Contents

About the Author xvii
Preface xix
Acknowledgments xxiii

1 Analog, ESD, and EOS 1
1.1 ESD in Analog Design 1
1.2 Analog Design Discipline and ESD Circuit Techniques 2
1.2.1 Analog Design: Local Matching 3
1.2.2 Analog Design: Global Matching 3
1.2.3 Symmetry 3
1.2.3.1 Layout Symmetry 4
1.2.3.2 Thermal Symmetry 4
1.2.4 Analog Design: Across Chip Linewidth Variation 4
1.3 Design Symmetry and ESD 5
1.4 ESD Design Synthesis and Architecture Flow 6
1.5 ESD Design and Noise 7
1.6 ESD Design Concepts: Adjacency 8
1.7 Electrical Overstress 8
1.7.1 Electrical Overcurrent 10
1.7.2 Electrical Overvoltage 11
1.7.3 Electrical Overstress Events 11
1.7.3.1 Characteristic Time Response 11
1.7.4 Comparison of EOS versus ESD Waveforms 13
1.8 Reliability Technology Scaling and the Reliability Bathtub Curve 13
1.8.1 The Shrinking Reliability Design Box 14
1.8.2 Application Voltage, Trigger Voltage, and Absolute Maximum Voltage 14
CONTENTS

1.9 Safe Operating Area 15
1.9.1 Electrical Safe Operating Area 16
1.9.2 Thermal Safe Operating Area (T-SOA) 16
1.9.3 Transient Safe Operating Area 16

1.10 Closing Comments and Summary 17
References 18

2 Analog Design Layout 19
2.1 Analog Design Layout Revisited 19
 2.1.1 Analog Design: Local Matching 20
 2.1.2 Analog Design: Global Matching 21
 2.1.3 Symmetry 21
 2.1.4 Layout Design Symmetry 21
 2.1.5 Thermal Symmetry 22
2.2 Common Centroid Design 22
 2.2.1 Common Centroid Arrays 22
 2.2.2 One-Axis Common Centroid Design 22
 2.2.3 Two-Axis Common Centroid Design 23
2.3 Interdigitation Design 24
2.4 Common Centroid and Interdigitation Design 24
2.5 Passive Element Design 25
2.6 Resistor Element Design 25
 2.6.1 Resistor Element Design: Dogbone Layout 25
 2.6.2 Resistor Design: Analog Interdigitated Layout 26
 2.6.3 Dummy Resistor Layout 26
 2.6.4 Thermoelectric Cancellation Layout 27
 2.6.5 Electrostatic Shield 28
 2.6.6 Interdigitated Resistors and ESD Parasitics 28
2.7 Capacitor Element Design 29
2.8 Inductor Element Design 30
2.9 Diode Design 33
2.10 MOSFET Design 35
2.11 Bipolar Transistor Design 36
2.12 Closing Comments and Summary 36
References 37

3 Analog Design Circuits 39
3.1 Analog Circuits 39
3.2 Single-Ended Receivers 40
 3.2.1 Single-Ended Receivers 40
 3.2.2 Schmitt Trigger Receivers 41
3.3 Differential Receivers 41
3.4 Comparators 43
3.5 Current Sources 43
3.6 Current Mirrors 44
 3.6.1 Widlar Current Mirror 44
 3.6.2 Wilson Current Mirror 45
3.7 Voltage Regulators 46
 3.7.1 Buck Converters 46
 3.7.2 Boost Converters 46
 3.7.3 Buck–Boost Converters 47
 3.7.4 Cuk Converters 48
3.8 Voltage Reference Circuits 49
 3.8.1 Brokaw Bandgap Voltage Reference 49
3.9 Converters 49
 3.9.1 Analog-to-Digital Converter 50
 3.9.2 Digital-to-Analog Converters 50
3.10 Oscillators 50
3.11 Phase Lock Loop 50
3.12 Delay Locked Loop 50
3.13 Closing Comments and Summary 52
References 52

