INDEX

Accessible treatments, 346, 347	Agricultural water use, 234, 240, 289–293, See also Irrigation
Acid precipitation, 179, 253	Albedo, 52
Activated sludge process, 316, 318–319	Algae to biogas processes, 327–329
Adaptive capacity, 154–155	Algal blooms, 78, 287, 337
Adaptive planning, 155, 157–158	Anaerobic digestion, 332–334, 346, 392–393, 409
Aerobic treatments, 29, 315–316, 346, 347	Anaerobic treatment and energy recovery reactors (ATTERRs), 351
African countries, 45, 50	Anaerobic treatments, 29, 316, 398–399
Aging infrastructure, 59–60	Ancient cities, water management in, 3, 8–12, 185
Agricultural water use, 234, 240, 289–293, See also Irrigation	Anoxic-oxic treatment processes, 331
Antidegradation rules, 82	Anoxic treatments, 29, 315–316
Arcadia Creek (Michigan), 436	Antidegradation rules, 82
Arizona, 231, 254, 450–453	Arcadia Creek (Michigan), 436
Asian countries, 41, 42, 45, 50, 237, 287, 384	Austria, 37, 55
Atlanta, Georgia, 229–230	Automobile use, 32–38, 40, 418–419
Augustenborg (Malmö, Sweden), 164–167	Bardenpho systems, 29
Australia, 50, 231, 254–255, 360	Basic water supply paradigm, 6, 8–9
Austria, 37, 55	Battery Park (New York City), 256, 509
Automobile use, 32–38, 40, 418–419	Beijing, China, 448, 456
Bardenpho systems, 29	Beijing Olympic Park, 289
Basic water supply paradigm, 6, 8–9	Berlin, Germany, 149
Battery Park (New York City), 256, 509	Best AVail able Treatmen t Economically Achievable (BATEA), 120
Beijing, China, 448, 456	Best management practices (BMPs): for Cities of the Future, 117–118
Beijing Olympic Park, 289	for diffuse pollution abatement, 29–31
Berlin, Germany, 149	for green infrastructure, 158–170
Best Available Treatment Economically Achievable (BATEA), 120	nature-mimicking, 115–116
Black water, 106, 278, 313	for release of stored water into receiving water, 266–267
in closed cycle water reclamation, 351	for runoff control, 30, 31, 110–113, 189–212
resource recovery from, 409–411	Biodiversity, 149–152
separation of, 314–315	Bioelectrically assisted microbial reactors (BEAMRs), 405, 409, 413, 415, 416
treatment of, 294	Biofilters, 200–201
Blue water, 107, 278	Biogas, 334, 393
Boston, Massachusetts, 17–18, 51	algae to biogas processes, 327–329
Bottled water, 241	electric energy production from, 399–407
Brackish water, desalination of, 260–266	from water reclamation process, 276
Brazil, 37	Biological integrity of water, 76
Bremen Street Park (East Boston, Massachusetts), 160	Biological used water treatments, 324–329
Brentwood, British Columbia, 153, 154	Bioretention, 195
British Columbia, 411	Black water, 106, 278, 313
Brownfield remediation/development, 189–190	in closed cycle water reclamation, 351
Brown water, 243, 278, 313	resource recovery from, 409–411
Buffer zones, 199–200	separation of, 314–315
Business as usual (BAU) scenario, 60–61, 67, 156	treatment of, 294
Cairo, Egypt, 48	Blue water, 107, 278
California, 231, 245–247, 258, 384	Boston, Massachusetts, 17–18, 51
Canada, 50, 336, 360	Bottled water, 241
Canals, 13, 15, 231, 238–239	Brackish water, desalination of, 260–266

