Index

ADCs see analog-to-digital converter (ADCs)

analog circuits

Analog-digital converter (ADC), 255
bandgap reference, 49, 255
bandgap regulators, 36, 39, 52
boost DC/DC converters, 46
buck/boost converters, 46–8, 255
buck converters, 46, 255
comparators, 36, 39, 43, 52, 255
current mirrors, 20, 36, 39, 43–5, 52, 77, 78, 256
DC converters, 255
differential operational amplifiers, 256
low dropout (LDO), 75, 128–9, 197, 257
operational amplifiers, 49
phase lock loops (PLL), 50, 77
receivers, 36–43, 52, 55, 56, 78–81, 90–92, 94, 101, 102, 104–6, 108, 109, 224–6, 246
regulators, 20, 36, 39, 46, 52, 73–6, 197, 258, 259
switches, 46, 47, 255, 257
system clocks, 77

analog design

active guard rings, 173, 187–90
analog–digital (pre), 40, 182–4, 216
analog domain, 77, 82–90, 92, 93, 96
guard rings, 7, 8, 90, 171, 173, 182, 184–7, 189, 190, 211, 213, 233–5, 237, 239
mixed signal, 2, 49, 78, 82, 84–7, 89, 92, 96, 103, 116, 124, 130, 144, 171, 173, 199, 201, 202, 207, 208, 220, 223
analog–digital mixed signal design synthesis
analog-to-digital guard rings, 90, 171
breaker cells, 85
digital to analog design ESD solutions, 81–3, 89, 97
digital to analog signal lines, 90–92
floorplanning, 116
guard rings, 90, 171
power domains, 85, 89
power grid, 77

analog ESD power clamps
bipolar ESD power clamps, 144–5
CMOS ESD power clamps, 55, 120, 125, 140, 141, 143
high voltage power clamps, 55, 62, 72, 120
low voltage power clamps, 55, 62, 72, 130

