Contents

Foreword xiii
Preface xv
List of Contributors xix

1 The Microgrids Concept 1
 Christine Schweegerl and Liang Tao
 1.1 Introduction 1
 1.2 The Microgrid Concept as a Means to Integrate Distributed Generation 3
 1.3 Clarification of the Microgrid Concept 4
 1.3.1 What is a Microgrid? 4
 1.3.2 What is Not a Microgrid? 6
 1.3.3 Microgrids versus Virtual Power Plants 7
 1.4 Operation and Control of Microgrids 8
 1.4.1 Overview of Controllable Elements in a Microgrid 8
 1.4.2 Operation Strategies of Microgrids 10
 1.5 Market Models for Microgrids 12
 1.5.1 Introduction 12
 1.5.2 Internal Markets and Business Models for Microgrids 15
 1.5.3 External Market and Regulatory Settings for Microgrids 19
 1.6 Status Quo and Outlook of Microgrid Applications 22

References 24

2 Microgrids Control Issues 25
 Aris Dimeas, Antonis Tsikalakis, George Kariniotakis and George Korres
 2.1 Introduction 25
 2.2 Control Functions 25
 2.3 The Role of Information and Communication Technology 27
 2.4 Microgrid Control Architecture 28
 2.4.1 Hierarchical Control Levels 28
 2.4.2 Microgrid Operators 31
 2.5 Centralized and Decentralized Control 32
 2.6 Forecasting 35
2.6.1 Introduction
2.6.2 Demand Forecasting
2.6.3 Wind and PV Production Forecasting
2.6.4 Heat Demand Forecasting
2.6.5 Electricity Prices Forecasting
2.6.6 Evaluation of Uncertainties on Predictions
2.7 Centralized Control
2.7.1 Economic Operation
2.7.2 Participation in Energy Markets
2.7.3 Mathematical Formulation
2.7.4 Solution Methodology
2.7.5 Study Case
2.7.6 Results
2.8 Decentralized Control
2.8.1 Multi-Agent System Theory
2.8.2 Agent Communication and Development
2.8.3 Agent Communication Language
2.8.4 Agent Ontology and Data Modeling
2.8.5 Coordination Algorithms for Microgrid Control
2.8.6 Game Theory and Market Based Algorithms
2.8.7 Scalability and Advanced Architecture
2.9 State Estimation
2.9.1 Introduction
2.9.2 Microgrid State Estimation
2.9.3 Fuzzy State Estimation
2.10 Conclusions
Appendix 2.A Study Case Microgrid
References
3.5 Development and Evaluation of Innovative Local Controls to Improve Stability

3.5.1 Control Algorithm

3.5.2 Stability in Islanded Mode

3.5.3 Stability in Interconnected Operation

3.6 Conclusions

References

4 Microgrid Protection

Alexander Oudalov, Thomas Degner, Frank van Overbeeke and Jose Miguel Yarza

4.1 Introduction

4.2 Challenges for Microgrid Protection

4.2.1 Distribution System Protection

4.2.2 Over-Current Distribution Feeder Protection

4.2.3 Over-Current Distribution Feeder Protection and DERs

4.2.4 Grid Connected Mode with External Faults (F1, F2)

4.2.5 Grid Connected Mode with Fault in the Microgrid (F3)

4.2.6 Grid Connected Mode with Fault at the End-Consumer Site (F4)

4.2.7 Islanded Mode with Fault in the Microgrid (F3)

4.2.8 Islanded Mode and Fault at the End-Consumer Site (F4)

4.3 Adaptive Protection for Microgrids

4.3.1 Introduction

4.3.2 Adaptive Protection Based on Pre-Calculated Settings

4.3.3 Microgrid with DER Switched off, in Grid-Connected Mode

4.3.4 Microgrid with Synchronous DERs Switched on in Grid Connected and Islanded Modes

4.3.5 Adaptive Protection System Based on Real-Time Calculated Settings

4.3.6 Communication Architectures and Protocols for Adaptive Protection

4.4 Fault Current Source for Effective Protection in Islanded Operation

4.5 Fault Current Limitation in Microgrids

4.6 Conclusions

Appendices:

4.A.1 A Centralized Adaptive Protection System for an MV/LV Microgrid

4.A.2 Description of the Prototype FCS

References

5 Operation of Multi-Microgrids

João Abel Peças Lopes, André Madureira, Nuno Gil and Fernanda Resende

5.1 Introduction

5.2 Multi-Microgrid Control and Management Architecture

5.3 Coordinated Voltage/var Support

References
5.3.1 Introduction 169
5.3.2 Mathematical Formulation 169
5.3.3 Proposed Approach 171
5.3.4 Microgrid Steady-State Equivalents 172
5.3.5 Development of the Tool 173
5.3.6 Main Results 174
5.4 Coordinated Frequency Control 178
5.4.1 Hierarchical Control Overview 178
5.4.2 Hierarchical Control Details 181
5.4.3 Main Results 183
5.5 Emergency Functions (Black Start) 186
5.5.1 Restoration Guidelines 187
5.5.2 Sample Restoration Procedure 189
5.6 Dynamic Equivalents 192
5.6.1 Application of Dynamic Equivalence Based Approaches to Microgrids 193
5.6.2 The Microgrid System Definition 194
5.6.3 Developing Microgrid Dynamic Equivalents 195
5.6.4 Main Results 200
5.7 Conclusions 202
References 203

6 Pilot Sites: Success Stories and Learnt Lessons 206
George Kariniotakis, Aris Dimeas and Frank Van Overbeeke
(Sections 6.1, 6.2)
6.1 Introduction 206
6.2 Overview of Microgrid Projects in Europe 206
6.2.1 Field Test in Gaidouromandra, Kythnos Microgrid (Greece): Decentralized, Intelligent Load Control in an Isolated System 208
6.2.2 Field Test in Mannheim (Germany): Transition from Grid Connected to Islanded Mode 218
6.2.3 The Bronsbergen Microgrid (Netherlands): Islanded Operation and Smart Storage 222
References 231

6.3 Overview of Microgrid Projects in the USA 231
John Romankiewicz, Chris Marnay (Section 6.3)
6.3.1 R&D Programs and Demonstration Projects 232
6.3.2 Project Summaries 236
References 248

6.4 Overview of Japanese Microgrid Projects 249
Satoshi Morozumi (Section 6.4)
6.4.1 Regional Power Grids Project 249
6.4.2 Network Systems Technology Projects 257
6.4.3 Demonstration Project in New Mexico 258