597
INDEX

Canonical Correspondence Analysis (CCA), 444–447
Cao Fei Dian (China), 123, 541
Cap and trade system, 94, 524–525
Carbon footprint, 94, 365–371, 484–485
Carbon sequestering, 323–324, 348
Cedar Creek (Wisconsin), 467–469
Central American countries, 384
Central Arizona Project (CAP) canal, 238–239
Central government, role of, 526–527
Centralized systems, 61–62, 124, 125, 281–282
Changi Water Reclamation Plant (Singapore), 393, 407
Channel drops, 463
Charles River (Boston), 28
Chemical integrity of water, 76
Cheonggyecheon River (Seoul, Korea), 429–433, 435–437
Chicago, Illinois, 18–21, 27, 28, 149, 251–252, 283, 342, 407, 429, 450, 451, 509, 527
Chicago City Hall, 191
Chicago Sanitary and Ship Canal (CSSC), 18–20, 28
China, 37, 38, 41–42, 44–47, 55, 78, 122–123, 231, 287, 335, 360, 371, 384, 540–541
Cities. See also Urban ... entries; specific cities
implications of global warming for, 56–59
retrofitting, 457–476
and sustainable development, 4
water for, xii–xiii
Cities of the Future (COTF, COF), 114–124
best management practices, 117–118
costs of utilities for, 523–524
drainage and water management, 114–116
integrated resource management clusters, 120–123
ISO environmental performance criteria, 117
LEED criteria, 116–117
low impact development, 117
macroscale goals, 118–119
microscale measures, 116–120
One Planet Living, 119–120
planning and management, 483, 485, 486
spatial integration, 123–124
surface water bodies in, 427–428
SWITCH program approach to, 533, 534
traditional cities vs., 99, 100
utilities management in, 528
Closed cycle water reclamation, 348–354
Cluster-based distributed systems, 455–457, 497–499, 503–505
Cluster (ecoblock) management, 501. See also Ecoblocks
gray water reclamation, 258–259
rainwater harvesting, 253, 255–256
water reclamation and reuse, 283–286
Cognitive values of sustainability, 83, 86
Combined sewers, 182–183
Combined sewer overflows (CSOs), 27, 28, 182–183, 267, 509
Commercial water use, 240, 249–250
Concentrated heat plants, 383
Concentrators (stormwater), 216, 217
Connectivity, 114, 123, 152–154
Conservation:
energy, 371–380, 419–421
as LID design practice, 187
Constructed wetlands, 123, 208, 259, 316, 319–323
Contingent valuation (DV), 522–523
Conversion factors, 595–596
Cost of sustainability, 521–525
Culverts, 463
Cuyahoga River (Ohio), 20, 21, 28
Czech Republic, 78
Dams, 15, 463–467
Daylighting, 108, 109, 436–438, 441, 469–476, 510
Decentralized systems:
for ecocities, 124–126, 500–503
privatization scenario for, 62
for water reclamation, 281–282, 348–354
for water use, 497–499
De-icing chemicals, 180, 212–213, 216, 268
Desalination, 260–266
Designer wetlands, 209
Des Plaines River (Illinois), 18–20, 28, 342, 451
Direct electric energy production, 327, 399–407
Direct hydrogen production, 327
Direct reuse, 278, 281, 297–299
Discharge permits, 528
Diseconomics, 77
Disinfection, 340–346
Distributed systems, 497–514
cluster creation and size, 503–505
conversion for sustainability, 511–514
integrated resources tasks for, 499–503
need for decentralized water uses, 497–499
regionalized vs. cluster-based, 455–457
types of water/energy reclamations, 505–514
Diversity, 149–152
Dockside Green (Victoria, British Columbia), 282, 498, 504, 506, 585–588
Domestic water use, see Residential water use
Dongtan (China), 290, 489–492, 541, 549–556
Drainage:
for Cities of the Future, 114–116
combined sewers, 182–183
for ecocities/ecovillages, 126–129
in emerging paradigm, 110–113
INDEX 599