4 Analog ESD Circuits 55
4.1 Analog ESD Devices and Circuits 55
4.2 ESD Diodes 55
 4.2.1 Dual Diode and Series Diodes 55
 4.2.2 Dual Diode–Resistor 56
 4.2.3 Dual Diode–Resistor–Dual Diode 56
 4.2.4 Dual Diode–Resistor–Grounded-Gate MOSFET 58
 4.2.5 Back-to-Back Diode Strings 58
 4.2.5.1 Back-to-Back Symmetric Diode String 59
 4.2.5.2 Back-to-Back Asymmetric Diode String 59
4.3 ESD MOSFET Circuits 59
 4.3.1 Grounded-Gate MOSFET 60
 4.3.2 RC-Triggered MOSFET 61
4.4 ESD Silicon-Controlled Rectifier Circuits 62
 4.4.1 Unidirectional SCR 62
 4.4.2 Bidirectional SCR 62
 4.4.3 Medium-Level Silicon-Controlled Rectifier 62
 4.4.4 Low-Voltage-Triggered SCR 64
4.5 Laterally Diffused MOS Circuits 64
 4.5.1 LOCOS-Defined LDMOS 65
 4.5.2 STI-Defined LDMOS 66
 4.5.3 STI-Defined Isolated LDMOS 66
4.6 DeMOS Circuits 68
 4.6.1 DeNMOS 68
 4.6.2 DeNMOS-SCR 69
4.7 Ultrahigh-Voltage LDMOS Circuits 69
 4.7.1 Ultrahigh-Voltage LDMOS 70
 4.7.2 Ultrahigh-Voltage LDMOS SCR 71
4.8 Closing Comments and Summary 72
References 72
5 Analog and ESD Design Synthesis

5.1 Early ESD Failures in Analog Design

5.2 Mixed-Voltage Interface: Voltage Regulator Failures

5.2.1 ESD Protection Solution for Voltage Regulator: GGNMOS ESD Bypass between Power Rails

5.2.2 ESD Protection Solution for Voltage Regulator: Series Diode String ESD Bypass

5.3 Separation of Analog Power from Digital Power AV_{dd} to DV_{dd}

5.4 ESD Failure in Phase Lock Loop (PLL) and System Clock

5.5 ESD Failure in Current Mirrors

5.6 ESD Failure in Schmitt Trigger Receivers

5.7 Isolated Digital and Analog Domains

5.8 ESD Protection Solution: Connectivity of AV_{dd} to V_{dd}

5.9 Connectivity of AV_{ss} to DV_{ss}

5.10 Digital and Analog Domain with ESD Power Clamps

5.11 Digital and Analog Domain with Master/Slave ESD Power Clamps

5.12 High-Voltage, Digital, and Analog Domain Floor Plan

5.13 Closing Comments and Summary

References

6 Analog-to-Digital ESD Design Synthesis

6.1 Digital and Analog

6.2 Interdomain Signal Line ESD Failures

6.2.1 Digital-to-Analog Signal Line Failures

6.3 Digital-to-Analog Core Spatial Isolation

6.4 Digital-to-Analog Core Ground Coupling

6.4.1 Digital-to-Analog Core Resistive Ground Coupling

6.4.2 Digital-to-Analog Core Diode Ground Coupling

6.5 Domain-to-Domain Signal Line ESD Networks

6.6 Domain-to-Domain Third-Party Coupling Networks

6.7 Domain-to-Domain Cross-Domain ESD Power Clamp

6.8 Digital-to-Analog Domain Moat

6.9 Digital-to-Analog Domain Moat with Through-Silicon Via

6.10 Domain-to-Domain ESD Design Rule Check and Verification Methods

6.11 Closing Comments and Summary

References

7 Analog-ESD Signal Pin Co-synthesis

7.1 Analog Signal Pin

7.2 Analog Signal Differential Receiver

7.2.1 Analog Signal CMOS Differential Receivers

7.2.2 Analog Signal Bipolar Differential Receivers

7.3 Analog CMOS Differential Receiver

7.3.1 Analog Differential Receiver Capacitance Loading

7.3.2 Analog Differential Receiver ESD Mismatch
7.4 Analog Differential Pair ESD Signal Pin Matching
with Common Well Layout 110
7.5 Analog Differential Pair Common Centroid Design Layout:
Signal Pin-to-Signal Pin and Parasitic ESD Elements 113
7.6 Closing Comments and Summary 115
References 116

