CONTENTS

Preface to the Second Edition

Acknowledgments

CHAPTER 1 Benefits of Electric Power and a History of the Electric Power Industry

1.1 Societal Benefits of Electricity 1
1.2 Origin of the Industry 2
1.3 The Development of the National Electric Power Grid 5
1.4 “The Golden Age” 8
 Blackouts and the Reliability Crisis 9
 The Environmental Crises—The Shift to Low-Sulfur Oil 10
 The Fuel Crisis—The Shift from Oil 10
 The Financial Crisis 11
 The Legislative and Regulatory Crisis 12
1.5 Global Warming Crisis and Concerns about Carbon Emissions 13
1.6 Restructuring, Competition, and the Industry Ownership Structure 13

CHAPTER 2 The Electric Power System

2.1 The Customers 16
2.2 Sources of the Electric Energy—Generation 17
2.3 The Delivery System 20
 Interconnections 24
 The Grid 24
Steam Cycle—Steam Turbines 69
Combustion (Gas) Turbines 70
Combined Cycle 71
Nuclear 72
Reciprocating Engines 73
Microturbines 74
Combined Heat and Power (CHP) or Cogeneration 74

5.4 Thermal Conversion: Nonfuel Heat Sources 74
 Geothermal 74
 Solar Thermal Generation 75

5.5 Mechanical Energy Conversion 75
 Hydroturbines and Hydropumped Storage 75
 Wind Turbines 77
 Distributed Generation and Other Sources 78

5.6 Renewable Technologies and Greenhouse Gas Emissions 79
 Supply-Side Options to Reduce Greenhouse Gas Emissions 79
 Financial Options to Reduce Carbon Emissions 83

5.7 Characteristics of Generating Plants 84
 Size 85
 Efficiency 87
 Availability 88
 Schedulable and Unschedulable Units 90

5.8 Capital Cost of Generation 90
5.9 Generator Life Extension 91
5.10 The Technology of Generation 91
 Synchronous Generators 91
 Variable Frequency and Direct Current Generation 92

5.11 System Needs and Evaluation of Intermittent Resources 93

CHAPTER 6 The Technology of the Electric Transmission System 97
6.1 Components 97
6.2 HVAC 98
 Overhead Lines 98
 Overhead Line Capability—Ratings 99
 Transmission Cable 101
 Cable Capacity 101
 Submarine Cables 102
 Superconducting Cables 102
6.3 Substations 102
 Substation Equipment 103
CHAPTER 7 Distribution

7.1 Function of Distribution 115
7.2 Primary Distribution Feeders 116
 Radial Systems 116
 Loop Systems 117
 Primary Network Systems 117
 Secondary Systems 117
7.3 Distribution Capacity 118
7.4 Losses 119
7.5 Distribution Facility Ratings 119
7.6 Metering 120
7.7 Control of Distribution Voltages 120
 Distribution Transformers 121
 Voltage Regulators 122
 Capacitors 123
7.8 Distribution System Reliability 123
7.10 Quality of Service 124
7.11 Design of Distribution Systems 125
7.12 Distributed Generation 125
7.13 Operation of Distribution Systems 126
7.14 Smart Grids and Microgrids 127

CHAPTER 8 Energy Storage and Other New Technologies 129

8.1 Energy Storage 131
 Benefits of Energy Storage to Generation 131
 Benefits of Energy Storage to Transmission and Distribution 132
8.2 Energy Storage Concepts and Technologies 133
 Mechanical Systems 133
 Thermal Energy Storage 136
 Chemical Energy Storage 138
 Batteries 138
 Hydrogen Energy Storage Systems 139
 Electrical Storage 140
 Superconducting Magnetic Energy Storage 141
 Power Conversion Equipment 141
8.3 Smart Grid 142
 Microgrids 146
8.4 New Nuclear Plant Designs 146
8.5 Carbon Sequestration and Clean Coal Technologies 150
8.6 Superconductors 153

CHAPTER 9 Reliability 155
9.1 Causes of Outages 155
9.2 Costs of Power Outages 157
9.3 Ways to Measure Reliability 158
9.4 Planning and Operating a Reliable and Adequate Power System
 Generation 164
 Transmission 165
 Distribution 166
9.5 Summary 166

CHAPTER 10 The Physical Network: The North American Electric Reliability Corporation (NERC) and Its Standards 167
10.1 NERC as Electric Reliability Organization 169
10.2 NERC Standards 171
 Functional Model 171
10.3 Development of Standards 176
 Reliability Principles 177
 Market Interface Principles 177
 Compliance with NERC Standards 179
 Other NERC Responsibilities 179
The Future 180

CHAPTER 11 The Physical Network: Operation of the Electric Bulk Power 181
11.1 Balancing Authorities 181
 Area Control 182
 Operating Reserves 184
11.2 Reliability Coordinators 184
11.3 Transmission Operators 186
 Power Transfer Limits 186
 Determination of Total Transfer Capability 187
 Parallel Path Flow and Loop Flow 188
 Reduction of Power Transfers—Congestion Management 189
 Ancillary Services 189
11.4 Voltage and Reactive Control 191
11.5 Emergencies 192
 Operating Emergencies 193
11.6 Information Exchange 194

