INDEX

Note: Page numbers in *italics* refer to Figures; those in **bold** to Tables.

ABMA *see* American Boilers Manufacturers Association
absolute pressure, 11
accumulated dry steam, 19
accumulated flash steam, 19
3A food grade quality, 51
air binding, prevention, 255
air blanketing, 159
Alufer heat transfer technology, 209, 210
American Boilers Manufacturers Association, 186
American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 50–51
American Society of Mechanical Engineers, 49–50, 71, 81, 84, 129, 144, 154, 158, 163, 181, 227, 258, 281
ASHRAE *see* American Society of Heating, Refrigerating, and Air-Conditioning Engineers
ASME *see* American Society of Mechanical Engineers
ASME construction and hydro testing documentation, 84
ASME P-Data Forms *see* ASME construction and hydro testing documentation
atmospheric tanks, 156, 158, 159
auxiliary low water cutoff, 85, 87, 224
back pressure turbine estimating power output, 197–198, 199 vs. PRV, 197, 198
balanced pressure thermostatic-type trap, 136–137, 137
BD *see* boiler blowdown
BEP *see* boiler external piping
Bernoulli’s theorem, 141–142
bimetal-type steam trap, 138, 139
biomass fuel water content reduction, 219, 221, 221
blowdown heat recovery units, 214–216, 215, 216
blowdown systems
 automatic conductivity-based blowdown system, 90
 boiler, 90, 91
gauges and sight glass, 90–91
 surface and bottom blowdowns, 90
 suspended and dissolved solids, 89–90
BMS see building management system boiler
 commissioning, 243–244
 input, output, and efficiency, 239–241
 output performance field test, 242
 performance test, 241–242
 troubleshooting see troubleshooting, steam generator
boiler blowdown
 automatic vs. manual controls, 181
 best operating practices, 181
 cycles of concentration, 181–182, 182
 rate, determining, 181–183
 suspended and dissolved solids, 180
boiler efficiency
 combustion efficiency, 207, 208–211
 fuel to steam efficiency, 207, 211–212
 thermal efficiency, 207, 211
boiler external piping, 84
boiler heat balance, 207
boiler layup in standby condition
 boiler filled with treated water, 288
 draining and drying, 288–289
 intermittent standby, 287–288
boiler room utilities
 combustion air, fuel, and efficiency, relationship, 62
 combustion air requirements, 61
 comparative data, fuels, 61
 cycles of concentration, 64–65
 electrical power, 66
 fresh air opening designs, 63
 fuel supply, 65
 water usage, 64
boiler safety checks
 combustion air switch, 227
 fuel pressure switches, 227
 high-pressure cutoff switches, 225–227
 low water alarm cutoff signal, 225–226
 safety relief valves, 227
boiler sequencing, 101–102, 102
boiler soaking procedure, 289–290
boiling, formation of steam boiler, 10
 ideal gas law, 11–13
 latent heat, 9
 pounds per square inch gauge or psig, 11
 pressure and boiling, 11
 psia or pounds per square inch absolute, 11
 saturated steam, properties of, 12
 saturation temperature, 9
 sensible heat, 9
 water and steam enthalpy curve, 10
boiling process
 film boiling, 13, 14
 latent and sensible heat vs. pressure, 16
 nucleate boiling, 13, 14
 steaming, 14–16
boil out procedure, 231
 for boiler only, 286–287
 for entire steam system, 287
BPT see back pressure turbine
building management system, 53, 66, 84
 burners, 97–98
caustic embrittlement, 177
chemical feed systems
 boiler fouling and scaling control, 184