8 Analog and ESD Circuit Integration 119
8.1 Analog and Power Technology and ESD Circuit Integration 119
 8.1.1 Analog ESD: Isolated and Nonisolated Designs 119
 8.1.2 Integrated Body Ties 119
 8.1.3 Self-Protecting versus Non-Self-Protecting Designs 120
8.2 ESD Input Circuits 120
 8.2.1 Analog Input Circuit Protection 120
 8.2.2 High-Voltage Analog Input Circuit Protection 120
 8.2.3 Analog Input High-Voltage Grounded-Gate NMOS (GGNMOS) 121
 8.2.4 Two-Stage High-Voltage Analog Input Circuit Protection 122
8.3 Analog ESD Output Circuits 123
 8.3.1 Analog ESD Output Networks and Distinctions 123
 8.3.2 Analog Open-Drain ESD Output Networks 123
8.4 Analog ESD Ground-to-Ground Networks 124
 8.4.1 Back-to-Back CMOS Diode String 125
 8.4.2 HV GGNMOS Diode-Configured Ground-to-Ground Network 125
8.5 ESD Power Clamps 125
 8.5.1 ESD Power Clamp Issues for the High-Voltage Domain 125
 8.5.2 HV Domain ESD Protection and ABS MAX 126
 8.5.3 HV Domain V_{IN} or V_{CC} Input 126
 8.5.4 HV Grounded-Gate NMOS (GGNMOS) 126
 8.5.5 HV Series Cascode ESD Network 127
 8.5.6 ESD Power Clamp Bidirectionality and Return Diodes 128
 8.5.7 Alternative Solutions: LDO Current Limits 128
 8.5.8 Alternative Solutions: External EOS Diode 129
8.6 ESD Power Clamps for Low-Voltage Digital and Analog Domain 129
 8.6.1 Classification of ESD Power Clamps 130
 8.6.2 ESD Power Clamp: Key Design Parameters 131
 8.6.3 Design Synthesis of ESD Power Clamps 132
 8.6.4 Transient Response Frequency Trigger Element and the ESD
 Frequency Window 132
 8.6.5 ESD Power Clamp Frequency Design Window 133
 8.6.6 Design Synthesis of ESD Power Clamp: Voltage-Triggered
 ESD Trigger Elements 133
 8.6.7 Design Synthesis of ESD Power Clamp: The ESD Power Clamp
 Shunting Element 135
 8.6.8 ESD Power Clamp Trigger Condition versus Shunt Failure 136
 8.6.9 ESD Clamp Element: Width Scaling 136
CONTENTS

8.6.10 ESD Clamp Element: On-Resistance 136
8.6.11 ESD Clamp Element: Safe Operating Area 137
8.7 ESD Power Clamp Issues 137
 8.7.1 Power-Up and Power-Down 137
 8.7.2 False Triggering 137
 8.7.3 Precharging 138
 8.7.4 Postcharging 138
8.8 ESD Power Clamp Design 138
 8.8.1 Native Power Supply RC-Triggered MOSFET ESD Power Clamp 138
 8.8.2 Nonnative Power Supply RC-Triggered MOSFET ESD Power Clamp 139
 8.8.3 ESD Power Clamp Networks with Improved Inverter Stage Feedback 140
 8.8.4 Forward-Bias Triggered ESD Power Clamps 141
 8.8.5 IEC 61000-4-2 Responsive ESD Power Clamps 142
 8.8.6 Precharging and Postcharging Insensitive ESD Power Clamps 142
 8.8.7 ESD Power Clamp Design Synthesis and Return Diode 143
8.9 Bipolar ESD Power Clamps 144
 8.9.1 Bipolar ESD Power Clamps with Zener Breakdown Trigger Element 144
 8.9.2 Bipolar ESD Power Clamps with Bipolar Transistor BV_{CEO} Breakdown Trigger Element 145
8.10 Closing Comments and Summary 145
References 146

