Contents

Introduction xix

Part I

Raspberry Pi Basics

Chapter 1

Raspberry Pi Hardware
- Introduction to the Platform 3
- Who Should Use the RPi 5
- When to Use the RPi 5
- When to Not Use the RPi 6
- RPi Documentation 7
- The RPi Hardware 8
 - Raspberry Pi Versions 9
 - The Raspberry Pi Hardware 10
- Raspberry Pi Accessories 12
 - Important Accessories 13
 - Recommended Accessories 14
 - Optional Accessories 16
- HATs 19
- How to Destroy Your RPi! 20
- Summary 21
- Support 21

Chapter 2

Raspberry Pi Software
- Linux on the Raspberry Pi 24
 - Linux Distributions for the RPi 24
 - Create a Linux SD Card Image for the RPi 25
- Connecting to a Network 26
 - Regular Ethernet 27
 - Ethernet Crossover Cable 29
- Communicating with the RPi 31
<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Exploring Embedded Linux Systems</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploring Embedded Linux Systems</td>
<td>Introduction to Embedded Linux</td>
<td>56</td>
</tr>
<tr>
<td>Advantages and Disadvantages of Embedded Linux</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Is Linux Open Source and Free?</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Booting the Raspberry Pi</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Managing Linux Systems</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>The Super User</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>System Administration</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Linux Commands</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Linux Processes</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Other Linux Topics</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>Using Git for Version Control</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>A Practice-Based Introduction</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Git Branching</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Common Git Commands</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>Using Desktop Virtualization</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Code for This Book</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Further Reading</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td>111</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Interfacing Electronics</th>
<th>113</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfacing Electronics</td>
<td>Analyzing Your Circuits</td>
<td>114</td>
</tr>
<tr>
<td>Digital Multimeter</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Oscilloscopes</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Basic Circuit Principles</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Voltage, Current, Resistance, and Ohm’s Law</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>Voltage Division</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Current Division</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Implementing RPi Circuits on a Breadboard</td>
<td>121</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5 Programming on the Raspberry Pi

Introduction 160
 Performance of Languages on the RPi 160
 Setting the RPi CPU Frequency 165
 A First Circuit for Physical Computing 166
Scripting Languages 168
 Scripting Language Options 168
 Bash 169
 Lua 171
 Perl 173
 Python 173
Dynamically Compiled Languages 176
 JavaScript and Node.js on the RPi 176
 Java on the RPi 178
C and C++ on the RPi 180
 C and C++ Language Overview 182
 LED Control in C 194
 The C of C++ 196
Overview of Object-Oriented Programming 199
 Object-Oriented LED Control in C++ 203
Interfacing to the Linux OS 206
 Glibc and Syscall 206
Improving the Performance of Python 208
 Cython 208
 Extending Python with C/C++ 211
Summary 215
Further Reading 216
Bibliography 216
Part II Interfacing, Controlling, and Communicating

Chapter 6 Interfacing to the Raspberry Pi Input/Outputs

Introduction
- General-Purpose Input/Outputs
 - GPIO Digital Output
 - GPIO Digital Input
 - Internal Pull-Up and Pull-Down Resistors
 - Interfacing to Powered DC Circuits
- C++ Control of GPIOs Using sysfs
- More C++ Programming
- An Enhanced GPIO Class
- Memory-Based GPIO Control
 - GPIO Control Using devmem2
 - GPIO Control Using C and /dev/mem
 - Changing the Internal Resistor Configuration
- WiringPi
 - Installing wiringPi
 - The gpio Command
 - Programming with wiringPi
 - Toggling an LED Using wiringPi
 - Button Press—LED Response
 - Communicating to One-Wire Sensors
 - PWM and General-Purpose Clocks
- GPIOs and Permissions
 - Writing udev Rules
 - Permissions and wiringPi
- Summary

Chapter 7 Cross-Compilation and the Eclipse IDE

Setting Up a Cross-Compilation Toolchain
- The Linaro Toolchain for Raspbian
- Debian Cross-Toolchains