 boiler pH/alkalinity control, 183
 condensate pH control, 184
 oxygen scavenger, 183
 steam system chemical treatment scheme, 183, 184
chemistry limits, boiler water, 185, 186
CHP see combined heat and power
 combined heat and power, 219, 221
 combustion air preheating, 213–214
 combustion (burner) control
 air density compensation, 97
 combustion control sequence for gas-fired boiler, 96, 96
 flame programmer, 94, 95
 gun style burner, 97–98, 98
 mesh-style low-emissions-type, 98, 98
 oxygen trim, 97
 prepurge, 96
combustion efficiency
vs. boiler firing rate, 211, 211
boiler pressure vessel surface area, 209, 210
data
for natural gas-fired boilers, 274
for number 2 fuel oil, 274–275
for wood, 40% moisture, 275–276
excess air, 208
flue gas analysis vs. excess air, 208, 209
PLC combustion, 209
principles, 208
temperature difference, 210
thermal conductivity, 210
commissioning
condensate and feed water system, 257–258, 259
precommissioning, 237–238
safety concerns or equipment accessibility, 236–237
startup vs., 235
steam delivery system
condensate trapping/draining, 255
control valve selection, 254–255
steam distribution piping, 253–254
undersized and poorly drained steam header, 254
venting, 255
steam generator, 243–244
condensate and feed water system
chemical injection, chemicals, 258
condensate collection, 257–258
deaerator, maintenance, 259
discharge pressure, 261
efficiency, 217, 219, 220
excessive feed water pump cycling, 259
internal inspection, 260
oxygen levels, deaerator, 261
3–5 psig pressure, 260
surge tank, 260–261
troubleshooting, 259–261
water level, 259–260
water level, DA, 261
condensate collection
electric condensate return system, 148, 149
pressure motive condensate pump, 150, 151
pressure motive pump installation requirements, 150–153
pumped condensate return line installation, 153
steam-using condensate line sizing chart, 135, 135
drain lines to traps, 133, 133
trap discharge lines, 134
condensate recovery system
condensate collection, 147–153
condensate, definition, 131
condensate line sizing, 133–135
flash steam utilization, 144–147
fundamental purposes, 131
steam trap applications, 136–144
subsystems, 131–132, 132
surge tank application, 153–154, 154
condensate trapping/draining, 255
condensation of steam
condensate, 21
rate of condensation, 20
typical jacketed kettle steam application, 20
water logging, 21
conduction, 26
conduction type heat transfer
boiler water, 28–29
relative thermal conductance, 28
thermal conductivity, 26
through metal wall with films attached, 29
undesirable conduction, 29
control valves
direct acting valves, 116–117, 118, 119
pilot-operated valve, 117, 120
pneumatic operated steam control valve, 117, 119
pressure, 115–116, 116
pressure reducing stations, 117, 121, 121, 122
selection, 254–255
temperature, 116, 116
convection, 29
convection-type heat transfer
coefficients, common fluids, 30
convection, 29
effect of airflow vs. heat loss over hot steel surfaces, 30
convection-type heat transfer (cont’d)
equation for, 30
forced convection, 29
high-turndown boiler burners,
consequence, 31
surface flow, 29
waterside of pressure vessel, 31
corrosion control, 171
chemical and mechanical deaeration, 179
general corrosion or rusting, 177, 180
localized corrosion, 177
magnetite, 177, 179
red oxide (hematite), 177, 178
stress corrosion, 177
water chemistry parameters, 179