9 System-Level EOS Issues for Analog Design 147
 9.1 EOS Protection Devices 147
 9.1.1 EOS Protection Device: Voltage Suppression Devices 147
 9.1.2 EOS Protection Device: Current-Limiting Devices 148
 9.2 EOS Protection Device: Directionality 150
 9.2.1 Classification: $I-V$ Characteristic Type 150
 9.2.2 Unidirectionality 150
 9.2.3 Bidirectionality 150
 9.3 System-Level Pulse Model 152
 9.3.1 IEC 61000-4-2 System-Level Pulse Model 152
 9.3.2 Human Metal Model (HMM) 152
 9.3.3 IEC 61000-4-5 Surge Test 154
 9.4 EOS Transient Voltage Suppression (TVS) 155
 9.4.1 EOS Diodes 155
 9.4.2 EOS Schottky Diodes 156
 9.4.3 EOS Zener Diodes 156
 9.4.4 EOS Thyristor Surge Protection 157
 9.4.5 EOS Metal-Oxide Varistors (MOV) 157
 9.4.6 EOS Gas Discharge Tubes (GDT) 159
References 146
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>EOS Current Suppression Devices</td>
<td>161</td>
</tr>
<tr>
<td>9.5.1</td>
<td>EOS PTC Device</td>
<td>161</td>
</tr>
<tr>
<td>9.5.2</td>
<td>EOS Conductive Polymer</td>
<td>162</td>
</tr>
<tr>
<td>9.5.3</td>
<td>EOS Fuses</td>
<td>163</td>
</tr>
<tr>
<td>9.5.3.1</td>
<td>Rated Current I_N</td>
<td>164</td>
</tr>
<tr>
<td>9.5.3.2</td>
<td>Speed</td>
<td>164</td>
</tr>
<tr>
<td>9.5.3.3</td>
<td>I_2t Value</td>
<td>164</td>
</tr>
<tr>
<td>9.5.3.4</td>
<td>Breaking Capacity</td>
<td>164</td>
</tr>
<tr>
<td>9.5.3.5</td>
<td>Rated Voltage</td>
<td>164</td>
</tr>
<tr>
<td>9.5.3.6</td>
<td>Voltage Drop</td>
<td>164</td>
</tr>
<tr>
<td>9.5.3.7</td>
<td>Temperature Derating</td>
<td>164</td>
</tr>
<tr>
<td>9.5.4</td>
<td>EOS eFUSEs</td>
<td>165</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Circuit Breakers</td>
<td>166</td>
</tr>
<tr>
<td>9.6</td>
<td>EOS and EMI Prevention: Printed Circuit Board Design</td>
<td>166</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Printed Circuit Board Power Plane and Ground Design</td>
<td>167</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Printed Circuit Board Design Guidelines: Component Selection and Placement</td>
<td>168</td>
</tr>
<tr>
<td>9.6.3</td>
<td>Printed Circuit Board Design Guidelines: Trace Routing and Planes</td>
<td>168</td>
</tr>
<tr>
<td>9.6.4</td>
<td>Printed Circuit Board Card Insertion Contacts</td>
<td>170</td>
</tr>
<tr>
<td>9.6.5</td>
<td>System-Level Printed Circuit Board: Ground Design</td>
<td>170</td>
</tr>
<tr>
<td>9.7</td>
<td>Closing Comments and Summary</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>171</td>
</tr>
<tr>
<td>10</td>
<td>Latchup Issues for Analog Design</td>
<td>173</td>
</tr>
<tr>
<td>10.1</td>
<td>Latchup in Analog Applications</td>
<td>173</td>
</tr>
<tr>
<td>10.2</td>
<td>I/O-to-I/O Latchup</td>
<td>173</td>
</tr>
<tr>
<td>10.3</td>
<td>I/O-to-I/O Latchup: N-Well to N-Well</td>
<td>175</td>
</tr>
<tr>
<td>10.4</td>
<td>I/O-to-I/O Latchup: N-Well to NFET</td>
<td>177</td>
</tr>
<tr>
<td>10.5</td>
<td>I/O-to-I/O Latchup: NFET to NFET</td>
<td>179</td>
</tr>
<tr>
<td>10.6</td>
<td>I/O-to-I/O Latchup: N-Well Guard Ring between Adjacent Cells</td>
<td>180</td>
</tr>
<tr>
<td>10.7</td>
<td>Latchup of Analog I/O to Adjacent Structures</td>
<td>181</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Latchup in Core-Dominated Semiconductor Chips</td>
<td>181</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Latchup and Grounded N-Well</td>
<td>181</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Latchup and Decoupling Capacitors</td>
<td>181</td>
</tr>
<tr>
<td>10.7.4</td>
<td>Adjacency Design Rule Checking and Verification</td>
<td>181</td>
</tr>
<tr>
<td>10.8</td>
<td>Analog I/O to Core</td>
<td>182</td>
</tr>
<tr>
<td>10.9</td>
<td>Core-to-Core Analog–Digital Floor Planning</td>
<td>182</td>
</tr>
<tr>
<td>10.9.1</td>
<td>Analog–Digital Moats and Guard Rings</td>
<td>183</td>
</tr>
<tr>
<td>10.10</td>
<td>High-Voltage Guard Rings</td>
<td>184</td>
</tr>
<tr>
<td>10.11</td>
<td>Through-Silicon Via (TSV)</td>
<td>185</td>
</tr>
<tr>
<td>10.12</td>
<td>Trench Guard Rings</td>
<td>186</td>
</tr>
<tr>
<td>10.13</td>
<td>Active Guard Rings</td>
<td>187</td>
</tr>
<tr>
<td>10.14</td>
<td>Closing Comments and Summary</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>191</td>
</tr>
</tbody>
</table>
Contents