analog layout
array, 20, 22–4, 26, 29, 35
capacitors, 22–6, 30
common centroid design, 22–5, 29, 30, 36
differential circuitry, 28
diodes, 22, 24, 33–4
resistors, 20, 22–30
thermal lines, 19, 21, 22
analog layout design matching
capacitor matching rules, 24, 29–30
common centroid design, 22, 24–5
resistor matching rules, 25–6
thermal lines, 22
analog-to-digital converter (ADCs), 39, 43, 49, 50, 91
application specific integrated circuits (ASICs), 85, 90, 238
ESD design, 102
Assemblies, 10, 152, 155, 219
auditing
assembly, 215
audit cycle, 215
documentation, 215
ESD control program, 215
manufacturing, 219
avalanche
avalanche breakdown, 105, 161
avalanche multiplication, 161
bandgap references, 49, 255
bandgap regulators, 36, 39, 52
bipolar transistors
parasitic bipolar transistors, 8, 235
bond pad
ESD adjacent to bond pad, 103
ESD under bond pad, 33
octagonal bond pad, 33, 116
rectangular bond pad, 116
boost converter, 46–7, 255
boost DC/DC converters, 46
buck–boost converters, 46–8, 255
buck converters, 46, 255
bus
across ESD bus resistance, 90, 102, 136
clamp-to-clamp resistance, 136
ESD dummy bus, 140
ground bus, 90, 202, 213
power bus, 81, 84, 90, 102, 140, 202, 213, 239
cable discharge event (CDE), 9
cassette model, 255
CDM see charged device model (CDM)
charged board model (CBM), 9, 255
charged cable model
charged device model (CDM), 9, 26, 40, 56, 58, 91, 92, 94, 103, 104, 133, 209, 225, 226, 240, 251, 255
standard, 209
test, 209
un-socket charged device model, 255
checklists
audits, 219
ESD protection design, 208, 218, 219
manufacturing audit, 219
semiconductor chip architecture, 84, 129, 200
semiconductor chip design, 84, 85, 129, 201, 224, 226, 240
semiconductor chip design rule checking (DRC), 224
comparators, 36, 39, 43, 52
converters
AC/DC, 255
boost, 46–7, 255
buck, 46, 255
buck–boost, 46–8, 255
Cuk DC/DC, 48, 256
DC/AC, 256
current mirror, 20, 36, 39, 43–5, 52, 77–8, 256
Widlar, 44–5
DAC see digital to analog converter (DAC)
deep trench
bipolar transistors, 186, 189
ESD structures, 186
floating polysilicon-filled trench, 186
guard ring structures, 186–7
latchup, 186
polysilicon filled deep trench structures, 186
degradation
alternating current (AC), 11
direct current (DC), 11
design synthesis
ESD power clamp, 95, 96, 130, 132–5, 143
ESD signal pin, 89, 97
ground bus, 90
ground power rail, 93
power rail, 90, 93
dielectrics
inter-level dielectric (ILD), 196
metal–insulator–metal, 196
vertical natural plate (VNP) capacitor, 196
vertical parallel plate (VPP), 196
differential operational amplifiers, 256
differential pair circuits
differential pair ESD networks, 42, 108, 110, 113
differential pair failure mechanisms, 42
digital to analog converter (DAC), 39, 43, 49–51, 91, 256
diodes
 high current conduction, 155
 self-heating, 136
 series resistance, 56
direct current (DC) converters, 9, 43
 AC/DC converters, 255
dynamic read-access memory (DRAM), 73
electrical overstress (EOS)
 electrical over-current, 10, 64, 147, 161, 163
 electrical over-voltage, 11, 17, 40, 147, 165
failure mechanisms, 155, 160, 230
 high voltage electronics, 159, 163
 latchup, 232–7
 power electronics, 15, 158
protection
 diodes, 129, 155–6
 fuses, 163–5
 MOSFETs, 64
 off-chip design, 215, 218
 on-board design, 228
 on-chip design, 214, 215, 219
 resistors, 148
 silicon controlled rectifiers (SCR), 64, 157, 258
 transient voltage suppression (TVS), 155–61, 259
time constant, 12, 16–18
electrical over-voltage (EOV), 11, 40, 64, 75, 77, 147, 149, 165, 195, 256
electromagnetic compatibility (EMC)
 components, 168
 susceptibility, 256
 systems, 167, 223
electromagnetic interference (EMI)
 equipment, 10
 noise, 10, 11, 170
 shielding, 10, 152
electrostatic discharge (ESD) circuits
 common centroid ESD, 112
 cross-domain ESD power clamps, 95–6
 cross-domain internal signal path ESD networks, 94, 226
differential pair ESD, 109–13
 \(V_{DD}-to-AV_{DD} \) ESD, 83
 \(V_{DD}-to-AV_{SS} \) ESD, 95
 \(V_{SS}-to-AV_{SS} \) ESD, 83, 84, 92, 93
 ESD power clamps, 85, 201
 ESD signal pin, 6, 103, 108, 109, 113, 116
 internal ESD networks, 92
 signal path cross-domain ESD, 244
 electrostatic discharge (ESD) design
 floorplanning, 201
 placement, 58, 85, 87, 211, 213
 power clamps, 85, 129, 131
 rail-to-rail designs, 201, 202, 225
 signal pin designs, 210
electrostatic discharge (ESD) power clamps
 breakdown voltage triggered, 144, 145
 CMOS, 141
 RC-triggered power clamp, 143, 197
 Zener-diode breakdown voltage triggered, 144, 156, 157
electrostatic discharge program manager
 checklists, 208, 218, 220
 controls, 208, 253, 257
 handling, 254, 257
 manufacturing, 214, 257
 packaging, 254
 semiconductor chip design, 5, 6, 8, 21, 84, 85, 89, 201
 EMC see electromagnetic compatibility (EMC)
 EMI see electromagnetic interference (EMI)
 EOS see electrical overstress (EOS)
 error amplifier
 Brokaw, 49
failure
 charged board event (CBE), 255
 charged board model (CBM), 9
 charged device model (CDM), 9, 40, 103
 conductor, 11, 256
 device, 16, 105, 256
 dielectric, 91
 human body model (HBM), 9, 77
 human metal model (HMM), 9, 153
 IEC 61000-4-2, 142, 257
 machine model (MM), 9
 system, 170
failure criteria
 analog circuit, 31, 89
 digital circuit, 58
 noise figure (NF), 202
 radio frequency circuits, 40, 56
 test equipment, 10
feedback
 avalanche multiplication, 161
 regenerative feedback, 81
floorplanning
application specific integrated circuits (ASICs), 85
charged device model ESD networks, 6, 26, 89, 116
DRAM, 73
ESD power clamps, 84–7, 89, 201
ESD signal pins, 6, 89, 116
microprocessors, 85, 96

guard rings
ESD, 7, 90, 211
ESD-to-I/O, 211
I/O-to-core, 211
I/O to I/O, 174
latchup, 237

human body model (HBM)
alternative test methods, 251
characterization method, 200
ESD protection circuit solutions, 72, 88
failure criteria, 239
failure mechanisms, 104
pin-to-pin test, 103, 104
pin-to-power supply test, 150
pulse waveform, 153–5
test, 200, 209, 257
waveform, 13

human metal model (HMM)
air discharge method, 152–4
currentization method, 152, 153
commercial test systems, 163
direct contact method, 152, 153
equipment requirements, 253
ESD gun, 152–4, 257
failure mechanisms, 153
IEC current waveform, 153
pin combinations, 150, 220
powered board, 152, 153
pulse source, 152
pulse waveform, 153–5
standard practice (SP), 210
standard test method (STM), 210
test levels, 153, 154, 210