dCS see distributed control system
deaeration, feed water system
chart, 157
elimination of dissolved gases, 156–157
mechanical deaeration, 155
oxygen corrosion, 157
oxygen solubility vs. temperature, 156,
156–157
deaeration systems, 174–175
differential pressure transmitter type, 85
distributed control system, 53
DI systems see deionization systems
DPT see differential pressure
transmitter type
dry saturated steam, 43–44
economizers, 213–214, 214
EER see effective evaporation rate
EF see emissions factor
effective evaporation rate, 57, 64–65,
181–182, 216
electric boilers
advantage, 80
clean steam generator system, 81
combustion section of a fuel-fired
boiler, 79
electrode-type electric boilers, 79–80
high-voltage electrode boiler, 80
resistance or electrode type, 78
resistance-type electric boilers, 78
electric condensate return system, 148, 149
electronic controller (flame programmer), 83
emissions factor, 101
emissivity coefficient (ε), 25
environmental considerations, boiler
room
boiler breeching and stack sizing
guidelines, 59
boiler room temperature control, 59
flue gas handling, 56–57
hot water discharges, 57
permits, 55
space concerns, 55
steam and gas line venting, 60
steam boiler venting system, 58
venting scheme, 57
fatigue corrosion, 177
feed water system, 155, 156
daeration, 155–157
definition, 155
piping, 167–169
pumps, 162–167
tanks, 158–162
film boiling, 13, 14
flame programmer, 83, 94, 95
flash steam formation, 16–18
calculation, 18
percent flash steam, 17
flash steam utilization
flash steam recovery, 147, 147
flash tank design, 144–145, 145
flash tank design graph, 145–146, 146
float and lever type, 138–139, 140
float and thermostatic types, 139, 140
fossil fuel-fired boilers
cast iron boilers, 73
cast iron sectional boiler, 76
dryback versus wetback boiler
configuration, 73
firebox boilers, 71
firetube boilers, 71
flexible watertube (bent-tube)
boilers, 73
industrial watertube boiler, 71, 71
model 4WI-wet back design, 73
Scotch marine, classic horizontal firetube
boiler, 70–73
vertical tubeless boilers, 75
watertube boiler design, 75
XID tube design, 72
fouling control, 171, 176
fuel delivery
 boiler burner oil delivery system, 92–93, 93
 burner fuel/air flow control systems, 93–94, 94
 fuel trains, 91, 92
 PLC-type controls, 93
 wood chip fuel feed system, 94, 95
fuel to steam efficiency
 boilers’ efficiency, 211–212
 principles, 208
Hartford loop system, 192, 192
head equivalent from vapor pressure, 162–163, 163
heat flux
 concept, 38
 definition, 37
 scaling, 38
heat recovery systems, 2, 207, 215
heat transfer
 fluids, temperature ranges, 3
 properties, 3
 in steam system, 24
 types of, 24
heat transfer equations, 31
 general heat transfer equation, 31
 heat transfer applications, 33
 overall heat transfer coefficient (U), 31–33
high-pressure closed steam system, 189, 189–190
HMI see human machine interface screen
human machine interface screen, 102
Hvp see head equivalent from vapor pressure
hydro heater, steam
 design considerations, 199–200
 flow of process fluid and steam, 199, 200
 function, 198, 199
 system integration piping diagram, 199, 201
ideal gas law, 11–13
 pressure and volume, inversely related, 12
 specific volume of steam, 12
 steam pressure vs. volume curve, 13
ideal steam generator, features, 68–70
insulation practices
 daily inspections, 229
 external/internal, 228
 monthly inspections, 229
 system shut down inspections, 229–230, 230, 231, 232
insulated boiler PV
 ASME code vessels, 84
 boiler external piping, 84
 level control system, 85–86
 maximum allowable working pressure, 84
 modulating level controls, 85
 modulating operating pressure control system, 86–87
 on/off water level controls, 85, 86
 PID see proportional, integral, and differential type
 pressure controls, 86–87
 water level controls, 85
intergranular stress corrosion cracking, 177
latent heat of vaporization, 9
layup practices
 dry layup, 231, 233
 wet layup, 231
liquid expansion thermostatic steam trap, 137–138, 138
LMTD see logarithmic mean temperature difference
logarithmic mean temperature difference, 33
low emission burners
 boiler sequencing, 101–102, 102
 catalytic conversion, 100
 emissions factor, 101
 flame temperature reduction method, 99–100
 front-end technology, 100
 human machine interface screen, 102
 LoNOx, 98
 NOx control technologies, 99, 99
 NOx formation, 98–99
 parts per million (ppm) concentration, 100–101
 standard gas burners, 99
low-pressure steam systems
 Hartford loop system, 192, 192
 with high returns, 190, 191
 pressure-reducing valves, 191
magnetic field-scale prevention concept, 175, 176
maintenance log program, 284–285
maintenance practices
 corrective maintenance, 227–228
 predictive maintenance, 228
 preventative maintenance, 228
MAWP see maximum allowable working pressure
maximum allowable working pressure, 67, 84–85, 121, 158
mean temperature difference (ΔT_m)
 heat capacities, common materials, 36
 heat gain/loss equation, 36
 for a steam boiler, 34–35
 steam system designers, 35
 steam to process fluid heat exchanger, 35
 surface area (m), 35–37
 temperature profile across a steam source heat exchanger, 34
Morrison tube, 71
multiple-boiler high water protection design, 195–197, 196

