Index

Note: Page references in 'italics' refer to figures, those in 'bold' refer to tables.

a
AATR, see Advanced Active Twist Rotor blade
AB Rollab 16B128 six-component strain gauge internal balance 186
AC, see aerodynamic centre
active aerodynamic flow control 549, 550
active blade twist in rotary UAVs, using smart actuation 399–418
active piezoelectric patches 413
actuation concepts 404–408
embedded active fiber composite actuators 409
higher harmonic control 402–403, 416–417
individual blade control 403–404, 404
optimization framework for ATR blades 415, 416
passive piezoelectric patches 413
progress in rotor-based active control technologies 414–415
rotor blade optimization using CFD 416
servopaddles 413–414
SHARCS project 401, 411–412, 412, 414, 417
single crystal piezoelectric fiber composites 409–411, 410, 411
SMART active flap control 404
smart spring system 404, 412
swashplateless helicopter rotors 413–414
vibration and noise in helicopters, source of 402
active fiber composites (AFCs) 401, 403, 409, 411, 413, 415
active flow control (AFCs) closed-loop, for UAVs 449–461
actively controlled flap (ACF) 412, 414, 414, 417
actuator, components of 413
actively controlled tip (ACT) 411, 414, 414, 415, 417
active piezoelectric patches 413
Active Pitch Link (APL) device 411, 415, 417
active trailing-edge (ATE) 405–408, 405–407, 417
active twist rotor (ATR) blades 409, 410, 412, 414–415, 417
optimization framework for 415, 416
ACT, see actively controlled tip actuator(s) 450–452
embedded active fiber composite 409
plasma 42–44, 550–553, 552
plasma synthetic jet 558, 559
technology 9
adaptive and robust control 645

adaptive backstepping attitude controller 648–656
adaptive backstepping fault-tolerant attitude controller design 650–655
baseline attitude controller design 648–650
fault tolerance analysis 655–656
fault-tolerant, designing of 650–655
adaptive backstepping sliding mode control 645
adaptive design of experiment 522–524, 523, 524
adaptive fault-tolerant attitude control, for spacecraft under of actuator effectiveness loss 645–664, 657
adaptive backstepping attitude controller 648–656
flexible spacecraft and problem formulation, mathematical model of 647–648
numerical simulations 656–662
proportional-derivative control under normal and fault cases, simulations of 658–659, 659–662
proposed control under normal and fault cases, simulations of 659–661, 663, 664
time history of 658
adaptive sampling 351
adaptive wing technology 10–12
ADIFOR 327
adjoint-based optimization 333
AD, see attitude determination
Advanced Active Twist Rotor (AATR) blade 409–411, 410, 417
advection upstream splitting method 90
adverse reactionary torque 687
AEDB, see aerodynamic database
aerodynamic centre (AC) 2
aerodynamic database (AEDB) 78
efficient generation of 501, 502
aerodynamic derivative calculation, using radial basis function neural networks 283–304
delta method 284, 288–290, 289–291
helicopter aerodynamic derivatives 285–287, 285
using flight data 297–304, 299–304, 300
using simulated data 291–297, 292–296, 296, 297
aerodynamic flow control 549–550
classification of 550
aerodynamic hysteresis 509
aerodynamic predictions, sources of 509–514, 510–513
aerodynamics 309
aerodynamic sign convention 94
aeroelasticity 9
aerfoils 309
thickness 313
AeroQuad Cyclone quadrotor 696, 696
Aeryon Scout VTOL MAV 3
AFCS, see automatic flight control and stability system
AFCs, see active fiber composites; active flow control
AGEMA Infrared Systems 198
AH-64 Apache helicopter active twist rotor blades, optimization framework for 415, 416
Ahmed, MYM 319
A-160 Hummingbird rotary UAVs, active-twist rotor control in 408
aileron 6, 21, 32
DBD plasma actuation in 569–571, 570
deflection angle 94
aircraft sizing chart 428
changes in 430–431, 432
aircraft test cases 504–505, 504
airfoil camber variation 404
Akram, U. 495
Allen, CB 319, 322
alternating current DBD (AC-DBD) plasma actuator 560
Altman, A 39
angle of attack (AOA) 54, 183, 203, 205–208, 209
chord-dominated mutational ground effect 248–251, 251–253
high 217–224, 218–223
low-to-moderate 210–217, 210–216
negative 224–227, 224–227
angular speeds, of quad-rotors 676
ANNs, see artificial neural networks
ANSYS® environment 12
An, X. 456
AoA, see angle of attack
APL, see Active Pitch Link device
ARD, see Atmospheric Re-entry Demonstrator
Arrhenius form 90
artificial neural networks (ANNs) 284, 287, 318, 319, 328, 418
ATE, see active trailing-edge
ATmega2560 Arduino-based platform 698
Atmospheric Re-entry Demonstrator (ARD) 49–50
ATR, see active twist rotor blade
attitude determination (AD) 613, 614
attitude dynamics 615
attitude kinematics 614–615, 647
automatic flight control and stability system (AFCS) 25
autonomous gust alleviation, in UAVs 465–492
composite spar 466–475, 467, 468, 475
energy-harvesting and storage component 475–478, 476–478
experimental validation 482–483, 484
gust modeling 479, 481–482, 482, 483
reduced energy control law 478–479, 480
shunt damping phenomenon 488
solar panels, energy-harvesting capability of 488–491, 490, 491
autonomous space navigation, using nonlinear filters with MEMS technology 613–642
concurrent attitude and system identification 633–642
concurrent orbit and attitude determination, see concurrent orbit and attitude determination (COAD) problem statement 613–614
average pitching moment 385, 387, 387, 393
axial force coefficient 94
b
backstepping control approach 646, 648–656
Badcock, KJ 159
Badyrka, JM 327, 328
balance calibration 187–188
Ballhaus, WF 538
Barakos, GN 33, 34, 416, 309
bare-airframe model verification, of quad-rotors 715
bare-frame system identification, of quad-rotors 709–713
directional frequency response 714
directional model, identified parameters for 713
heave frequency response 714
heave model, identified parameters for 714
lateral and longitudinal model eigenvalues 710
lateral and longitudinal models 710
lateral frequency response 711
longitudinal frequency response 712
time-domain verification of lateral model 715
Barkana, I 170
Barrett, R. 423–444
baseline attitude controller design 648–650
basic control design 278–281, 279–281, 279
Bass-Gura formula 171
battle damage assessment (BDA) 426
BDA, see battle damage assessment
Beaumier, P. 317, 321, 324, 325
Beckwith–Gallagher swept cylinder method 90
Bell Eagle Eye, UAV 12
Bell-Hiller stabilizer mechanism 260, 281
Bell HV-911 Eagle Eye rotary UAVs, active-twist rotor control in 408
Benard, N. 548
Benda Genesis 1800 helicopter 283
bending stiffness 470
Benini, E. 332
Bernoulli equation 122
BERP tip blade 309–337, 345–346, 346, 416
high-fidelity and low-fidelity models 314–320
literature review of 310–336
optimization techniques of 321–333
parameterisation techniques of 334–336
sampling methods 320–321
Berstein polynomials 336
Bessel functions 151
Bézier curves 335, 336
B-737 full flight simulator 497
Biedron, RT 314
Biefeld–Brown electrical effect 42, 43
binary representation of design parameters 330–331
Biot–Savart law 15
Bird regime classification 67
BIROTAN, Smart UAV 12
BK117 helicopter
trailing-edge flaps, servo effect of 404, 405
blade element momentum theory 675
blade-pitch angle 265
blade pitching 260–261
blade twist 404, 405
blade–vortex interaction (BVI) noise 324, 399, 402, 415
blade–wake interaction (BWI) 402
Blasius flat-plate boundary-layer solution 88
blend 407, 408
blended wing body (BWB) 31, 62
BLT, see boundary-layer transition
Blue-Edge design 324
body flap deflection angle 94
body reference frame (BRF) 92
body roll rate 265
Boeing’s X-48B BWB technology demonstrator 32
Boschetti, PJ 7
Bo 105 S123 helicopter 297
boundary-layer theory 549
boundary-layer transition (BLT) 72–73
BRF, see body reference frame
Brindejonc, A. 414
Brocklehurst, A. 33, 34
Brunton, SL 456
brute-force approach 514
Bryan, GH 505
buffeting 9
Bui-Thanh, T. 319
Buraq HALE UAV concept 37, 39
Busoletti, JE 336
BVI, see blade–vortex interaction noise
BWB, see blended wing body
BWI, see blade–wake interaction