Cross-Compilation Using Eclipse
- Installing Eclipse on Desktop Linux
- Configuring Eclipse for Cross-Compilation
- Remote System Explorer
- Integrating GitHub into Eclipse
- Remote Debugging
- Automatic Documentation (Doxygen)

Building Linux
- Downloading the Kernel Source
- Building the Linux Kernel
- Deploying the Linux Kernel
- Building a Linux Distribution (Advanced)

Summary

Further Reading
Chapter 8 Interfacing to the Raspberry Pi Buses 309
Introduction to Bus Communication 310
I²C 310
 I²C Hardware 311
 An I²C Test Circuit 315
 Using Linux I2C-Tools 318
 I²C Communication in C 325
 Wrapping I²C Devices with C++ Classes 328
SPI 330
 SPI Hardware 330
 SPI on the RPi 332
 A First SPI Application (74HC595) 334
 Bidirectional SPI Communication in C/C++ 339
 Multiple SPI Slave Devices on the RPi 346
UART 347
 The RPi UART 348
 UART Examples in C 352
 UART Applications - GPS 357
Logic-Level Translation 359
Summary 361
Further Reading 361

Chapter 9 Enhancing the Input/Output Interfaces on the RPi 363
Introduction 364
Analog-to-Digital Conversion 364
 SPI Analog-to-Digital Converters (ADCs) 365
 ADC Application: An Analog Light Meter 368
 Testing the SPI ADC Performance 370
 The C Library for BCM2835 (Advanced) 373
Digital-to-Analog Conversion 376
 An I²C Digital-to-Analog Converter 376
 An SPI Digital-to-Analog Converter 379
Adding PWM Outputs to the RPi 381
Extending the RPi GPIOs 387
 The MCP23017 and the I²C Bus 389
 The MCP23S17 and the SPI Bus 393
 A C++ Class for the MCP23x17 Devices 394
Adding UARTs to the RPi 397
Summary 403

Chapter 10 Interacting with the Physical Environment 405
Interfacing to Actuators 406
 DC Motors 407
 Stepper Motors 414
 Relays 418
Interfacing to Analog Sensors 420
 Linear Analog Sensors 422
<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Real-Time Interfacing Using the Arduino</th>
<th>453</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Arduino</td>
<td></td>
<td>454</td>
</tr>
<tr>
<td>An Arduino Serial Slave</td>
<td></td>
<td>457</td>
</tr>
<tr>
<td>An UART Echo Test Example</td>
<td></td>
<td>457</td>
</tr>
<tr>
<td>UART Command Control of an Arduino</td>
<td></td>
<td>461</td>
</tr>
<tr>
<td>An Arduino I²C Slave</td>
<td></td>
<td>464</td>
</tr>
<tr>
<td>An I²C Test Circuit</td>
<td></td>
<td>464</td>
</tr>
<tr>
<td>I²C Register Echo Example</td>
<td></td>
<td>465</td>
</tr>
<tr>
<td>I²C Temperature Sensor Example</td>
<td></td>
<td>467</td>
</tr>
<tr>
<td>I²C Temperature Sensor with a Warning LED</td>
<td></td>
<td>469</td>
</tr>
<tr>
<td>Arduino Slave Communication Using C/C++</td>
<td></td>
<td>471</td>
</tr>
<tr>
<td>An I²C Ultrasonic Sensor Application</td>
<td></td>
<td>473</td>
</tr>
<tr>
<td>An Arduino SPI Slave</td>
<td></td>
<td>476</td>
</tr>
<tr>
<td>Programming the Arduino from the RPi Command Line</td>
<td></td>
<td>478</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>480</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III</th>
<th>Advanced Interfacing and Interaction</th>
<th>481</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>The Internet of Things</th>
<th>483</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Internet of Things (IoT)</td>
<td></td>
<td>484</td>
</tr>
<tr>
<td>The RPi as an IoT Sensor</td>
<td></td>
<td>485</td>
</tr>
<tr>
<td>The RPi as a Sensor Web Server</td>
<td></td>
<td>487</td>
</tr>
<tr>
<td>Nginx</td>
<td></td>
<td>488</td>
</tr>
<tr>
<td>GNU Cgicc Applications (Advanced)</td>
<td></td>
<td>494</td>
</tr>
<tr>
<td>A C/C++ Web Client</td>
<td></td>
<td>498</td>
</tr>
<tr>
<td>Network Communications Primer</td>
<td></td>
<td>499</td>
</tr>
<tr>
<td>A C/C++ Web Client</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Secure Communication Using OpenSSL</td>
<td></td>
<td>502</td>
</tr>
<tr>
<td>The RPi as a “Thing”</td>
<td></td>
<td>503</td>
</tr>
<tr>
<td>ThingSpeak</td>
<td></td>
<td>504</td>
</tr>
<tr>
<td>The Linux Cron Scheduler</td>
<td></td>
<td>506</td>
</tr>
<tr>
<td>Sending E-mail from the RPi</td>
<td></td>
<td>510</td>
</tr>
<tr>
<td>If This Then That (IFTTT)</td>
<td></td>
<td>512</td>
</tr>
<tr>
<td>Large-Scale IoT Frameworks</td>
<td></td>
<td>513</td>
</tr>
<tr>
<td>MQ Telemetry Transport (MQTT)</td>
<td></td>
<td>514</td>
</tr>
<tr>
<td>IBM Bluemix Internet of Things</td>
<td></td>
<td>515</td>
</tr>
</tbody>
</table>
Chapter 13 Wireless Communication and Control 535
Introduction to Wireless Communications 536
Bluetooth Communications 537
 Installing a Bluetooth Adapter 537
 Android App Development with Bluetooth 543
Wi-Fi Communications 544
 Installing a Wi-Fi Adapter 544
 The NodeMCU Wi-Fi Slave Processor 547
ZigBee Communications 559
 Introduction to XBee Devices 559
 XBee Configuration 561
 An XBee AT Mode Example 563
 An XBee API Mode Example 568
Near Field Communication 572
Summary 575