National Fire Protection Association, 50
natural gas-fired boilers, combustion efficiency data, 274
natural gas line capacity, 277–278
net positive suction head, 162
net positive suction head available, 162
net positive suction head required, 162
NFPA see National Fire Protection Association
NFPA 54, gas-fired equipment categories, 56
NPSH see net positive suction head
NPSHA see net positive suction head available
NPSHR see net positive suction head required
nucleate boiling, 13, 14

oil line capacity table, 278
operations, maintenance, and inspection guidance
 boiler layup in standby condition, 287–289
 boiler soaking procedure, 289–290
 boil-out procedure, 286–287
 maintenance log program, 284–285
 safety relief valve inspection/verification test, 286
 steam boiler daily log sheet, 283
 water usage method, 290–291
overall heat transfer coefficient (U), 31–33
packaged boiler concept, 83–84, 84
 blowdown systems, 89–91
 insulated boiler PV, 84–89
PCVs see pressure control valves
PID see proportional, integral, and differential type
piping
 feed water system
 feed water piping scheme, 168
 feed water pump discharge pipe size, 168
 piping components, 169
 recommended water flow velocities, 167, 168
 steam distribution, 253–254
power generation steam systems, 4, 5
precommissioning checklist
 blowoff separator installation, 294
 boiler installation, 293
 condensate system installation, 294
 feed water tank installation, 293–294
 steam delivery system installation, 294
 water treatment system installation, 294
 installation specifications and system performance, tools, 238
prior to commissioning, informations, 237–238
pressure control valves, 115–116
pressure motive condensate pump, 150, 151
pressure motive pump installation requirements
 closed loop systems, 152–153
 vented or open systems, 150–151, 151
pressure reducing valves, 2, 40, 117, 121–122, 191
process steam system
 condensate and feed water system, 7
 efficiency, combustion system, 7
 fuel handling and combustion system, 7
 steam delivery system, 7
 steam generator or boiler, 7
 subsystems, 6
 water treatment system, 7
proportional, integral, and differential type controller setup, 88–89
electronic signal, 87
on/off pressure switches, 88
pressure control system, 88, 89
PRV see pressure reducing valves
pumped condensate return line installation, 153, 154
pumps, feed water system
 ASME code for steam boilers, 163–164
cavitation, 163
feed water/level control schemes, 164, 165
Hvp vs. temperature, 162–163, 163
net positive suction head, 162
NPSHA and NPSHR, 162, 163
pump curve, 163, 164
pump sizing, 166–167, 167, 168
variable-frequency drive motor, 164
pump trap, 150
radiation type heat transfer
 convection, 26
 process, 24
 radiation energy, 25
 thermal radiation, 23
undesirable radiation heat transfer, 25–26
relative thermal conductance, 28
reverse osmosis/demineralized water, 171
reverse osmosis system, 175, 175
RO/DI see reverse osmosis/demineralized water
RO system see reverse osmosis system
running load, 104, 106, 107, 133
rusting, 177
safety relief valves, 60, 129, 129
 inspection/verification test, 286
 set point, 223
saturated steam table, 269–270
saturated water table, 44, 273
saturation temperature, 9
scale control, 171
deionization systems, 174–175
external control technologies, 174
hardness salts, 172
magnetic field, 175, 176
removal of calcium and magnesium, 174
reverse osmosis system, 175, 175
softening, 174
sensible heat, 9, 12, 14–15, 18, 194–195
shutdown and startup practices
 hot boiler, isolation, 224
 safety relief valve set point, 223
 soaking, 225
 standard operating procedures, 223
 steam header dump valve application, 223, 224
 warm-up, 225
 work orders, 223–224
 soaking, 225, 289–290
 solid fuel-fired boilers
 biomass boilers, 76, 78
 vertical tubeless boiler, 77
 SOP see standard operating procedures
 spray-type feed water deaerator, 158–159, 160
 SRV see safety relief valves
staged combustion, 99–100
standard operating procedures, 223
starting load, 103
steam
 definition, 1–2
 easy to control, 2–3
 energy fluid, 1
 heat transfer fluids, temperature ranges, 3
 heat transfer properties, 3
 intrinsically safe, 2
 power generation steam systems, 4, 5
 process steam system, 4, 5, 6–7
 properties, 2
 saturation point, 1
 steam heating system with pumped returns, 4
 sterile, 2
 system types, 3–5
 use of, 1
steam accumulation and storage
 accumulated dry steam, 19
 accumulated flash steam, 19
 boiler depressurization rate, 18
steam accumulators
 autoclave steam demand, 122, 123
 autoclave steam flow, 124, 125
 back pressure regulator, 122
 dry and wet accumulator, 122, 123, 124, 125
 flash steam charts, 124
 rapid boiler depressurization, 121
steam boiler daily log sheet, 283