C
Cai, WC 645
calibration matrix 187
CAMRAD 312, 316
canard stabilators 21
canard surfaces 36–37
Caradonna, FX 313
carbon fiber 183
carbon fiber composites 674
Cárdenas, EM 25
Cardona, A. 153
Carleton whirl tower facility, active pitch link in 412
Carnegie Mellon
Yamaha R-50 helicopter 258
Castonguay, P. 334
Catmull–Rom surface patch 590, 590
Cato–Johnson, swept cylinder method 90
Cattafesta III, LN 451, 549
CEASIOM 498
Celi, R. 310, 314, 318, 324
Central Aerohydrodynamic Institute 505
centre of gravity (CG) 2, 21, 261
of quad-rotor 677, 684, 686, 687, 700
Cesnik, C. 144
Cetinsoy, E. 12
CFD, see computational fluid dynamics
CG, see centre of gravity
Chambers, JR 496, 503
Index

Charles, BD 333
Chen, CM 326
Chen, Wen-Hua 257–281
Cholesky decomposition 620
chord-dominated dynamic ground effect 228–239
flow physics of 234, 236–239, 236–238
life characteristics of 229–231, 229–231
physical model of 228, 229
pressure distribution of 232–234, 232, 233, 235
chord-dominated mutational ground effect 240–253
angle of attack 248–251, 251–253
physical model of 240, 240
ride height on 248–251
typical landing process 240–243, 241, 242, 244–245
typical take-off process 243, 246–248, 246, 247, 249–250
chord-dominated static ground effect 203–228
high AOA, effect of 217–224, 218–223
life characteristics of 205–209, 206–209
low-to-moderate AOA, effect of 210–217, 210–216
negative AOA, effect of 224–227, 224–227
physical model of 205
Chowdhary, G. 283, 290
CIFER, see Comprehensive Identification from Frequency Response
civil vertical flight operations 424, 425
“Clean Sky” initiative 424
closed-loop active flow control, for UAVs 449–461
active flow control scaling 451–452, 453
actuators 450–452
controller architecture 458–461
gray-box models 455–456
linear system 453–454
objectives of 450
plant model identification 454–458
CMP, see constrained motion planning
COAD, see concurrent orbit and attitude determination
Coandă surfaces 32
cognitive sampling algorithm 524–527
applications of 528–530
local maxima and minima criterion 525
second derivative criterion 525–526
coherence functions 704–705
Collins, K. 316
complete helicopter model 267–269, 269, 269, 275, 276
composite spar 466–475, 467, 468, 475
geometric and material properties of 468
Comprehensive Identification from FrEquency Response (CIFER) 258
system identification of quad-rotors using 704–705
computational fluid dynamics (CFD) 3, 14–16, 49, 181, 313, 318, 322, 334, 345
high-fidelity and low-fidelity models 314, 316
methods, for optimization 316–317
objective functions of 323
rotor blade optimization using 416, 418
virtual flight simulation using 495–543
computational structural dynamics (CSD) techniques 34, 317
concurrent attitude and system identification 633–642
dynamic system with sensor parameter estimation 633–634
marginal minimum sigma point Kalman filter algorithm 635, 636
persistence of excitation 634, 635
concurrent orbit and attitude determination (COAD) 613
close propagation components, time history of 637, 637
covariance analysis and observability 622–627, 625, 626
estimation results and analysis of 622–624, 625
initial orbit conditions 638
initial simulation conditions 621, 638
measurement package 617–619
minimum sigma point Kalman filter algorithm 619–620, 621
results of 637–642, 638, 638–641
Index

sensitivity analysis 627–630, 627, 628, 629–633
spacecraft dynamics 614–617, 616
system and simulation data for 621
CONDUIT, see COntrol Designer’s Unified Interface Tool (CONDUIT)
CONGRA 323
CONMIN 321, 324–327
conservation law of angular momentum 500
conservation law of linear momentum 500
constrained motion planning (CMP) 577–609
environmental constraints to 589–592, 591
flow chart of 577
off-line 592–595, 594, 594, 595
problem 579
real-time 595–602, 597, 600, 601
trim-manoeuvre library, organizing 582–589, 585–589, 586
UAV missions and classification 579, 579
UAV simulation and modelling 579–582, 580, 581
variable objective 602–607, 603, 605, 606, 607, 608
continuum flow conditions 99
COntrol Designer’s Unified Interface Tool (CONDUIT) 695
quad-rotor controller optimization in 719–724, 722, 723, 724, 725–726
design parameters 721
flight testing validation 724
handling quality window for final design 725
handling quality window for initial design 723
lateral axis closed-loop frequency response 726
lateral axis design evaluation 726
lateral controller design summary 724
optimization strategy 722, 724
results 724
specifications 721–722, 722
controller architecture 458–461
controller bandwidth, of quad-rotors 681
control morphing 12
control system design, high-altitude long-endurance (HALE) vehicles aircraft test case Gust-load alleviation 172–176
H∞ control synthesis 167–168
model reference adaptive control 168–171
Convair XFY-1, mission profile of 428
conventional takeoff and landing (CTOL) aircraft 428
Cook, CV 313
Cook, RG 144
Cooper, JE 479
Corke, TC 547
corona discharge 551–552, 552
cost-function optimization 698
coupled roll and pitch dynamics 278, 279
coupling coefficient 473
Cristofaro, M. 495, 514, 515, 522, 524
Crossley, WA 316
cross-section transformation (CST) 470, 475, 475
crowding 330
Crowley, D. 320
CST, see cross-section transformation
CTOL, see conventional takeoff and landing aircraft
Cybyk, BZ 553
d
DACE 318, 323
Damkohler (Da) number 70–71
Da Ronch, A. 152, 158, 161, 495, 527, 531, 535, 536
DARPA 428, 434, 436
Daskilewicz, MJ 329
data compendium (DATCOM) 510–511, 511
data fusion of aerodynamic sources 503–504
for virtual flight simulation 527, 531, 532–534
DATCOM, see data compendium
DBD, see dielectric barrier discharge plasma actuator
Deb, K. 323
decoupled roll and pitch dynamics 271, 272
degrees of freedom (DoFs) 284, 285, 498
6-DoF model 262, 285–287, 291, 301, 302, 498, 580, 608
3-DoF model 585
DeLauney sampling method 321
De Marqui, C., Jr. 465
delta method 284, 288–290, 289–291
to simulated data 291–297, 292–296, 296, 297
delta wings 2
Demon UAV, by BAE Systems 31
DEM, see digital elevation maps
derivative spike 717
design margin optimization (DMO) function 721
design of experiments (DOE) 320
design space sampling 351
Detra–Hildalgo method 89
DGE, see dynamic ground effect
DHPSO, see dynamic hybrid particle swarm optimization algorithm
Diana UAV project 562, 563
aircraft dimensions 182
experimental facility 183
flow visualization 195–198
force and moment measurements 183–192
high-speed fixed-wing aerial target drone 182
wind tunnel and CFD comparisons 192–194
dielectric barrier discharge (DBD) 42–43, 43, 552
plasma actuator 547, 548, 553–561, 554–561, 564
alternating current 560
with electrode and dielectric configuration 557–558, 558
glass dielectric layer 555, 555, 556
Kapton® dielectric layer 555, 555, 556
nanosecond-pulse 560
plasma synthetic jet actuator 558, 559
plasma vortex generator 561
saturated and damaged regimes 555–556, 557
sliding discharge 560–561, 561
surface 554–555, 554
tangential wall jets 558–560, 559, 560
digital elevation maps (DEM) 589, 590, 607, 608
Dillsaver, M. 144
direct simulation Monte Carlo (DSMC) method 61–62
direct-twist 404
d33-mode actuation 407
DOE, see design of experiments
DoFs, see degrees of freedom
Downs, G. 434
drag curve 193
drag polar curve 193
Dryden model 155
Dulikravich, GS 328
DYMORE 314, 415
dynamic ground effect (DGE) 203, 204
chord-dominated, see chord-dominated dynamic ground effect
dynamic hybrid particle swarm optimization (DHPSO) algorithm 596, 608
performance evaluation 601–602, 601
dynamic models 695
of quad-rotors 703, 704, 705
with flap thrust-vectoring 693
of quad-tilt-rotor 686–687
dynamic response 456–458, 457
dynamic stability 20
dynamic system with sensor parameter estimation 633–634

