Contents

List of plates xii
List of boxes xiii
Preface xiv
Acknowledgments xvi

1 Introduction – humans, nature and human nature 1
 1.1 Homo not-so-sapiens? 2
 1.1.1 Homo sapiens – just another species? 3
 1.1.2 Human population density and technology underlie environmental impact 3
 1.2 A biodiversity crisis 4
 1.2.1 The scale of the biodiversity problem 6
 1.2.2 Biodiversity, ecosystem function and ecosystem services 7
 1.2.3 Drivers of biodiversity loss – the extinction vortex 11
 1.2.4 Habitat loss – driven from house and home 12
 1.2.5 Invaders – unwanted biodiversity 13
 1.2.6 Overexploitation – too much of a good thing 14
 1.2.7 Habitat degradation – laying waste 17
 1.2.8 Global climate change – life in the greenhouse 18
 1.3 Toward a sustainable future? 20
 1.3.1 Ecological applications – to conserve, restore and sustain biodiversity 22
 1.3.2 From an economic perspective – putting a value on nature 28
 1.3.3 The sociopolitical dimension 29

Part 1: Ecological applications at the level of individual organisms

2 Ecological applications of niche theory 36
 2.1 Introduction 37
 2.2 Unwanted aliens – lessons from niche theory 41
 2.2.1 Ecological niche modeling – predicting where invaders will succeed 42
 2.2.2 Are we modeling fundamental or realized niches? 44
 2.2.3 When humans disrupt ecosystems and make it easy for invaders 44
4.4.3 Invasion hubs or diffusive spread? 95
4.4.4 How to manage invasions under globalization 96

4.5 Species mobility and management of production landscapes 97
4.5.1 Squirrels – axeman spare that tree 97
4.5.2 Bats – axeman cut that track 97
4.5.3 Farming the wind – the spatial risk of pulverizing birds 100
4.5.4 Bee business – pollination services of native bees depend on dispersal distance 103

Part 2: Applications at the level of populations

5 Conservation of endangered species 108
5.1 Dealing with endangered species – a crisis discipline 109
5.2 Assessing extinction risk from correlational data 113
5.3 Simple algebraic models of population viability analysis 117
 5.3.1 The case of Fender’s blue butterfly 117
 5.3.2 A primate in Kenya – how good are the data? 118
5.4 Simulation modeling for population viability analysis 119
 5.4.1 An Australian icon at risk 120
 5.4.2 The royal catchfly – a burning issue 122
 5.4.3 Ethiopian wolves – dogged by disease 123
 5.4.4 How good is your population viability analysis? 126
5.5 Conservation genetics 127
 5.5.1 Genetic rescue of the Florida panther 128
 5.5.2 The pink pigeon – providing a solid foundation 128
 5.5.3 Reintroduction of a ‘red list’ plant – the value of crossing 129
 5.5.4 Outfoxing the foxes of the Californian Channel Islands 130
5.6 A broader perspective of conservation – ecology, economics and sociopolitics all matter 130
 5.6.1 Genetically modified crops – larking about with farmland biodiversity 131
 5.6.2 Diclofenac – good for sick cattle, bad for vultures 133

6 Pest management 139
6.1 Introduction 140
 6.1.1 One person’s pest, another person’s pet 140
 6.1.2 Eradication or control? 141
6.2 Chemical pesticides 146
 6.2.1 Natural arms factories 146
 6.2.2 Take no prisoners 147
 6.2.3 From blunderbuss to surgical strike 147
 6.2.4 Cut off the enemy’s reinforcements 150
 6.2.5 Changing pest behavior – a propaganda war 150
 6.2.6 When pesticides go wrong – target pest resurgence and secondary pests 151
 6.2.7 Widespread effects of pesticides on nontarget organisms, including people 153
Contents

6.3 Biological control
- 6.3.1 Importation biological control – a question of scale 155
- 6.3.2 Conservation biological control – get natural enemies to do the work 156
- 6.3.3 Inoculation biological control – effective in glasshouses but rarely in field crops 158
- 6.3.4 Inundation biological control – using fungi, viruses, bacteria and nematodes 159
- 6.3.5 When biological control goes wrong 160

6.4 Evolution of resistance and its management 162

6.5 Integrated pest management (IPM)
- 6.5.1 IPM against potato tuber moths in New Zealand 165
- 6.5.2 IPM against an invasive weed in Australia 166

7 Harvest management
- 7.1 Introduction 173
- 7.1.1 Avoiding the tragedy of the commons 173
- 7.1.2 Killing just enough – not too few, not too many 174
- 7.2 Harvest management in practice – maximum sustainable yield (MSY) approaches 178
- 7.2.1 Management by fixed quota – of fish and moose 178
- 7.2.2 Management by fixed effort – of fish and antelopes 181
- 7.2.3 Management by constant escapement – in time 182
- 7.2.4 Management by constant escapement – in space 183
- 7.2.5 Evaluation of the MSY approach – the role of climate 184
- 7.2.6 Species that are especially vulnerable when rare 185
- 7.2.7 Ecologist’s role in the assessment of MSY 186
- 7.3 Harvest models that recognize population structure 186
- 7.3.1 ‘Dynamic pool models’ in fisheries management – looking after the big mothers 187
- 7.3.2 Forestry – axeman, spare which tree? 190
- 7.3.3 A forest bird of cultural importance 191