steam classifications
 clean or pure steam, 44–45
 dryness fraction, 44
 dry saturated steam, 43
 standard carbon steel boiler, 45
 wet steam, 44
steam delivery system
 banging noises, piping, 256
 commissioning, 253–255
 condensate trapping/draining, 255
 control valves, 115–121
 control valve selection, 254–255
 distribution piping, 253–254
 efficiency, 217, 218
 excessive steam line pressure fluctuations, 255–256
 product heat exchanger, 256
 sensing equipment, 126
 steam accumulators, 121–124
 steam control valve, 256
 steam distribution piping, 104–115
 steam filtration, 124–126
 steam flow, 103–104
 stop and safety valves, 127–130
 troubleshooting, 255–256
 venting, 255
 whistling noise, steam lines, 255
steam discharge mufflers, 202–203, 203
steam distribution piping
 allowance for pressure losses
 Babcock’s equation, 111
 expansion coefficient, 115
 higher pressure, advantages, 114
 sizing steam line pressure drop, 111, 113
 allowances for pipe expansion, 115
 drip leg running loads, 106, 107
 heat transfer temperature, 104
 main steam piping diagram, 104, 104
 pipe sizes, 106, 110–111
 schedule number, 106, 108–109
 steam distribution designs, rules, 104–105
 steam line draining, venting, and orientation, 105
 steam line sizing chart, 110, 112
 steam velocities and pressure drops, 110, 111
 undersized/oversized piping, 110
 steam main drip leg design, 105–106, 106
steam filtration
 steam filters, 126, 127
 steam separator design, 126, 126
 steam separators, 124, 126
 steam strainers, 124
steam fire-extinguishing systems, 2
steam flow
 running load, 104
 starting load, 103
 steam stop valve, 103
steam generator, 240
 blowdown controls, 244
 boiler/burner controls, 243
 boiler input, output, and efficiency, 239–241
 boiler performance test, 241, 242
 boiler-type comparisons, 69
 commissioning, 243–244
 ideal steam generator, 68–70
 level control system, 244
 maximum allowable working pressure, 67
 operating pressure, 67
 performance test procedure, 242–243
 pressure control system, 243
 steam generator types, 70
 troubleshooting, 244–251
steam generator selection, boiler room
 ASME codes, 49
 building management system, 53
 codes and standards, 49–53
 combustion control profiles, 52
 distributed control system, 53
 regulatory requirements, 49
 sample ASME product certification nameplate, 50
 steam load profile, 51–53, 52
 steaming, actual start-up period, 14
 steam mains, guide for capacity of, 279–281
steam poor quality, consequences
 damage system equipment, 40
 overtaxation of boiler feed equipment, 40
 poor heat transfer, 40
 product contamination, 40
steam quality
 carryover, 39
 cause and cures
 boiler design, 41
 drip leg functionality effects, 43
 pressure management effects, 41
 rapid boiler depressurization, effect of, 43
 recommended steam nozzle size, 42
 steam exit velocities, 41
 water chemistry influence, 43
 measuring
 conductivity or chloride ion concentrations, 45
 simple steam purity measurement system, 46
steam system applications, 187, 188
 high-pressure steam
 with condensate returns, 195, 195
 with high returns, 189–190
 with little or no returns, 192–194, 193
 low-pressure steam
 with high returns, 190–192, 191
 with little or no returns, 192–194, 193
steam system design checklist
 blowdown system considerations, 298–299
 boiler design specifications, 297
 boiler room design considerations, 297–298
 burner/input requirements, 297
 condensate collection system considerations, 299
 feed water tank design considerations, 298
 steam delivery system considerations, 299
 steam load, 297
 water treatment considerations, 299–300
steam system efficiency
 biomass fuel water content reduction, 219, 221
 blowdown heat recovery units, 214–216
 boiler efficiency, 208–212
 boiler heat balance, 207
 boiler internal cleanliness, 216–217, 218
 combustion air preheating, 213
 condensate and feed water system efficiency, 217, 219
 economizers, 213–214, 214
 performance improvements, 205, 206
 standing pilot option, 213
 steam delivery system efficiency, 217
 system heat balance, 205, 207
steam system performance considerations
 economizers, 54
 emissions control, 54
 local or remote boiler control, 54
 redundancy, 54–55
 startup to steam time, 53
 steam quality, 55
 steam system capacity, 53
steam trap applications, 255
 air binding, 136
 float and lever type, 136–139
 inverted bucket type, 140–141, 141
 open top bucket type, 139–140
 thermodynamic group, 136
 required information, 142–144
 steam trap selection flow chart, 143, 144
 thermodynamic disc type, 141–142
steam trap applications (cont’d)
thermostatic group, 136
- balanced pressure type, 136–137, 137
- bimetal-type steam trap, 138, 139
- liquid expansion thermostatic steam trap, 137–138, 138