e
Eberhart, RC 583
Eckert's method 88
eclipse effect 628–630, 629
EGO 323
EKF, see extended Kalman filter
electromechanically controlled quads 670
electro-mechanical multi-rotor, 670, see also quad-rotors; quad-tilt-rotor
variable-pitch quad-rotor 680–683
electro-mechanical quad-rotor
flap thrust-vectoring 679–680, 681,
692–693, 693
servo thrust-vectoring 679, 680
variable-pitch propeller 679, 680
elevators 21, 32
Elevon deflection angle 94
elevons 21
elsA 317
embedded active fiber composite actuators 409
embedding 401, 401
energy-harvesting and storage component 475–478, 476–478
enthalpy-based film coefficient 88
environmental constraints to constrained motion planning 589–592
terrain modeling 589–590
terrain-related penalty function 591, 591
threats modeling 591–592
threat zone entrance penalty function 592
Environmental Research Aircraft and Sensor Technology (ERAST) program 144
equation error method 284
equations of motion, of aircraft axes and notations, systems of 499–500, 499
governing equations 500
ERATO blade 34
Erturk, A. 488
Etele, J. 481
Etkin, B. 153
Euler angle 261
of quad-rotors 676, 677–678
of quad-tilt-rotor 687
Euler–Lagrange equation 472, 473
Eurocopter Blue-Edge blade-tip concepts 34
European Aeronautical Safety Agency 498
European Experimental Reentry Testbed (EXPERT) 49–50
extended Kalman filter (EKF) 619
EXTREM algorithm 14

f
FA-61
hoover-to-dash conversion 423
factorial method 321
Fairey Rotodyne tipjet-turboprop autogyro 424
fault detection-and-identification (FDI) 646
fault tolerance analysis 655–656
fault-tolerant attitude control adaptive, for spacecraft under of actuator effectiveness loss 645–664
FDI, see fault detection-and-identification
FD, see finite difference method
Federal Aviation Administration 498
feed-forward neural networks (FFNNs) 284, 287
FE, see finite element approximation
Feszty, D. 411–412
FFNNs, see feed-forward neural networks
FFT, see finite Fourier transform
figure of merit (FoM) 33, 312, 322, 324, 346, 376, 378
filter error method 284
finite difference (FD) method 290–297, 291, 293, 295, 296, 297
finite element (FE) approximation 475, 475
finite Fourier transform (FFT) 535
first-mode piezoelectric generator with resistive impedance 477, 477
first-order ordinary differential equations (ODEs) 157
first-principles modelling 257–258, 267
fixed-pitch quad-rotors 680–681
thrust actuation with 682
fixed-wing UAVs 12
chord-dominated ground-effect aerodynamics of 201–253
chord-dominated dynamic ground effect 228–239
chord-dominated mutational ground effect 240–253
chord-dominated static ground effect 203–228
ground effect, categories of 202–203
flaperon 8, 21
flaps 32
flap thrust-vectoring 679–680, 681, 692–693, 693
principle and parameters 693
Fletcher, R. 325
flexible spacecraft and problem formulation, mathematical model of 647–648
flight conditions, for rotor blade optimisation with BERP tip 375–376
flight stability and control, of UAVs
 case study 25–26
 configurations 23–25
 control surfaces 21
 low-wing configuration and stability definitions 27
 principles of aircraft stability 21–23
 relaxed stability 25
 static and dynamic 20–21
 vehicle geometry and aerodynamic characteristics 27–29
flight data processing, of quad-rotors 706–708
flight simulation, 496–498, 497, see also virtual flight simulation, using computational fluid dynamics
flight testing 513–514, 513
 procedures, of quad-rotors 705–706
 validation 724
FLOWer 317
flowfield chemical reactions 90
flow-field velocity 566
flow physics
 of chord-dominated dynamic ground effect 234, 236–239, 236–238
 of high angle of attack 219–224, 219–223
 of negative angle of attack 224, 226–227, 226, 227
flow structure modification, using plasma actuation 547–573
aerodynamic flow control 549–550, 550
dielectric barrier discharge actuators 553–561, 554–561, 564
high-voltage equipment for 565–566
on leading edge 566–569, 567, 568
measurements of 564–565, 564, 565
plasma actuators 550–553, 552
in trailing edge 569–573, 570–572
wind tunnel description 561–562, 562
wind tunnel model 562–564, 563, 563
flow visualization techniques 181, 195–198
fluid flow 1
fluidic flight controls 32
fluid medium 1
flutter suppression 465
flying test beds (FTBs)
aerothermodynamic design process 57–62
Atmospheric Re-entry Demonstrator 49–50
benefits of 56
capsules and lifting-body vehicles 50
critical re-entry technologies 49
direct simulation Monte Carlo method 61–62
European Experimental Reentry Testbed 49–50
high-enthalpy ground-based facilities 62
hypervelocity continuum regime 61
Intermediate Experimental Vehicle 49–50
ORV-WSB body configurations 51, 52, 54, 57
rarefied flow regime 61
rather blunt vehicle configuration 52
reusable ORV, mission profile 50–62
scramjets and ramjets 54–56
spatular body configuration 52
trade-off configurations 51
types of 49–50
FMF, see free molecular flow
FM, see figure of merit
FOM, see full-order model
force coefficients 189
force vector 687
Fourier coefficients 18
Fourier series 336
Fourier transform 155
45° control method 670
Fowler flap 8
fractional-factorial method
 rotor blade optimisation with BERP tip 350, 351
Frazzoli, E. 578, 595
free molecular flow (FMF)
 conditions 99
 regime 67
frequency-domain computational fluid
dynamics, for flight simulations 538
frequency-domain system identification, of
quad-rotors 704, 705, 708, 713, 715
frequency-domain verification, of
quad-rotors 718
 lateral axis model 719
frequency-sweep procedure 704, 705, 706
frozen-field assumption 155
FSC1000 desktop simulator 497
Fu, KH 298, 299
full-factorial method 351
full helicopter model, see complete
 helicopter model
full-order model (FOM) 163

G
GADO, see Genetic Algorithm Design
Optimiser
Gamboa, P. 11
Ganguli, R. 283
gappy POD method 319–320
 rotor blade optimisation with BERP tip
 365–366
GA, see genetic algorithm
Gatwick Airport 423
Gaussian models 153, 155
Gavrillets, V 258, 266
GeDEM 332
genetic algorithm (GA) 318, 319, 322, 323,
 326, 327, 329–333, 337, 418
 rotor blade optimisation with BERP tip
 348, 351, 352, 366, 368–369, 368
Genetic Algorithm Design Optimiser
 (GADO) 331–332
 geometry generation 374, 374
Geradin, M. 153
German, BJ 329
GE, see ground effect
Gessow, Alfred 316
Ge, SZS 646
Ghaly, WS 317, 318, 322, 330, 334–336
Ghoreyshi, M. 158, 515, 535, 539, 540
Giannakoglou, KC 320
Gladstone-Dale equation 557
glass dielectric layer 555, 555, 556
Glauert, H. 3
Glaz, B. 318, 322
Godard, KD 645
Goman, M. 456
Goman-Khrabrov model 456
González, L. 333
Goorjian, PM 538
Goraj, Z. 37
gradient-based optimization 324–327,
 325, 326, 348
gradient descent method 353
gradient-forecasting search method 326
graph-based methods 578
Grauer, J. 259
Gray-box models 455–456
Greenblatt, D. 450
Grohmann, B. 404
ground effect (GE) 201
 categories of 202–203, 204
 chord-dominated static 203–228
GT-Hybrid 314
Gunes, H. 320
Gurney flap 6, 8–9, 550
gust alleviation
 autonomous, in UAVs 465–492
gust modeling 163, 479, 481–482, 482
gust velocity 154
gyros 266, 618
gyroscopic moments 687