fast-conveyance infrastructure, xiii
natural, 183, 184
separated sewer systems, 183, 184
Drinking water quality, 25, 234–235, 249–250, 287. See also Potable water
Drivers of sustainability movement, 42–65
aging infrastructure, 59–60
greenhouse emissions and global warming, 51–59
impossibility of status quo and business as usual, 60–65
population increases/pressures, 44–49
water scarcity, 49–51
Droughts, 52, 229–231
Dry ponds, 201, 203, 205
Ecoblocks. See also Cluster (ecoblock)
management
closed cycle water reclamation, 348–354
grey water reclamation, 258–259
IRMCs as, 120–123
private operation of, 62
Qingdao, 122–123, 556–560
rainwater harvesting, 253, 255–256
water reclamation and reuse, 283–286
Ecocities, xv, 124–129, 539–560. See also Cities of the Future; specific cities
in China, 42, 122–123, 540–541
Dockside Green, 585–588
Dongtan, 549–556
Hammarby Sjöstad, 542–549
low impact development, 489
Masdar, 566–573
population density effects, 489–493
Qingdao, 556–560
sanitary sewage conveyance, 124, 126
smart growth, 488–489
Sonoma Mountain Village, 579–585
surface drainage, 126–129
and Sweden’s environmental quality objectives, 539–540
Tianjin, 560–566
Treasure Island, 573–578
Ecological corridors, 486
Ecological footprint, 485–487
Ecological habitats, fragmentation of, 178–180
Ecological (natural) uses of water, 232, 233
Ecology:
as component of sustainability, 87–90
and economics/society, 73, 74
in triple bottom line concept, 104, 105, 493, 495
Eco-mimicry, 189
Economic development (in TBL concept), 104, 105, 493, 495
Economic footprint, 486
Economic sustainability, 82–85
Economic value of water, 94–97
Economy of scale, 97
Ecosystem services, 138–143
Ecotones, 88, 113–114, 123, 437
Effluents:
BATEA standards for, 120
reuse of, 106–108
from traditional biological treatments, 311
treated effluent discharges for ecocities, 126–129
water-sewage-water cycle, 280–281
Effluent dominated/dependent water bodies, 17, 28, 280–281, 447–453
Electricity demand, 419
Electricity production, 418
direct, 327, 399–407
from water reclamation process, 276
water use in, 240
from wind, 391
Emerald Necklace (Boston), 88, 89, 459
Emerging (fifth) paradigm, 65–67, 73–75, 97–114
restoring urban streams, 108–110
stormwater pollution and flood abatement, 110–113
triple bottom line–life cycle assessment, 104–106
urban landscape, 113–114
water reclamation and reuse, 106–108
water systems, 99–104
Emscher River (Germany), 436
End-of-pipe treatment, 7, 25–32
Energy. See also Water-energy nexus; specific types of energy
from renewable sources, 380–392
in water reclamation plants, 346–348
Energy conservation, 371–380, 419–421
Energy outlook, 36–38, 416–422
Energy recovery/reclamation, 106–108
from biogas and used water, 399–407
costs of, 334
for ecocities, 125, 126
from sludge, 334–336
for sustainable communities, 505–514
from used water and waste organic solids, 392–399
from water reclamation process, 276
Energy recovery units (ERUs), 498–499
Energy storage, 421–422
Engineered water supply and runoff conveyance paradigm, 6, 9–15
Environment:
as component of sustainability, 87–90
and economics/society, 73, 74
in triple bottom line concept, 104, 105, 493, 495
Environmental awakening, 23–24
600 INDEX

Environmental corridors, 199–200
Environmental ethics, 87
Environmental policy, 94
Epidemics, 18, 19, 87
Equilibrium paradigm, 141, 142
Eutrophication, 24, 293, 294, 336, 485
Extended aeration, 330, 331
Extended dry ponds, 201, 203, 205, 206
Externalities, 77–79, 95–96

Fast-conveyance drainage, 186
with end of pipe treatment, 7, 25–32
infrastructure for, xiii, 3–4, 16, 17
with no minimum treatment, 7, 15–25
Feces (brown) water, 243, 278, 313
Federal government, role of, 526–527
Filter strips, grass, 196–198
Filtration systems, 188
biofilters, 200–201
grass filter strips, 196–198
membrane filtration, 339–340
Flood control, 15, 110–113
Flooding, 22, 49, 206, 458, 521
Florida, 261
Footprints, 484–487
France, 37
Free water surface (FWS) wetlands systems, 208, 209

