321
 8.4 Narcotics 322
 8.5 Date Rape Drugs 325
 8.6 Ion Mobility Mass Spectrometry and PTR-MS: A Brief Comparison for Homeland Security Applications 326
 8.7 Future Directions 327
 References 328

9 Liquid Analysis Using PTR-MS 331
 9.1 Determination of Henry’s Law Constants Using PTR-MS 331
 9.2 Analysis of Liquids 333
 References 336

Index 337