h
Haftka, RT 329
Hájek, J. 334
Hajela, P. 319, 329
Hajelat, P. 324
Hall, KC 324, 538
Hall, RM 496, 503
Hall, SR 324
Hamilton’s principle 472
harmonic balance (HB) method
 346–348, 534
HARVee, dual tilt-wings UAV 12
Hassan, AA 333
HAWT, see horizontal-axis wind turbines
 rotor blades
Haykin, S. 287
HB, see harmonic balance method 275
Heinkel Aircraft Company 431, 433
Heave dynamic 275
Wespe 431
helicopter multi-block method 348
Helicopter Overall Simulation Tool (HOST) 317
helicopter UAVs, 9–10, see also unmanned aerial vehicles (UAVs)
Hermitian transpose 159, 160, 162
heuristic optimization methods 578
HHC, see higher harmonic control
Hicks–Henne function 14, 335
hierarchical asynchronous parallel evolutionary algorithm 332
high-altitude long-endurance (HALE) vehicles
advanced active control strategies 146
canard configuration 35–40
challenges and prospects 144–146
low-cost efficient platforms 144
NASA ‘Helios’ prototype 144
nonlinear model order reduction 146
nonlinear time-domain multidisciplinary framework 144–146
wing span 1
high angle of attack, effect of 217–224, 218–223
flow physics 219–224, 219–223
life and pressure distribution 217–219, 217, 218
high aspect ratio (AR) wing 1
higher harmonic control (HHC) 402–403, 416–417
high-fidelity model 314–320, 352, 498, 503
High Lift-to-Drag Active (HiLDA) wing model 479
high-performance computing (HPC) 501
high-speed impulsive noise (HSI) 402, 406
HiLDA, see High Lift-to-Drag Active wing model
Hiller VZ-1 Pawnee flight test 434
Hirsh, R. 330, 331
hobby flight simulator 497
Hoffer, N. 259
Hooke’s law 470
horizontal-axis wind turbines (HAWT) rotor blades 322, 333
horizontal take-off and landing 23
fixed-wing UAVs 201
HOST, see Helicopter Overall Simulation Tool
hovering of quad-rotors 676
hover-to-dash convertible UAVs 423–444
changes in aircraft sizing chart 430–431, 432
civil vertical flight operations 424, 425
military vertical flight operations 424–426, 426, 427
pitchback instabilities 433–435, 435
proper control effector coupling, necessity for 435–436, 436
runaway elimination 423–424
stall sizing lines, elimination of 430
VTOL launch, recovery, high-speed dash 428–430, 428–430
HOVT 316
HPC, see high-performance computing
HP 6624 electric power supply 186
HPM code, 3D supersonic-hypersonic panel method code 85
HSI, see high-speed impulsive noise
HTOL, see horizontal take-off and landing
Hu, QL 645–664
Hurwitz matrix 168, 173
hybrid aircraft 12–13
hybrid UAVs 12
hypersonic flow 100

IAI Pr8-SE airfoil, AFC scaling effect on 452
IBC, see individual blade control
ICEMCFD™ 374
Iliff, KW 298
Imiela, M. 317, 318, 323, 324
IMU, see inertial measurement unit
Inman, DJ 465, 479
incremental lift coefficients 98
individual blade control (IBC) 10, 403–404, 404, 412, 417
inertial measurement unit (IMU) 283
inertia weight 583
infrared (IR) thermography 181, 196–198
initial angular velocity effect 628, 628
Inman, DJ 465–492
INTA, see National Institute for Aerospace Technology
Intermediate Experimental Vehicle (IXV) 49–50
internal combustion engines (ICEs)
in variable-pitch quad-rotor 683
International Geomagnetic Reference Field (IGRF) model 618
inverse potential flow method 333
Isaaks, EH 518
IXV, see Intermediate Experimental Vehicle

\(j\)
Jacobian matrix 157
Jameson, A. 333
Jategaonkar, R. 283, 290
Jiang, Y. 645
Ji, J. 645
Joh, CY 336
Johnson, CS 309, 416
Jones, DR 524
Jones, R. 151
Joukowski transformation 334

\(k\)
Kaletka, J. 298, 299
Kalman filter
extended 619
marginal minimum sigma point 635, 636
minimum sigma point 619–620
modified unscented 619–620, 621, 622, 627
simplex unscented 619
unscented 619
Kapton® dielectric layer 555, 555, 566, 571
Karakasis, MK 320
Kärhunen–Loève decomposition (KLD) 363–365
Karimi, J. 577
KARI, Smart UAV 12
Kelley, CL 548
Kendoul, F. 281
Kennedy, J. 583
k-epsilon model 16
Keys, C. 313
Khrabrov, A. 456
Kiani, M. 613
Kim, KY 317, 322, 336
Kim, S. 258
kinematics of quad-rotors 699–700
King, R. 459
KLD, see Karhunen–Loève decomposition
Knudsen number 67, 100, 103, 104
Kolencherry, NJ 316
Kong, N. 489
Kothari, M. 595
Kriging model 318–319
rotor blade optimisation with BERP tip 350, 359–362
for virtual flight simulation 514–522, 518–521, 519, 521, 525, 527
Kronecker delta 159
Krueger flap 8
Kulfan, BM 336
Küssner function 152, 163
Kutta–Joukowski theorem 18
Kyosho EP Concept 30 helicopter 258

\(l\)
La Civita, M. 259
LAFPAs, see localized arc filament plasma actuators
LaGuardia Airport 423
laminar flow 88
Landau–Teller approximation/formulation 71, 90
Landfield, JP 38
Langmuir, I. 551
Latin hypercube sampling (LHS) 320, 350, 351, 514–515
leading-edge boundary-layer model 89
leading-edge stallers 456
lead zirconate titanate (PZT) 415, 466–470, 482, 492
energy-harvesting transducer 476–478, 477, 478
monolithic 467, 475
Lee, HM 326
Index

Lee, J. 324
Lee-Rausch, EM 314
Lee's method 90
Lehner, SG 327
Leishman, JG 152, 312, 313, 413
Lekoudis, SG 333
LEO, see low Earth orbit
Le Pape, A. 317, 321, 322, 324, 325, 327, 334, 336
Lerche 431, 433
Lewis number 89
LFD, see linear frequency domain method
LHS, see Latin hypercube sampling
Liang, JR 476
Liao, WH 476
Li, B. 645–664
lift and pressure distribution
 high angle of attack 217–219, 217, 218
 low-to-moderate AOA 210–212
 negative angle of attack 224, 224, 225
lift characteristics
 of chord-dominated dynamic ground effect 229–231, 229–231
 of chord-dominated static ground effect 205–209, 206–209
lift force
 of quad-rotor 675
 of variable-pitch rotor 683
lifting-line theory 3
lift-to-drag ratio (L/D) 54, 113
linear frequency domain (LFD)
 method 534
linearized state-space model 709
 of quad-rotors 699, 701–703, 713
linear quadratic regulator (LQR) 479
linear reduced-order model 160–161
linear system, closed-loop active flow control in 453–454
linear time-invariant (LTI)
 components 409
linear time-periodic (LTP)
 components 409
linear velocity equation 701, 706
Liu, C. 257–281
Liu, J. 318
Liu, X. 333
Ljung, L. 275, 458
localized arc filament plasma actuators (LAFPAs) 553
Lockheed Martin RQ-170 Sentinel 13
Lockheed XFV-1 Pogo, mission profile of 428
Lock number 265
London City Airport 423
Long-EZ aircraft 36
Lopera, J. 548
low Earth orbit (LEO) 49
 satellite systems 613
low-fidelity model 314–320, 352
low-order controllers 146
low-to-moderate AOA, effect of
 lift and pressure distribution 210–212
LQR, see linear quadratic regulator
LTI, see linear time-invariant components
LTP, see linear time-periodic components
Lu-MAV VTOL coleopter MAV 428
Lutronix Corp. 434
Lyapunouv function 648, 649, 653
Lyapunov equation 170–171
m
Mach number 13, 81, 91, 97, 107, 119,
 120, 125, 132, 313, 345, 375, 506, 507
 lift-coefficient dependency 501, 502
TCR model 505
Volterra series 542, 543
Mackman, TJ 320, 514
macro fiber composites (MFCs) 401,
 406–407, 409, 413, 415, 417,
 467–472, 486
Maine, RE 298
Mander, A. 411
Mangler factor 88
Mani, K. 333
manoeuvre automaton (MA) 587
manoeuvre-based motion planning 578
manoeuvre trajectories, generation of
 587, 587–589
manoeuvring of quad-rotors 676
Mansur, HM 721
marginal minimum sigma point Kalman
 filter algorithm 635, 636
Marino, R. 646
Marques Aviation Ltd. 34
Marqués, P. 399–418
Martin, PB 313
MA, see manoeuvre automaton
MAS, see MicroAutonomous Systems
mathematical modeling
quad-rotor 675–678
of quad-tilt-rotor 686–691
MA THOR Heli VTOL-UAS 34–35, 400
rotary UAVs, active-twist rotor control in 408
MATLAB® 15, 155, 156, 259, 270, 279, 318, 415, 458, 476, 483, 594, 690, 697
Maucher, CK 407
Mavris, DN 316
MAVs, see micro air vehicles
maximum likelihood method 284
Maxwell model 101
McLain, BK 42
mean aerodynamic chord 191
measurement accuracy effect 628, 628
measurement package 617–619
measurement system calibration (MSC) 635, 642
MEMS, see microelectromechanical systems
Mengistu, TT 317, 318, 322, 330, 334–336
mesh generation 375, 377
mesh point approach 334
metamodels 317–320, 337, 349, 350, 352–366
Mettler, B. 258, 264, 267, 274
MFCs, see macro fiber composites
MGE, see mutational ground effect
micro air vehicles (MAVs) 283, 304
MicroAutonomous Systems (MAS) 428, 430, 430
microelectromechanical systems (MEMS) 671
autonomous space navigation using 613–642
Military Specification MIL-F-8785C 155
military vertical flight operations 424–426, 426, 427
MIMO, see multi-input, multi-output system
Minimum-Complexity Helicopter Simulation Math Model 258
minimum sigma point Kalman filter 619–620
marginal 635, 636
Mishra, SK 327
mission profile 428–430, 429
MiTE, see Miniature Trailing Edge Effector
MIT X-Cell 60 helicopter 258
MLP, see multi-layer perceptron
modified PSO algorithm
modified hybrid PSO performance evaluation 595
off-line motion planning 593
pseudo-code for 585
trim-manoeuvre library, organizing 583–584
modified unscented Kalman filter (MUKF) algorithm 619–620, 621, 622, 627
MODPSO, see multi-objective dynamic particle swarm optimization
Mohammadi, B. 326
MOI, see moment of inertia effect
Mok, JW 415
moment of inertia (MOI) effect 630, 632, 633, 634
Moreau, E. 552
morphing wing 11
Morris–Mitchell criterion 321
motion planning (MP) 577–578
characteristics of 578–579
complexity level of 578
constrained, see constrained motion planning (CMP)
motor numbering scheme of quad-rotors 700, 701
MP, see motion planning
MQ-4C Triton 513
MSC/NASTRAN software 148
MSC, see measurement system calibration
MUKF, see modified unscented Kalman filter algorithm
multifunctional wing spar 466–467, 467
geometric and material properties of 468
multi-input, multi-output (MIMO) system 258, 646
identification cost function 705
multi-layer perceptron (MLP) 284, 285, 289, 289
multi-objective dynamic particle swarm optimization (MODPSO) 602, 608
illustration of 604–605, 605
performance evaluation 607
multi-objective optimisation 310, 320, 326, 327, 329
multi-rotors, 669–670, see also quad-rotors
components of 672
concept of 672
configurations of 673, 673
with flap thrust-vectoring 679–680, 681, 692–693, 693
motivation 670–671
with servo thrust-vectoring 679, 680
with variable-pitch propeller 679, 680
Munk, M. 3
mutational ground effect (MGE) 203, 204
chord-dominated, see chord-dominated mutational ground effect