inductors
analog metal (AM) inductors, 30, 195, 197
ESD inductors, 197
low resistance, 158, 159

guard rings
ESD, 7, 90, 211
ESD-to-I/O, 211
I/O-to-core, 211
I/O to I/O, 174
latchup, 237

human body model (HBM)
alternative test methods, 251
characterization method, 200
ESD protection circuit solutions, 72, 88
failure criteria, 239
failure mechanisms, 104
pin-to-pin test, 103, 104
pin-to-power supply test, 150
pulse waveform, 153–5
test, 200, 209, 257
waveform, 13

human metal model (HMM)
air discharge method, 152–4
currentization method, 152, 153
commercial test systems, 163
direct contact method, 152, 153
equipment requirements, 253
ESD gun, 152–4, 257
failure mechanisms, 153
IEC current waveform, 153
pin combinations, 150, 220
powered board, 152, 153
pulse source, 152
pulse waveform, 153–5
standard practice (SP), 210
standard test method (STM), 210
test levels, 153, 154, 210

inductors
analog metal (AM) inductors, 30, 195, 197
ESD inductors, 197
low resistance, 158, 159

quality factor, 30–32
under-pass connections, 31, 197

instability
electrical instability, 256
electro-thermal instability, 258
spatial instability and current constriction, 60, 61

interconnect resistor
aluminum interconnect resistor, 32, 196
cladding resistor, 33
copper interconnect resistor, 32, 196
tungsten M0 wiring resistor, 162

International Electro-technical Commission (IEC)
IEC 61000-4-2, 13, 131, 142, 146, 152, 153, 171, 209, 210, 253, 257
IEC 61000-4-5, 146, 152, 154–5, 171, 209, 253, 257
standards, 152, 154, 210, 253
technical reports, 253
technical specifications, 253
I/O, 5–7, 11, 22, 50, 75, 85, 89–90, 168–9, 173–84, 190, 211, 216, 231, 233, 238–9, 244–5
peripheral I/O, 6, 73–6, 85, 87, 89, 116, 173, 181, 213, 238–40

isolation structures
deep trench isolation, 197
dual depth shallow trench isolation, 66, 197
LOCOS, 65, 66
shallow trench isolation, 66, 134, 197

Johnson limit
breakdown-frequency relationship, 105, 136, 144, 145
power relationship, 162
voltage relationship, 9, 17, 162

key parameters
capacitors, 10, 22–5, 29, 30, 46–8, 77, 102, 131, 142, 171, 174, 181, 190, 196–7, 199, 200, 244
diode, 132, 134, 143
ESD power clamp networks, 137, 138, 140–141, 143
ESD signal pad networks, 136
MOSFET, 132, 136, 138–43
power bus, 136, 140
resistors, 132, 138, 142
vias, 131, 244
wiring, 130, 239
latchup, 257
 deep trench, 173, 186–7, 235
 shallow trench isolation, 66
 trench isolation, 186
latchup testing
 characterization method, 173–9, 181–2
 commercial test equipment, 237–40
 equipment requirements, 180, 182–90
 failure criteria, 181
 standard, 209–11
LDO regulator see low dropout (LDO) regulator
leakage mechanisms, 140, 141, 143, 202
linearity, 13, 25, 33, 161, 201
LOCOS isolation
 n+/substrate diodes, 197
 n-well-to-n-well lateral bipolar, 175
 n-well-to-substrate diodes, 197
 p+/n-well diode, 113, 197
 thick oxide MOSFET, 198
low dropout (LDO) regulator, 75, 128, 129, 197