Chapter 14 Raspberry Pi with a Rich User Interface 577
Rich UI RPi Architectures 578
 The RPi as a General-Purpose Computer 579
 RPi with an LCD Touchscreen 582
 Virtual Network Computing (VNC) 583
 Fat-Client Applications 585
Rich UI Application Development 586
 Introduction to GTK+ on the RPi 586
 Introduction to Qt on the RPi 590
Qt Primer 592
 Qt Concepts 592
 Qt Development Tools 596
 A First Qt Creator Example 597
 A Qt Weather GUI Application 598
Remote UI Application Development 602
 Fat-Client Qt GUI Application 603
 Multithreaded Server Applications 606
 The Multithreaded Weather Server 609
Summary 612
Further Reading 613
Chapter 15 Images, Video, and Audio 615
- Capturing Images and Video 616
 - The RPi Camera 616
 - USB Webcams 619
 - Video4Linux2 (V4L2) 621
- Streaming Video 627
- Image Processing and Computer Vision 628
 - Image Processing with OpenCV 628
 - Computer Vision with OpenCV 631
 - Boost 633
- Raspberry Pi Audio 634
 - Core Audio Software Tools 635
 - Audio Devices for the RPi 635
 - Text-to-Speech 643
- Summary 644
- Further Reading 645

Chapter 16 Kernel Programming 647
- Introduction 648
 - Why Write Kernel Modules? 648
 - Loadable Kernel Module (LKM) Basics 649
- A First LKM Example 650
 - The LKM Makefile 652
 - Building the LKM on a Linux Desktop Machine 653
 - Building the LKM on the RPi 654
 - Testing the First LKM Example 657
- An Embedded LKM Example 659
 - Interrupt Service Routines (ISRs) 661
 - Performance 665
- Enhanced Button GPIO Driver LKM 665
 - The kobject Interface 666
- Enhanced LED GPIO Driver LKM 673
 - Kernel Threads 674
- Conclusions 675
- Summary 676

Index 677