N
NACA 64-2-A015 airfoil
DBD plasma actuation 548
NACA 0012 airfoil 203
lift-coefficient 501, 502, 520
DBD plasma actuation 549
NACA 0015 airfoil
OAUGD® panel 547
plasma actuation 548
NACA 4412 airfoil 203
chord-dominated dynamic ground effect on 228, 232, 232, 237, 238
chord-dominated mutational ground effect on 240, 242, 242, 243, 244–245, 251
chord-dominated static ground effect on 205–208, 206–209, 210, 212, 218, 218
high AOA, effect of 219–220, 219–223
negative AOA, effect of 224, 226–227, 226, 227
NACA 4418 airfoil
DBD plasma actuation 548, 566, 567
NACA 5312 airfoil 203
NACA 5-digit rotor 355–356, 356–358
NACA 6412M airfoil
wind tunnel testing of 228
Nadarajah, SK 319, 334
nano air vehicles (NAV) 1
nanosecond-pulse DBD (ns-DBD) plasma actuator 560
Napolitano, MR 500
NASA
‘Helios’ prototype 144, 145
Langley Research Center 73, 91
Langley Transonic Dynamics Tunnel 479, 481
rotorcraft, design-from-scratch procedure for 311–312, 311
National Institute for Aerospace Technology (INTA) 181, 183, 198, 552, 561, 562
Navier–Stokes approximation 67, 69, 83, 112
Navier–Stokes equation 11, 16, 333, 511
closed-loop active flow control 453, 454
NEC DC Strain Amplifier AS2101 186
negative angle of attack, effect of flow physics 224, 226–227, 226, 227
lift and pressure distribution 224, 225, 224
Nelder–Mead (NM) simplex method 328
artificial, see artificial neural networks (ANNs)
feed-forward 284
radial basis function 283–305
neutral point (NP) 21
Newton–Euler equations of motion 262
Newtonian method 678
Newtonian steepest-descent method 87
Newton–Raphson technique 88
Newton’s second law of motion 675, 689
Nielsen, EJ 333
Nitzsche, F. 411–412
NLFD, see non-linear frequency domain approach
NM, see Nelder–Mead simplex method noise
correlation effect 630, 630, 631
blade–vortex interaction 324, 399, 402, 415
rotational 399
swishing 399
non-gradient based optimisation
 327–329, 348, 350
 classifications of 328
non-linear frequency domain (NLFD) approach 319
nonlinear reduced-order aeroservoelastic analysis
 advanced active control strategies 146
 aerospace design factors 143
 control system design 167–176
coupled reduced-order models 157–167
ERAST program 144
high-altitude long-endurance vehicles 143–146
large coupled computational models 147–157
nonlinear model order reduction 146
nonlinear time-domain multidisciplinary framework 144–146
non-uniform rational B-splines (NURBS) 334–336
 rotor blade optimisation with BERP tip 370
normal force coefficient 94
Northrop Grumman RQ-4 Global Hawk 7
Northrop Grumman X-47B UCAS-D 24
notch gradient effect 385, 386, 387
notch offset effect 383–385, 383, 384, 383, 384
NSGAII 351
NS, see Navier–Stokes equation
numerical methods 511
 rotor blade optimisation with BERP tip 346–348
NURBS, see non-uniform rational B-splines
Nussbaum-type function 646, 650

O
OAUGDP*, see One Atmosphere Uniform Glow Discharge Plasma
OAV, see Organic Aerial Vehicle program
objective-function-type optimiser (OFO) 369
objective function value (OFV) 328, 352, 387, 390
observability matrix (OM) 623
OD, see orbit determination
Office National d’Études et de Recherches Aérospatiales (ONERA)
 elsA 317
 7AD rotor 348
 7A rotor 348
off-line constrained motion planning 592–595
cumulative objective functions 593–594
modified hybrid PSO performance evaluation 595
modified PSO algorithm 593
simulations and results 594, 594, 594, 595, 595
off-the-shelf algorithm 522–524, 523, 524
OFO, see objective-function-type optimiser
OFV, see objective function value
OGE, see out-of-ground-effect freeflight
OH-6A
 higher harmonic control 403
OM, see observability matrix
One Atmosphere Uniform Glow Discharge Plasma (OAUGDP*) 547
‘one-minus-cosine’ function 153
ONERA, see Office National d’Études et de Recherches Aérospatiales
optimal control 645
optimisation
 adjoint-based 333
 challenges to 310
difficulties in 321
gradient-based 324–327, 325, 326, 348
 methods, comparison of 330
multi-objective 310, 320, 326, 327, 329
non-gradient-based 327–329, 348, 350
 planform 385, 387, 390–392, 393, 394, 395
 rotor blade optimisation with BERP tip 348–370, 349
 single-objective 320
orbital dynamics 616–617
orbital kinematics 616, 616
orbit determination (OD) 614
orbit inclination effect 627, 628
Organic Aerial Vehicle (OAV) program 428
orthogonal polynomial 336
Oswatich principle 107, 119
Index