steel pipe properties, 276–277
stop and safety valves
- boiler relief valves, installation, 129, 130
- globe and gate valve designs, 127, 128
- safety relief valve, 129, 129
- stop check valve cross section, 127, 128

superheated steam
- condensation of superheated steam, 46–47
- desuperheaters, 47, 48
- PRV, 47
- steam trapping of equipment, 48
- superheaters, 46
- table, 271–272

superheaters, steam, 200–202
- electric steam superheater skid, 201, 202
- evaluation, 202
- hot oil systems, 200–201
- superheated steam, 195, 195

surge tank application, 153–154, 154
system heat balance, 205, 207

tanks, feed water system
- atmospheric, 158, 159
- feed water tank sizing, 160
- spray-type feed water deaerator, 158–159, 160
- tray-type feed water deaerator, 159, 161

TCVs see temperature control valves
TDS see total dissolved solid limits
temperature control valves, 116
thermal conductivity, 26
- common materials, 27
- relative thermal conductance, 28
thermal efficiency, 207, 211, 216, 250
thermal radiation, 23, 25
thermodynamic disc type, 141–142, 143
total dissolved solid limits, 176
total suspended solid limits, 176
tray-type feed water deaerator, 159, 161

troubleshooting
- approach, skills, 236

condensate and feed water system, 259–261
steam delivery system
- banging noises, piping, 256
- excessive steam line pressure fluctuations, 255–256
- product heat exchanger, 256
- steam control valve, 256
- whistling noise, steam lines, 255
steam generator
- air switch, 245
- air-to-fuel ratio, 246
- barometric damper, 246
- burner adjustment, 251
- corrosion, 250
- depressurization, 247
- feed water pump, 248
- flame failure, 245
- high carryover, 249–250
- “howling,” 246
- idle boiler, 249
- low water, 248, 249
- on/off switch, 244–245
- pressure, 247
- pressure control settings, 245–246
- stack analysis, 246–247
- stack temperature, 250–251
- steam accumulator, 247
- steam quality, 249–250
- vibrations, 251
- water level oscillations, 249

TSS see total suspended solid limits

unfired steam generators, 81

variable-frequency drive motor, 85, 164
venting, 49–50, 55–58, 60, 105, 130, 138–140, 142, 153, 159, 174, 253, 255
VFD see variable-frequency drive motor

water chemistry, basic
- boiler scale formation, 172
- chemical treatments (internal treatment), 172
- city water, 171
- components, 172
- groundwater, 171
nonchemical methods (external treatment), 172
RO/DI water, 171
types and chemistry, 171, 173
water logging, 21, 36, 134, 190, 192
water softener systems, 174, 174
water treatment equipment
 setting up, 263–264
 troubleshooting, 264–265
water treatment system troubleshooting
 calcium and magnesium levels, 265
calculus and magnesium levels, 265
chemical level, 265
excessive sludge buildup, 265
high carryover, 264
internal inspection, 264
low or high pH, boiler water, 265
water level bouncing, 264
water usage method
 performance test, 291
 prerequisites, 290–291
wet steam, 44, 117, 121, 126
wood chip fuel feed system, 94, 95