machine model (MM)
 failure criteria, 9
 HBM correlation, 132, 133, 138, 226
 pin-to-pin test, 5, 21, 29, 103, 104, 106, 108, 114–16
 powered human body model, 152, 153
 power supply pin testing method, 150
 separation of power supply domains, 7–8, 76
 Standard Test Method (STM), 209
 waveform, 12, 13
matching
 common centroid design, 22–4, 255
 differential pair, 20, 22
 etch variation mismatch, 20, 21, 26
 photolithographic mismatch, 20, 21, 26
 resistor, 25–9
 systematic variation, 20
 transistor, 35–6
metal–insulator–metal (MIM) capacitor, 133, 196
microprocessors
 phase lock loops, 50, 77
 system clocks, 77
MIM capacitor see metal–insulator–metal (MIM) capacitor
mismatch
 etch variation, 4, 5, 20, 21, 26
 mechanical stress, 2, 19
 photo-lithography, 4, 5, 20, 21, 26
MM see machine model (MM)
models
 cable discharge event (CDE), 9, 255
 charged device model, 56, 133, 209, 255
 human body model (HBM), 9, 26, 40, 132, 209, 257
 human metal model (HMM), 152–4, 210, 257
 latchup, 173–82
 machine model (MM), 9, 132, 209, 226, 257
 transient latchup, 9
 very-fast transmission line pulse (VF-TLP)
 model, 210, 259
MOSFET
 avalanche breakdown, 105, 161
 characterization, 4, 20
 current constriction model, 60, 61
 dielectric breakdown, 121, 126, 127
 high current device physics, 60, 61
 parasitic bipolar equation, 8, 236
 series cascode, 78, 127, 134, 139
 snapback, 74, 75, 80, 136, 142, 143, 147
n+ diffusion resistor characterization, 25–6
noise, 7–11, 50, 58, 76, 78, 85, 88–9, 92, 96–7, 119, 124, 155, 170–171, 197–8, 202, 207, 235
 latchup and noise, 125, 173–90
 n-well resistor characterization, 237
 contact layout, 29
 diffused well, 67
off-chip driver circuits, 5, 7, 11, 21, 129, 152
 RF CMOS off-chip driver, 181
operational amplifiers
 phase lock loops (PLL), 50, 77
passives
 capacitors, 196–7
 inductors, 197
 resistors, 196
p+ diffusion resistor, 25–6
polymer voltage suppression (PVS)
 device, 162–3
polysilicon resistor, 132, 142, 196
power
 LDMOS transistors, 64
 safe operating area, 16
 power supply rejection ratio (PSRR), 258
 PSRR see power supply rejection ratio (PSRR)
 pulse width modulation (PWM), 258
PVS device see polymer voltage suppression (PVS) device

PWM see pulse width modulation (PWM)

quality factor (Q), inductors, 30–32

receiver networks
bipolar receivers, 40, 42, 104–6
CMOS receivers, 40, 101
differential receiver, 1, 36, 39, 41–3, 52, 102–10
feedback networks, 41, 78–81
Schmitt trigger networks, 78–81
single-ended cascode receivers, 78
single-ended receivers, 40–41

regulators
boost, 46–7
buck, 46
buck–boost, 47–8
Cuk, 48

resistance
across ESD bus resistance, 102
bond pad to ESD signal pin, 136, 225
ESD power clamp network, 136
ESD power rail to ESD power clamp resistance, 96
ESD signal pin network, 136

resistors
analog resistor design, 26, 196
ballast resistors, 4, 20, 162
common centroid design, 22–3, 25–9

retrograde wells
n-well, 239
sheet resistance, 239

safe operation area (SOA), 258
electrical safe operation area (E-SOA), 16, 256
thermal safe operation area (T-SOA), 16, 258–9

transient safe operation area, 16–17

salicide
cobalt salicide, 239
latchup stability criteria, 239
titanium salicide, 239

scaling, 13–15, 61, 66, 135, 136, 173, 238–40
second breakdown, 16, 17, 80, 81
sensitivity parameters, 41, 49, 101, 120, 198
shallow trench isolation ESD devices, 66–8, 134, 197
silicide block mask, MOSFETs, 60–61
silicides, 60, 61, 239

silicon controlled rectifiers

holding current relationship, 63
regenerative feedback analysis, 78–81

snapback
bipolar, 147
MOSFET, 74, 75, 80, 136, 142, 143
SOA see safe operation area (SOA)

SRAM see static read-access memory (SRAM)

stability
electrical stability, 256
electro-thermal stability, 258

standards
ESD Association transient latchup upset (TLU) standard, 210
JEDEC latchup standard, 252
static read-access memory (SRAM), 106, 141
design, 106–7

symmetry
common centroid design, 22–4
ESD design symmetry, 5–6
layout symmetry, 4

system clocks, 77

system level model
cable discharge event, 9
ESD gun, 152–4
human metal model, 152–4
IEC 61000-4-2, 152, 257
IEC 61000-4-5, 154–5, 257

test
external latchup characterization, 9, 235
internal latchup characterization, 9, 234
techniques
chip level, 232, 241
system level, 152–5

TLP testing see transmission line pulse testing
transient latchup, 9
transient latchup upset (TLU), 9
transient voltage suppression (TVS) devices
electronic polymers, 162–3

surge protection, 157
transmission line pulse (TLP) testing, 210, 259
current vs. voltage (I–V) plot, 68
triple well, 125, 197, 198

TVS devices see transient voltage suppression
(TVS) devices

very fast transmission line pulse (VF-TLP) model
calibration method, 210
commercial test equipment, 210, 259
current vs. voltage (I–V) characteristic, 68

failure criteria, 252