11 Analog ESD Library and Documents

11.1 Analog Design Library

11.2 Analog Device Library: Passive Elements
 11.2.1 Resistors
 11.2.2 Capacitors
 11.2.3 Inductors

11.3 Analog Device Library: Active Elements

11.4 Analog Design Library: Repository of Analog Circuits and Cores
 11.4.1 Analog Design Library: Reuse Library

11.5 ESD Device Library

11.6 Cadence-Based Parameterized Cells (PCells)
 11.6.1 ESD Hierarchical PCell Physical Layout Generation
 11.6.2 ESD Hierarchical PCell Schematic Generation
 11.6.3 ESD Design with Hierarchical Parameterized Cells
 11.6.4 Hierarchical PCell Graphical Method
 11.6.5 Hierarchical PCell Schematic Method

11.7 Analog ESD Documents
 11.7.1 ESD Technology Design Manual Section
 11.7.1.1 ESD Required Specifications
 11.7.1.2 ESD Supported Standards
 11.7.1.2.1 Human Body Model (HBM)
 11.7.1.2.2 Machine Model (MM)
 11.7.1.2.3 Charged Device Model (CDM)
 11.7.1.2.4 IEC 61000-4-2
 11.7.1.2.5 Human Metal Model (HMM)
 11.7.1.2.6 Transmission Line Pulse (TLP)
 11.7.1.2.7 Very Fast Transmission Line Pulse (VF-TLP)
 11.7.1.3 ESD Supported Designs
 11.7.1.4 ESD Design Rules
 11.7.1.5 ESD Design Recommendations
 11.7.1.6 ESD Guard Ring Rules
 11.7.1.7 ESD Layout Design Practices
 11.7.1.8 Do’s and Don’ts

11.8 ESD Cookbook

11.9 Electrical Overstress (EOS) Documents
 11.9.1 EOS Design Release Process
 11.9.2 Electrical Overstress (EOS) Cookbook
 11.9.2.1 Table of Pin Types
 11.9.3 Electrical Overstress Checklist
 11.9.4 Electrical Overstress Design Reviews

11.10 Closing Comments and Summary

References
12 Analog ESD and Latchup Design Rule Checking and Verification 223
 12.1 Electronic Design Automation 223
 12.2 Electrical Overstress (EOS) and ESD Design Rule Checking 223
 12.2.1 ESD Design Rule Checking 224
 12.2.2 Electrostatic Discharge Layout-versus-Schematic Verification 225
 12.2.3 ESD Electrical Rule Check (ERC) 226
 12.3 Electrical Overstress (EOS) Electronic Design Automation 227
 12.3.1 Electrical Overstress (EOS) Design Rule Checking 227
 12.3.2 Electrical Overstress (EOS) Layout-versus-Schematic (LVS) Verification 228
 12.3.3 Electrical Overstress (EOS) Electrical Rule Check (ERC) 229
 12.3.4 Electrical Overstress Programmable Electrical Rule Check 230
 12.4 Printed Circuit Board (PCB) Design Rule Checking and Verification 230
 12.5 Electrical Overstress and Latchup Design Rule Checking (DRC) 232
 12.5.1 Latchup Design Rule Checking 232
 12.5.2 Latchup Electrical Rule Check (ERC) 237
 12.5.2.1 N-Well Contact to P-Channel MOSFET Resistance 237
 12.5.2.2 P-Well or P-Substrate Contact to N-Channel MOSFET Resistance 237
 12.5.2.3 Guard Ring Resistance 237
 12.6 Whole-Chip Checking and Verification Methods 240
 12.7 Cross-Domain Signal Line Checking and Verification 241
 12.7.1 Cross-Domain Signal Line Checking and Verification Flow System 241
 12.7.2 Cross-Domain Analog Signal Line Checking and Verification Flow System 243
 12.7.3 Cross-Domain Checking and Verification: Resistance Extraction Methodology 244
 12.8 Closing Comments and Summary 246
 References 246

Appendix: Standards 251

Appendix: Glossary of Terms 255

Index 261