Ganges River (India), 28
Germany, 280, 531
Ghent, Belgium, 433–435, 509, 510
Gila River (Arizona), 450–452
Global climatic change, xiv, 51, 56, 59, 92–93
Global scale ecological footprints, 485
Global warming, 4, 24
as driver of change toward sustainability, 51–59
and extreme hydrologic events, 2
and flooding, 49
and long-distance transfers and pumping, 237–239
and population numbers, 45
reduction of/adaptation to, 59–60, 85
and wetlands, 209
Göteborg, Sweden, 314–315
Gray water, 106, 278
concentration strength of, 314
for lawn irrigation, 247, 259
reclamation/reuse of, 149, 256–259
resource recovery from, 409, 410
from showers, 243–244
treatment of, 294

Green Alleys Program (Chicago), 152
Green development, 4, 116–117, 520
Green heart concept, 156–157
Greenhouse gases (GHGs), xiv
Greenhouse gas emissions:
“bubble” approach for, 528
as driver of change toward sustainability, 51–59
in emerging countries, 42
as externality, 79–80
from gas-powered lawn mowers, 247
global warming potential of, 276
from supplying water, 231
from urban areas, 360–361
and use/disposal of water, 348–360
from vehicular traffic, 35
in water reclamation plants, 346–348
from wetlands, 209, 259, 324, 348
Green infrastructure, 158–170
Malmö, Sweden, 164–170
SEA Street Seattle, 159–162
Staten Island Bluebelt, 162–165
Westergasfabriek Park, 162, 163
Green roofs, 190–193
Green scenario (infrastructure improvement), 63–65
Green space, 189
Green Streets (Portland, Oregon), 147–148
Green water, 278
Groundwater, 21–22, 228, 260
Groundwater recharge, 21–22, 267, 300–304
Gulf of Mexico, 78–79

Habitat degradation, 109, 439
Hammarby Sjöstad (Sweden), 51, 128, 489, 490, 503, 506–507, 530–531, 542–549
Hard infrastructure, 216–218
Heating:
of buildings, 419
of water, 244, 372–379
Heat pumps, 375–379
Heat recovery, 276, 366, 379–380
High-efficiency treatment plants, 124, 126
High-performance green buildings, 365, 366
Hong Kong, 491
Human (anthropogenic) uses of water, 232–233
Hydraulic energy, 406–407
Hydraulic loading, 210, 211
Hydrogen fuel cells, 276, 399–403
Hydrogen production, 327, 335
Hydrologic connectivity, 153, 154
Hydrology:
of cluster watersheds, 503–504
restoring, 440–443, 486
and stormwater runoff, 177–178
and urbanization, 440–443
Hydroperiod, 209, 211
INDEX 601