CHAPTER 12 The Physical Network: Planning of the Electric Bulk Power System
12.1 Planning Standards 198
12.2 Generation Planning 198
12.3 Transmission Planning 200
 Transmission System Planning Studies 203
12.4 Least Cost Planning 205
12.5 The New Planning Environment 205
 Recent Transmission Projects 211

CHAPTER 13 The Regulatory Network: Legislation
13.1 Pricing and Regulation 213
13.2 Federal Legislation 214
13.3 Federal Utility Holding Company Act (PUHCA) 214
13.4 Federal Power Act 216
13.5 Other 1930 Federal Laws 219
13.6 Department of Energy Organization Act 219
13.7 Public Utility Regulatory Policies Act (PURPA) 220
13.9 The Energy Policy Act of 2005 (EPAAct05) 224
13.10 The Energy Independence and Security Act of 2007 227
13.11 Environmental Laws 227

CHAPTER 14 The Regulatory Network: The Regulators
14.1 The Regulators 231
 Federal Energy Regulatory Commission (FERC) 231
 Environmental Protection Agency (EPA) 233
 Department of Energy (DOE) 234
 Nuclear Regulatory Commission (NRC) 236
 Recent Federal Regulations 237
 FERC Actions after EPAAct92 237
 FERC Actions Implementing EPAAct05 242
 Market Manipulation 242
 Electricity Reliability and Infrastructure 242
 Expansion and Modernization of the Nation’s Electricity Grid 245
 Siting Major New Transmission Facilities 245
PURPA Reforms 246
Repeal of PUHCA—Mergers and Acquisitions 246
Market-Based Rates 247
Recent EPA Actions 248
State Regulatory Authority 249
State Utility Restructuring 250
Overall Regulatory Problems 251

CHAPTER 15 The Information, Communication, and Control Network and Security 253
15.1 Smart Grid 253
15.2 Financial and Business Operations 254
15.3 System Operations 255
15.4 Distribution Operations 255
15.5 Cyber Security 256
15.6 Nuclear Plant Security 259

CHAPTER 16 The Fuel and Energy Network 261
16.1 Resource Procurement 264
 Fuel Measurements 265
16.2 Fuel Transportation 265
16.3 Fuel Diversity 266
16.4 Fossil Fuels Used 267
16.5 Renewable Energy 269
16.6 Fuel Purchasing 271
16.7 Emission Rights 271

CHAPTER 17 The Business Network: Market Participants 273
17.1 Investment and Cost Recovery 273
17.2 The Changing Industry Structure 274
 Functional Unbundling 274
 Additional Utility Responses 275
 ISO/RTO Formation 275
 Holding Company Formation 275
 Power Plant Divestitures 277
17.3 New Structures 279
 Power Producers 279
 Independent Transmission Companies and Operators 279
 Impact of Restructuring on the Transmission System 280
 Distributors 280
 Power Marketers 281
17.4 New Corporate Ownership 281
CHAPTER 18 The Money Network: Wholesale Markets 285
18.1 The Energy Markets 286
 Standard Market Design (SMD) 288
 Locational Marginal Pricing (LMP) 289
18.2 Transmission 291
 Transmission Rights 291
 Physical Transmission Rights (PTRs) 292
 Financial Transmission Rights (FTRs) 293
 Wheeling and Customer Choice 294
 Contracts and Agreements 294
 Average System versus Incremental Costs 295
18.3 Customer Late Issues 294
 Construction Work in Progress (CWIP) 295
 Setting of Rates 296
 Rate Freezes 296
 Allocation of Costs and Economic Benefits 296
 Average Costs versus Incremental Costs 297
18.4 Market versus Operational Control 298
18.5 Market Power Issues 298
 Price Caps 299
18.6 The Future 299

CHAPTER 19 The Professional and Industry Organizations 301
19.1 The Professional Organizations 301
 The Institute of Electrical and Electronics
 Engineers (IEEE) 301
 The American Society of Civil Engineers
 (ASCE) 303
 American Society of Mechanical Engineers
 (ASME) and the American Institute of
 Chemical Engineers (AIChE) 304
 CIGRE 304
19.2 Industry Associations 304
 NEMA 304
 The Association of Edison Illuminating
 Companies (AEIC) 305
 The American Public Power Association
 (APPA) 305
 The Edison Electric Institute (EEI) 306
The Electricity Consumer Resource Council (ELCON) 306
The National Rural Electric Cooperative Association (NRECA) 307
Electric Power Supply Association (EPSA) 307
The Nuclear Energy Institute (NEI) 308

19.3 Public Interest Groups 308
The National Association of Regulatory Utility Commissioners (NARUC) 308
Environmental Defense Fund (EDF) 308
Public Citizen 309
Public Interest Law Project 309

19.4 Research Organizations 309
The Electric Power Research Institute (EPRI) 310
Other Research 310
The National Regulatory Research Institute (NRRI) 311
The Power Systems Engineering Research Center (PSERC) 311

Index 313