out-of-ground-effect (OGE) freeflight 434
output error method 284
Oyama, A. 319

P
Padfield, GD 291
parameter identification (PI) 642
parameterisation technique 334–336, 350
rotor blade optimisation with BERP tip
370–373, 371, 372, 373
Pareto front optimization (PFO) 323, 329
for constrained motion planning
607, 608
rotor blade optimisation with BERP tip
351, 352, 391, 392, 369–370, 370
Pareto optimality method 326, 329
“Pareto optimum” solution 724
Park, JS 409, 411
PARSEC 335, 336
particle image velocimetry (PIV) 566, 569
particle swarm optimization (PSO)
dynamic hybrid 596
modified, see modified PSO algorithm
multi-objective dynamic 602
passive aerodynamic flow control 549, 550
passive piezoelectric patches 413
Patel, MP 548
path planning algorithms, categorization of 578, 578
peak-to-peak pitching moment 385, 387, 387, 388, 389, 393
PEM, see prediction error method
penalty method 331
Peng, X. 602
persistence of excitation 634, 635
perturbation approximation techniques
701–702
PFO, see Pareto front optimization
Phillips, WF 7
physics-based simulation methods of quad-rotors 703, 704
PID, see proportional-integral-derivative controller
piecewise polynomial 336
piezoaeroelastic system 488
piezoceramics 407, 415
piezofilm materials 415
Pironneau, O. 326
PI, see parameter identification
pitchback instabilities 433–435, 435
pitch control 32, 37
pitching moment 21, 93, 99, 121, 191, 194, 522, 523, 524
pitch rate 265
pitch rotation of quad-rotors 677–678
PIV, see particle image velocimetry
planform optimisation 12
planform optimisation 385, 387, 390–392, 393, 394, 395
plant model identification 454–458
plasma actuation, flow structure modification using 547–573
plasma actuators 42–44, 550–553, 552
plasma jet vectoring 548
plasma synthetic jet actuator, see sparkjets
plasma vortex generator 561
plate turbulent method 88
plume-flowfield-surface interactions 91
POD/Galerkin method 364
POD/interpolation method 364
POD, see proper orthogonal decomposition method
Poloni, C. 328
polynomial fits
rotor blade optimisation with BERP tip 350, 359, 360
Popkin, SH 553
positive position feedback (PPF) 479
positive strain feedback (PSF) 484–487, 485–487, 485
Postlethwaite, I. 459
Pourtakdoust, SH 577, 613
power spectral density (PSD) 155
Dryden 465, 481, 482, 484
PPF, see positive position feedback
Prandtl, L. 549
Prandtl–Meyer expansion flow theory 86
Prandtl number 88, 89
PRBS, see pseudo-random bit sequence
prediction error method (PEM) 258, 259, 270, 457
propeller torques 687
proper control effector coupling, necessity for 435–436, 436
proper orthogonal decomposition (POD) 319–320
 rotor blade optimisation with BERP tip 350, 363–366, 365, 366, 367
proportional damping, see Rayleigh damping
proportional-derivative control under normal and fault cases, simulations of 658–659, 659–662
proportional-integral-derivative (PID) controller 278–281, 279–281, 279, 479
propulsion system aerodynamics modelling of quad-rotors 676
Proteus aircraft 36, 37, 38
PSD, see power spectral density
pseudo-random bit sequence (PRBS) 457–460, 457
pseudo-spectral method 348
PSF, see positive strain feedback
PSO, see particle swarm optimization
PSPACE-hard problem 578
pulsed plasma jet actuator, see sparkjets
pulse width modulation (PWM) 691
PVDF 415
PZT, see lead zirconate titanate

q
Qidwai, MAS 489
Qin, N. 319
quad-rotors, 9–10, 670, 674–675, 695, see also multi-rotors
airframe 696
applications of 678
bare-airframe model verification 715, 716–717
bare-airframe system identification 709–713, 710, 711–712, 713–715, 714, 715
body-axis definition 699
body-axis equations of motion of 700
components of 674
concatenated lateral axis frequency-sweep input 706
controller 698, 699
controller model verification of lateral axis 720
controller optimization in CONDUIT 719–724, 722, 723, 724, 725–726
corrector design of 676
development of 671
dual PID controller 718
electro-mechanical 679–680
flap thrust-vectoring 679–680, 681, 692–693, 693
flight data processing 706–708, 707–708
flight testing procedures 705–706
frames, forces, torques and control of 674
frequency-domain and time-domain reconstruction of lateral body-axis acceleration 708
instrumentation 696–698, 697
kinematics and dynamics 699–700
linearized state-space model structure 701–703
mathematical modeling 675–678
modeling 698–699
MOSTAERO data-recording GUI 697–698, 697
motor numbering scheme of 700, 701
obstacle avoidance of 670
overall model verification of 670
roll rotation and translated flight 677
system identification using CIFER 703–705, 704
thrust-vectoring (see quad-tilt-rotor) 684–685
time-domain linear velocity reconstruction 707
variable-pitch quad-rotors 681–683, 681–683
quad-tilt-rotor arrangement of forces and torques 688
component arrangement of 685
control mixing of 692
control of 685–689, 691
design of 684–685
with 45° tilting 686
generalized coordinates of 687
modelling of 686–691
state vectors with input vector relationships 691
upper position of rotors 688
QuickPack 467–472, 482
QUX-02, Japan Aerospace Exploration Agency 12