Imperviousness, 91–92
Impervious pavements, 21, 22
Index of Biotic Integrity (IBI), 91–92, 443–445
India, 41, 42, 47
Indirect reuse, 278, 297–299, 301–302, 312
Infiltration, 186, 187, 194
Infrastructure, xiv
 aging of, 5, 59–60
 for fast-conveyance drainage, xiii, 3–4, 7, 15–32
 green, best practices for, 158–170
 Institutions and governance, 525–535
 achieving multibenefit objectives, 533–535
 enhanced private sector, 532
 for integrated resource management, 526–532
 Integrated analysis, 514
 Integrated planning and management, 482–487
 Integrated resource management (IRM), 75, 493–497, 499–503, 526–532
 Integrated resource management clusters (IRMCs), 120–123, 497, 498, 529
 Integrated resource recovery facilities (IRRFs), 411–416, 497–499, 529
 Integrated water reclamation/reuse (Singapore), 304–308
 Integrated water resources management (IWRM), 75, 98–99
 Integrity of water, 76, 443
 International water quality guidelines, 235
 Irrigation, 50, 51
 domestic water use for, 245–247
 gray water for, 257, 258
 reclaimed water for, 282, 287
 used clean water for, 107
 using potable water for, 233–234
 water quality goals/limits for, 289–293
 ISO environmental performance criteria, 117
Jackson Creek (Wisconsin), 440
Japan, 19, 41
Kallang River (Singapore), 459, 462–463
Kay Bailey Hutchison Desalination Plant (Texas), 264–266
Kitazawa Creek (Tokyo), 472–474
Kyoto Protocol, 56, 335
Lake Ontario, 219, 220
Lanscapes:
 non-equilibrium theory of, 142
 as systems, 153
 Landscape ecology, 140–141
 Landscape irrigation, 289–293
 Landscape management, 125, 127
 Landscaping:
 low-impact, 188
 xeriscapes, 247–248, 289
 Land use limits, 93
 Latin American countries, 41, 42, 45, 50, 384, 512
 Lawn irrigation, 51, 246–247, 259, 289–290
 Leaks in water systems, 245, 251–252
 Learning alliances, 533–535
 LEED standards/certification, 116–118, 483
 Libya, 231
 Life cycle assessment (LCA), 367, 493
 Limits, living within, 90–94
 Lincoln Creek (Wisconsin), 436, 440, 459–462
 Loading capacity, 94
 Local ecological footprints, 485
 Los Angeles, California, 48
 Los Angeles River, 22, 23
 Low-energy secondary treatment, 315–324
 Low Impact Development (LID), 63
 for Cities of the Future, 117
 diversity of, 151–152
 for ecocities, 489–493
 natural drainage in, 183, 184
 portfolio approach toward, 221
 runoff control for reuse, 190–201
 stormwater, 186–189
 Macroscale goals, 118–119
 Malmö, Sweden, 164–170, 509, 510
 Maryland, 444, 445
 Masdar (United Arab Emirates), 51, 286, 290, 489, 490, 503, 508, 566–573
 Massachusetts, 234–236, 456, 527–528
 Maximum Contaminant Levels (MCL), 235
 Maximum Contaminant Level Goals (MCLG), 235
 Measurement conversion factors, 595–596
 Medieval cities, water management in, 12–15
 Megacities/megalopoli, xiii–xiv, 45, 47–49
 Membrane bioreactors (MBRs), 317–319
 Membrane filtration, 319, 339–340
 Mexico, 335
 Mexico City, Mexico, 49, 106
 Microbial electrolysis cells (MECs), 405–406, 409
 Microbial fuel cells (MFCs), 276, 327, 400, 403–406, 416
 Microfiltration (MF), 339–340
 Microscale measures, 116–120
 Middle East countries, 260, 261, 287, 360, 361
 Modified dry ponds, 201, 203, 205
 Modularization, 148–149
 Monaco, 282
 Muhlheim, Germany, 255
INDEX

Multifunctionality, 146–148
Multiscale networks, 153–154
Municipal-scale utilities, 527–532
Municipal water use, 231, 235–240, 282
Namibia, Africa, 298
Nanofiltration (NF), 339, 340
National Environmental Policy (U.S.), 63
National Environmental Protection Policy Act of 1969, 80
National Pollution Discharge Elimination System (NPDES), 28–29, 120
National Primary Drinking Water Standards, 235
National Recommended Water Quality Criteria, 235
National Urban Runoff Project (NURP), 101–102, 111
Natural Biological Mineralization Process, 412–413
Natural drainage, 183, 184
Nature, protection of, 93
Netherlands, 156–157
Networks, 153–154
Net zero energy building, 365
NEWater, 231, 297, 305–307, 359
New Orleans (Louisiana), 3, 280
New Zealand, 50
Nitrogen, 313, 321–323, 337
Non-equilibrium paradigm, 141–143
Nonpoint (diffuse) pollution, 24, 25, 29–32
North American countries, 50
North Avenue Dam (Milwaukee), 464–467
Nuclear energy, 38, 54, 55
Nutrient recovery, 336–339
for ecocities, 125, 126
from gray water, 259
from urine (yellow water), 243, 313–314
during water reclamation, 275, 287
Ohio, 444–445
Oil supply, 36–37
Olmsted, Frederick Law, 87–88
Once-through flow water/wastewater management systems, 26
One Planet Living (OPL), 119–120, 290, 360, 365, 484
Ontario, Canada, 246
Orange County, California, 303–304
Ozone, disinfection with, 342–344
Paradigms of water management, 1–67. See also
Emerging (fifth) paradigm
from ancient cities to 20th century, 5–42
basic paradigm, 6, 8–9
competition for resources, 40–42
and drivers of change toward sustainability, 42–65
engineered supply and runoff conveyance, 6, 9–15
fast conveyance with end of pipe treatment, 7, 25–32
fast conveyance with no minimum treatment, 7, 15–25
impact of automobile use, 32–38
urban sprawl, 38–40
Paradigm shifts, xvi
Peat-sand filters, 218
Pervious pavements, 193–195
Phosphorus, 313, 318–319, 337, 485
Photovoltaic plants, 383–385
Physical integrity of water, 76
Planning and design, 135–171
achieving sustainability, 135–137
ecosystem services, 138–143
green infrastructure best practices, 158–170
planning process, 143–158
resilience strategies, 144–155
urban sustainability through, 137–138
Planning process, 143–158
adaptive planning, 157–158
ecosystem service goals/assessments, 143–144
resilience strategies, 144–155
scenario planning, 155–157
as transdisciplinary process, 157
Points of reuse, 498
Point source pollution control, 28–29, 101, 109
Pollution, 76–80
causes of, xiii
defining, 76–77
legacy, 206–207, 467–469
public protest against, 22–23
solving problem of, 77–80
from stormwater, 110–113, 177, 252–253
from urbanization, 438–439
from urban runoff, 179–182
Pollution export, 79
Pollution Prevention Act of 1990, 102
Ponds (runoff control), 201–207
Population density (ecocities), 489–493
Population increase/pressure, 44–49, 60, 72, 231–232
Porous pavements, 193–195
Potable water:
direct and indirect uses, 240
irrigation uses, 233–234
non-drinking uses, 250
quality standards/criteria/guidelines, 234–235
and reclaimed water, 108
residential use, 249
reuse of, 278, 297–302, 312
Private sector development/governance, 532