7.4 Evolution of harvested populations – of fish and bighorn rams 191

7.5 A broader view of harvest management – adding economics to ecology 193

7.6 Adding a sociopolitical dimension to ecology and economics 195
- 7.6.1 Factoring in human behavior 195
- 7.6.2 Confronting political realities 197

Part 3: Applications at the level of communities and ecosystems

8 Succession and management
- 8.1 Introduction 203

8.2 Managing succession for restoration
- 8.2.1 Restoration timetables for plants 206
- 8.2.2 Restoration timetable for animals 208
- 8.2.3 Invoking the theory of competition–colonization trade-offs 209
8.2.4 Invoking successional-niche theory 209
8.2.5 Invoking facilitation theory 210
8.2.6 Invoking enemy-interaction theory 215
8.3 Managing succession for harvesting 216
 8.3.1 Benzoin ‘gardening’ in Sumatra 216
 8.3.2 Aboriginal burning enhances harvests 217
8.4 Using succession to control invasions 219
 8.4.1 Grassland 219
 8.4.2 Forest 220
8.5 Managing succession for species conservation 221
 8.5.1 When early succession matters most – a hare-restoring formula for lynx 221
 8.5.2 Enforcing a successional mosaic – first aid for butterflies 222
 8.5.3 When late succession matters most – range finding for tropical birds 223
 8.5.4 Controlling succession in an invader-dominated community 223
 8.5.5 Nursing a valued plant back to cultural health 224

9 Applications from food web and ecosystem theory 229
 9.1 Introduction 230
 9.2 Food web theory and human disease risk 234
 9.3 Food webs and harvest management 236
 9.3.1 Who gets top spot in the abalone food web – otters or humans? 236
 9.3.2 Food web consequences of harvesting fish – from tuna to tiddlers 238
 9.4 Food webs and conservation management 239
 9.5 Ecosystem consequences of invasions 240
 9.5.1 Ecosystem consequences of freshwater invaders 240
 9.5.2 Ecosystem effects of invasive plants – fixing the problem 241
 9.6 Ecosystem approaches to restoration – first aid by parasites and sawdust 242
 9.7 Sustainable agroecosystems 245
 9.7.1 Stopping caterpillars eating the broccoli – so that people can 245
 9.7.2 Managing agriculture to minimize fertilizer input and nutrient loss 245
 9.7.3 Constructing wetlands to manage water quality 247
 9.7.4 Managing lake eutrophication 248
 9.8 Ecosystem services and ecosystem health 249
 9.8.1 The value of ecosystem services 249
 9.8.2 Ecosystem health of forests – with all their mites 252
 9.8.3 Ecosystem health in an agricultural landscape – bats have a ball 253
 9.8.4 Ecosystem health of rivers – it’s what we make it 254
 9.8.5 Ecosystem health of a marine environment 255
Part 4: Applications at the regional and global scales

10 Landscape management
 10.1 Introduction 261
 10.2 Conservation of metapopulations 267
 10.2.1 The emu-wren – making the most of the conservation dollar 267
 10.2.2 The wood thrush – going down the sink 268
 10.2.3 The problem with large carnivores – connecting with grizzly bears 269
 10.3 Landscape harvest management 270
 10.3.1 Marine protected areas 270
 10.3.2 A Peruvian forest successional mosaic – patching a living together 271
 10.4 A landscape perspective on pest control 272
 10.4.1 Plantation forestry in the landscape 272
 10.4.2 Horticulture in the landscape 273
 10.4.3 Arable farming in the landscape 274
 10.5 Restoration landscapes 274
 10.5.1 Reintroduction of vultures – what a carrion 275
 10.5.2 Restoring farmed habitat – styled for hares 276
 10.5.3 Old is good – willingness to pay for forest improvement 276
 10.5.4 Cityscape ecology – biodiversity in Berlin 277
 10.6 Designing reserve networks for biodiversity conservation 277
 10.6.1 Complementarity – selecting reserves for fish biodiversity 279
 10.6.2 Irreplaceability – selecting reserves in the Cape Floristic Region 279
 10.7 Multipurpose reserve design 280
 10.7.1 Marine zoning – an Italian job 280
 10.7.2 A marine zoning plan for New Zealand – gifts, gains and china shops 283
 10.7.3 Managing an agricultural landscape – a multidisciplinary endeavor 283

11 Dealing with global climate change 290
 11.1 Introduction 291
 11.2 Climate change predictions based on the ecology of individual organisms 297
 11.2.1 Niche theory and conservation – what a shame mountains are conical 297
 11.2.2 Niche theory and invasion risk – nuisance on the move 298
 11.2.3 Life-history traits and the fate of species – for better or for worse 300
11.3 Climate change predictions based on the theory of population dynamics 303
 11.3.1 Species conservation – the bear essentials 303
 11.3.2 Pest control – more or less of a problem? 303
 11.3.3 Harvesting fish in future – cod willing 304
 11.3.4 Forestry – a boost for developing countries? 305

11.4 Climate change predictions based on community and ecosystem interactions 306
 11.4.1 Succession – new trajectories and end points 306
 11.4.2 Food-web interactions – Dengue downunder 307
 11.4.3 Ecosystem services – you win some, you lose some 307

11.5 A landscape perspective – nature reserves under climate change 308
 11.5.1 Mexican cacti – reserves in the wrong place 309
 11.5.2 Fairy shrimps – a temporary setback 310

Index 315