r
radial basis function neural networks (RBNFs) 287–288
aerodynamic derivative calculation using 283–304
architecture of 288
radial basis functions (RBFs) 318–320
Raisinghani, SC 284, 289
Rajkovic, D. 38
Rajmohan, N. 314
Raju, R. 451
Rallabhandim, SK 316
ramjet engine 54
random turbulence 154–156
rank-based method 330
RANS, see Reynolds-averaged Navier-Stokes
Rayleigh damping 473
Rayleigh–Ritz formulation 472, 475, 475
RBFS, see radial basis functions
RBNFs, see radial basis function neural networks
RCS, see reaction control system
reaction control system (RCS) 60
reaction torque 266
real-time constrained motion planning 595–602
algorithm illustration 596–599, 597
DHPSO performance evaluation 601–602, 601
optimality objective function 599–600
simulations and results 600–601, 600, 601
solving 596
RECs, see reduced energy controllers
recursive system identification 297
reduced energy control law 478–479, 480
reduced energy controllers (RECs) 479, 484, 486, 486, 487, 487
reduced-order model (ROM) 536, 538
generation, cost of 540, 542–543
Kriging 514–522, 518–521, 519, 521
Reeves, C. 325
reference frame, Diana UAV 183–185
reference systems of quad-rotors 676
Régnier, J. 328
Reiniger, K. 433, 435, 437
relative airflow velocities, spanwise distribution of 400
Remple, RK 715
Rendall, TCS 319
repulsive particle swarm optimiser (RPSO) 327
response surface models (RSMs) 319
reverse-design method 333
reverse engineering method 333
Reynolds-averaged Navier-Stokes (RANS) 90, 317, 322
Reynolds-corrected momentum coefficient 451–452, 453
Reynolds number 3–4, 19, 41, 83, 84, 95, 99, 183, 188, 375, 506
DBD plasma actuators 548
Reynolds, Osborne 3
R6008HS receiver 698
Riddell 89
rigid-body model 262–263
ring-neighborhood structure 584
Rizzi, A. 505, 522
ROLLAB 564
roll and pitch rate 278
rolling moment 21, 93
roll rotation of quad-rotors 677, 677
ROM, see rule of mixtures
Roskam, J. 428
rotary-wing UAVs 12
rotational noise 399
Roth, JR 547, 553
Roth's discharge 553
rotor angular speed 265
rotor blade optimisation with BERP tip, framework for 345–396
design space sampling 351
flight conditions 375–376
rotor blade optimisation with BERP tip, framework for (cont’d)
genetic algorithm optimization method 366, 368–369, 368
geometry generation 374, 374
hover results 376, 378
Kriging approximation method 359–362
mesh generation 375, 377
metamodels 352–366
notch gradient effect 385, 386, 387
notch offset effect 383–385, 383, 384
numerical methods 346–348
objective function 351–352
optimisation framework 350
optimisation method 348–370, 349
overall performance comparison 385, 388, 389
parameterisation technique 370–373, 371, 372, 373
Pareto front optimization 369–370, 370
planform optimisation 385, 387, 390–392, 393, 394, 395
polynomial fits 359, 360
proper orthogonal decomposition 363–366, 365, 366, 367
tip anhedral 374–375, 375
tip-sweep effects 379, 379, 380–382
rotor blade platforms 315
rotor-fuselage interaction 266–267, 266
rotor solidity 312, 376
rotor speed 266
rotor thrust 266
rotor torque 266
rotor unmanned aerial vehicles (RUAVs) 402
active blade twist in, using smart actuation 399–418
applications of 408
complex aerodynamic environment in 408
roulette-wheel method 330, 332, 366–368
Roundy, S. 476
Rowley, CW 456
RPSO, see repulsive particle swarm optimiser
RQ-1 Predator 22
RQ-3 DarkStar high-altitude endurance UAV 32–33
RQ4 Global Hawk, Northrop Grumman 147–148
RQ-8A Fire Scout
rotary UAVs, active-twist rotor control in 408
RSMs, see response surface models
RUAVs, see rotor unmanned aerial vehicles
rudder 21
rudder deflection angle 94
ruddervators 21
DBD plasma actuation in 571–573, 571, 572
rule of mixtures (ROM) 470, 475, 475
runaway elimination, in hoover-to-dash convertible UAVs 423–424
Rutan, B. 36
Ryan, EP 655
S 5
S-76
higher harmonic control 403
SACCON, see Stability And Control Configuration model
SA 349 Gazelle
higher harmonic control 403
Samad, A. 317, 322, 336
Samareh, JA 334
sampling rate effect 628, 628
Sankar, LN 333
Santhanakrishnan, A. 558
Santini, D. 527, 531
SAs, see simulated annealing algorithms (SAs)
Saunders, J. 595
SBRF, see surrogate-based recurrence framework
Scharl, J. 498
Schneider, PJ 336
Schultz-Grunow turbulent method 88
Schwabacher, M. 326
Scirocco plasma wind tunnel 49
S&C, see stability and control analysis
SDBD, see surface dielectric barrier discharge plasma actuator
Sears, WR 456
Seifert, A. 451
self-charging structure 475–476, 476
Selig Donnovan SD7032 airfoil 5
semi-empirical methods 510–511, 511
semi-major axis effect 627, 627
sensitivity analysis, of concurrent orbit and attitude determination 627–630, 627, 628, 629–633
SensorCraft 479
sequential quadratic programming algorithm 721
servo effect, of trailing-edge flaps 404
servopaddles 413–414
servo thrust-vectoring, multi rotor with, 679, 680, see also quad-tilt-rotor
SGE, see static ground effect
shape memory alloy (SMA) 11
Shao, K. 481
SHARCS (smart hybrid active rotor control system) project 401, 402, 411–412, 412, 414, 417
Shen, S. 283
Sheplak, M 451, 549
Shevtsov, S. 413
Shin, SJ 409
shock-shock interaction (SSI) phenomenon 110–111
shock wave 13
shock-wave-boundary-layer interactions (SWIBLI) 117
shunt damping phenomenon 488
side force coefficient 94
sideslip angle 94
Siemens, W. von 553
signal-to-noise ratio 704–705
simplex unscented Kalman filter (SUKF) 619
simplified rotor dynamics 264–266, 264 SimSAC project 505
simulated annealing algorithms (SAs) 327, 328
simulation models
of quad-rotors 703, 704
of quad-tilt-rotor 690
Simulink model 156, 279, 477, 483, 690, 695, 717, 718
single crystal piezoelectric fiber composites 409–411, 410, 411
single-input, single-output (SISO) system 453
identification cost function 705
single-objective optimisation 320
singly-linked ring structure 584
singular value decomposition (SVD) 363, 364
SISO, see single-input, single-output system 6-DoF model 262, 285–287, 291, 301, 302, 498, 580, 608
skin friction coefficient 88
Skogestad, S. 459
sliding discharge 560–561, 561
sliding mode control 645, 646
slipstream velocity 12
small unmanned helicopters, dynamics
modelling and system identification of 257–281
basic control design 278–281, 279–281, 279
complete helicopter model 267–269, 269, 269, 275, 276
model breakdown and identification 270–275, 271–275
model development 259–269, 261
preparation 269–270
result validation 275–276, 277
rigid-body model 262–263
rotor–fuselage interaction 266–267, 266
simplified rotor dynamics 264–266, 264
SMART active flap control 404
smart spring system 404, 412
smart tab 407, 407
SNECMA Coléoptère 434
Sobieszczanski-Sobieski, J. 329
social network structure 584, 584
Sodano, HA 468
solar panels, energy-harvesting capability of 488–491, 490, 491
spacecraft dynamics 614–617, 647
Space Shuttle re-entry (STS-1) 117
Spalding–Chi turbulent method 88
sparkjets 553, 558, 559
spatular-body (SB) configuration 51
splines 334–335
SP, see symmetry property
Srivastava, RM 518
stabilators 21
stability and control (S&C) analysis 536, 538
Stability And Control Configuration (SACCON) model 504–505, 504
cognitive sampling algorithm 527, 528–529
surface pressure distribution during a pull up manoeuvre 508, 508, 511
wind-tunnel testing 512, 512
stability-derivatives approach to virtual flight simulation 507–509
dynamic aerodynamic derivatives 509
static aerodynamic derivatives 508–509, 508
stability reference frame (SRF) 92
stall sizing lines, elimination of 430
Stalnov, O. 449, 451, 455
Stanton number 88
static ground effect (SGE) 203, 204
chord-dominated 203–228
static margin (SM) 21
static stability 20
Stemmer S10-VT motor glider 459
STOVL aircraft
pitchback instabilities 433
strain-induced blade twist 403
Straub, FK 404
strip theory 149
Strouhal number 560
structural strain 470
structural stress 470
SUBPLEX 323
subsonic flow 100
subsonic speeds 13
SUKE, see simplex unscented Kalman filter
SUMO 503
Sun, H. 319, 322
Sun sensor 634
supersonic flow 100
supersonic speeds 13
surface dielectric barrier discharge (SDBD) plasma actuator 554–555, 554
surface inclination methods (SIM) 85
surface-mounting of adaptive helicopter rotor blades 401
surface oil-film technique 195–196, 196
surrogate-based recurrence framework (SBRF) 318
surrogate model, for virtual flight simulation 514–522, 518–521, 519, 521
surrogate models 349
SVD, see singular value decomposition
swashplateless helicopter rotors 413–414
sweep angle effect 90
swept cylinder method 90
SWIBLI, see shock-wave-boundary-layer interactions
swishing noise 399
symmetry property (SP) utilization in constrained motion planning 587, 589
system identification of quad-rotors 698–699, 703–705, 704
of small unmanned helicopters 258
system identification method 283, 284, 297

\(t \)

tabular aerodynamic database 505–507, 506
size of 507

*tabular aerodynamic model, generation of 514–535
adaptive design of experiment 522–524, 523, 524
brute-force approach 514
cognitive sampling algorithm 524–527, 528–530
data analysis method 535
data fusion 527, 531, 532–534
dynamic derivatives, prediction of 531, 534–535
surrogate model 514–522, 518–521, 519, 521
Tahara, Y. 320
TAM, see three-axis magnetometer

tangential wall jets

DBD plasma actuator 558, 559
Tan, KC 329
Tantaroudas, ND 144
Tatossian, C. 319
Taylor’s hypothesis 155, 161
TCR, see Transonic Cruiser model
TDT, see Transonic Dynamics Tunnel
terrain modeling 589–590
terrain-related penalty function 591, 591
TFR, see transitional flow regime
Theil inequality constant (TIC) 715
Theodorsen, T. 149, 455–456
thermal mappings 59
thermal protection systems (TPSs) 49
Thermovision 900 LW camera 198
thin-airfoil theory 3
Thomas, JP 489
threats modeling 591–592
threat zone entrance penalty function 592
three-axis magnetometer (TAM) 618, 634
3-DoF model 585
thrust actuation, in variable-pitch
quad-rotor 682
thrust coefficient 324, 378
of variable-pitch rotor 683
thrust-to-weight ratio (T/W) 430
thrust-vectoring
flap 679–680, 681, 692–693, 693
quad-rotor 684–691
servo 679, 680
thrust-vectoring torques 687
Tilbury, D. 258
tilt-rotor UAVs 12
time-accurate computational fluid dynamics, for flight simulations 535–543, 537, 540–542
advanced mathematical models 536, 538
non-linear indicial functions 538–539
reduced-order model generation, cost of 540, 542–543
system identification and results 539–540, 540–542
Volterra series 538
time-delay control method 645
time-domain system identification, of quad-rotors 704
directional bare-airframe model 716
linear velocity reconstruction 707
longitudinal bare-airframe model 716
reconstruction of lateral body-axis acceleration 708
vertical bare-airframe model 717
time-domain verification, of quad-rotors 705, 715, 718
of lateral bare-airframe model 715
tip anhedral 374–375, 375
tip-path-plane (TPP) rotor 264–265, 264
tip-sweep effects 379, 379, 380–382
Tischler, MB 715
Toffolo, A. 332
Tomei, P. 646
torque coefficient 324, 385, 387, 387, 389, 393
Torres, AJC 547
TPP, see tip-path-plane rotor
trailing-edge flaps 403, 403
servo effect of 404
trailing-edge stallers 456
transitional flow conditions 99
transitional flow regime (TFR) 67
translated flight of quad-rotors 677, 677
translational equations of motion 273–274, 274
Transonic Cruiser (TCR) model 504, 505
cognitive sampling algorithm 527, 530
off-the-shelf algorithm 522, 524
wind-tunnel testing 512, 512
Transonic Dynamics Tunnel (TDT) 479, 481
transonic flow 100
Trex-250 helicopter 257–281
Trex-700 helicopter 260
‘trial and error’ approach 278
trimability envelope 584–585, 585, 586
trim-maneouvre library, organizing 582–589
manoeuvre trajectories, generation of 587, 587–589
modified PSO algorithm 583–584, 585
symmetry property, utilization of 587, 589
trimability envelope 584–585, 585, 586
trim states, forming 585–587, 586
UAV trim problem 582–583
trim states (TSs) 578, 592–593
forming 585–587, 586
turbulent flows 88
two-cell, thin-walled beam 410
T/W, see thrust-to-weight ratio
Tyrrell-02 airfoil 203
u
UAS, see unmanned aerial system
UAVs, see unmanned aerial vehicles
UCAV 1303 Delta-wing configuration
aerodynamics of 40–42
flow structure 41
plasma actuators, flow structure modification 42–44
steady and unsteady 41–42
UH60-A helicopter 314
UKE, see unscented Kalman filter
UM/VABS 415
under-actuation of multi-and quad-rotors 670
Universita di Bologna 12
unmanned aerial system (UAS) multirotor, see multi-rotors
unmanned aerial vehicles (UAV) aerodynamics, adaptive wing technology 10–12
aerodynamics, emerging technologies in 31–32
aeroelasticity 9
airfoils for UAVs 4–6
Bell Eagle Eye 12
canard aircraft, flight dynamics 35–40
categories and configurations 1–2
characteristics of 581
classification of 579, 579
closed-loop active flow control for 449–461
experimental facility 183
fixed-wing, chord-dominated ground-effect aerodynamics of 201–253
flight regimes and Reynolds number (Re) 3–4
flight stability and control of, see flight stability and control, of UAVs
flow structure modification, using plasma actuation 547–573
flow visualization 195–198
force and moment measurements 183–192
HARVee, dual tilt-wing 12
helicopter and Quad rotor UAVs 9–10
high-lift devices 8–9
hybrid aircraft 12–13
KARI and the BIROTAN, Smart UAV 12
Kutta–Joukowski theorem 18
mean camber line 17–18
missions of 579
modeling of 579–582, 580
NACA 2414 airfoil 17–18
plasma actuators, flow structure modification 42–44
rotary-wing 12
rotor blade tip aerodynamics 33–35
simulation of 579–582
and stealth compromises 32–33
theoretical aerodynamics 2
Tilt-rotor 12
transonic and supersonic flight regimes 13
trim problem 582–583
UCAV 1303 delta-wing configuration, aerodynamics of 40–42
wind tunnel and CFD comparisons 192–194
wind tunnel testing and computational fluid dynamics 14–16
wind tunnel testing, in Diana aircraft 181
wing geometry 6–7
wingtip devices 7–8
unmanned re-entry vehicles, aerodynamic performance analysis aerodynamic charcterization 92–99
aerothermal data 49
Atmospheric Re-entry Demonstrator 49–50
CFD-based aerodynamic results 117–138
design approach and tools 78–91
European Experimental Reentry Testbed 49–50
experimental flights in low Earth orbit 49
flight scenario and flow-regime assessment 64–66
flying test beds, types of 49–62
high-temperature real-gas regime 68–71
Intermediate Experimental Vehicle 49–50
laminar-to-turbulent transition assessment 71–77
low-order methods 100–117
primary objective of 49
rarefied and transitional regimes 67
Scirocco plasma wind tunnel 49
vehicle description 62–64
viscous-interaction regime 67–68
unscented Kalman filter (UKF) 283, 284, 619
modified 619–620, 621, 622, 627
simplex 619
unsteady Reynolds averaged Navier–Stokes (URANS) equations 348, 535
upwash–downwash effects 37
URANS, see unsteady Reynolds averaged Navier–Stokes equations
US Naval Research Labs 466
US Orbiter 97

V
Vallespin, D. 522, 531
Vanderplaats, GN 321, 324
VareEze aircraft 36
variable objective constrained motion planning 602–607
MODPSO algorithm, illustration of 604–605, 605
MODPSO performance evaluation 607
multi-objective functions 602–603, 603
Pareto fronts, for segment of trajectory 607, 608
simulations and results 606–607, 606, 607
variable-objective strategy 604
variable pitch propeller (VPP) angle 683
variable-pitch propellers, multi rotors with 679, 680
variable-pitch quad-rotors 680–683, 681, 682
C_t at different VPP angles 683
with internal combustion engines 684
variation-based optimal control schemes 578
Vartio, EJ 479
velocity vector saturation 583
vertical direction manoeuvring of quad-rotors 676
vertical take-off and landing (VTOL) aircraft 10, 201
launch, recovery, high-speed dash 428–430, 428–430
pitchback instabilities 433
rotor UAVs 423, 424, 428
vertical velocity 278
Vigilante
rotary UAVs, active-twist rotor control in 408
VIP, see viscous interaction parameter
VIR, see viscous interaction regime
virtual flight simulation, using computational fluid dynamics 495–543
adaptive design of experiment 522–524, 523, 524
aerodynamic predictions, sources of 509–514, 510–513
aircraft equations of motion 499–500, 499
brute-force approach 514
challenges to 500–504
cognitive sampling algorithm 524–527, 528–530
data analysis method 535
data fusion 527, 531, 532–534
dynamic derivatives, prediction of 531, 534–535
flight simulation 496–498, 497
high-fidelity analysis, for conceptual aircraft design 498, 503
stability-derivatives approach 507–509, 508
surrogate model 514–522, 518–521
519, 521
tabular aerodynamic database 505–507, 506
tabular aerodynamic model, generation of 514–535
time-accurate 535–543, 537, 540–542
viscous interaction parameter (VIP) 68
viscous interaction regime (VIR) 68
VKTG, see Von Kármán Turbulence Generator
Volterra series 538
von Kármán, T. 155, 163, 172, 456
Index

Von Kármán Turbulence Generator (VKTG) 155–156
von Karman vortices 123
Vorobiev, AN 548
vortex break down (VBD) 42
vortex panel method 3
vortex–surface interactions 37
vortex–vortex interactions 37
Voyager aircraft 36
VSTOL aircraft, pitchback instabilities in 433
VTDirect method 328
VTOL, see vertical take-off and landing aircraft
Vytla, Vy 328

W
Wagner, H. 455
Wagner function 14, 151
Walsh, JL 316, 324, 325, 326
Wang, Y. 465, 478, 479
Watanabe, T. 322
wave drag 13
Wei, W. 709
Wespe 431
Whitcomb winglet 8
White turbulent method 88
Wiederhold, O. 455
WIG, see wing-in-ground
Wilke’s mixing rule 90
Willcox, K. 319
Williams, DR 457
Williams, RD 459
wind axes coefficient forces 190
wind reference frame (WRF) 92
wind tunnel model, for flow structure modification using plasma actuation 562–564, 563, 563
wind tunnel testing 512, 512
in Diana aircraft and CFD comparisons 192–194
dimensions 182
experimental facility 183
flow visualization 195–198
force and moment measurements 183–192
high-speed fixed-wing aerial target drone 182
for flow structure modification using plasma actuation 561–562, 562
wing-in-ground (WIG) 203
wing theory 692
wing-warping concept 12
Wood, RM 550
Woodgate, M. 309
Wright Flyer aircraft 36
Wright, JR 479
Wright, PK 476

X
XBeep protocol 697
XFOIL programme 14, 15
XFV-1, pitchback instabilities in 434
Xiao, Bing 645–664
Xiaoping, X. 11
XQ-138 425–426, 426, 427
changes in aircraft sizing chart 430
mission profile of 428, 430, 430
X-34 vehicle 97

Y
Yamaha R-50 helicopter 258
Yang, S. 11
yaw dynamics 274–275, 275
yawing moment 21, 93
yaw rate 278
yaw rotation 676
Yilmaz, TO 41

Z
zero method 284
Zhang, TP 646
Zhang, YP 645, 646, 651
Zhou, J. 646, 652