Ohio, 444–445
Oil supply, 36–37
Olsted, Frederick Law, 87–88
Once-through flow water/wastewater management systems, 26
One Planet Living (OPL), 119–120, 290, 360, 365, 484
Ontario, Canada, 246
Orange County, California, 303–304
Ozone, disinfection with, 342–344
Paradigms of water management, 1–67. See also
Emerging (fifth) paradigm
from ancient cities to 20th century, 5–42
basic paradigm, 6, 8–9
competition for resources, 40–42
and drivers of change toward sustainability, 42–65
engineered supply and runoff conveyance, 6, 9–15
fast conveyance with end of pipe treatment, 7, 25–32
fast conveyance with no minimum treatment, 7, 15–25
impact of automobile use, 32–38
urban sprawl, 38–40
Paradigm shifts, xvi
Peat-sand filters, 218
Pervious pavements, 193–195
Phosphorus, 313, 318–319, 337, 485
Photovoltaic plants, 383–385
Physical integrity of water, 76
Planning and design, 135–171
achieving sustainability, 135–137
ecosystem services, 138–143
green infrastructure best practices, 158–170
planning process, 143–158
resilience strategies, 144–155
urban sustainability through, 137–138
Planning process, 143–158
adaptive planning, 157–158
ecosystem service goals/assessments, 143–144
resilience strategies, 144–155
scenario planning, 155–157
as transdisciplinary process, 157
Points of reuse, 498
Point source pollution control, 28–29, 101, 109
Pollution, 76–80
causes of, xiii
defining, 76–77
legacy, 206–207, 467–469
public protest against, 22–23
solving problem of, 77–80
from stormwater, 110–113, 177, 252–253
from urbanization, 438–439
from urban runoff, 179–182
Pollution export, 79
Pollution Prevention Act of 1990, 102
Ponds (runoff control), 201–207
Population density (ecocities), 489–493
Population increase/pressure, 44–49, 60, 72, 231–232
Porous pavements, 193–195
Potable water:
direct and indirect uses, 240
irrigation uses, 233–234
non-drinking uses, 250
quality standards/criteria/guidelines, 234–235
and reclaimed water, 108
residential use, 249
reuse of, 278, 297–302, 312
Private sector development/governance, 532
Privatization scenario (infrastructure improvement), 61–62
Providence River (Rhode Island), 436
Public health, xv–xvi, 85–87, 93
Public water use and conservation, 240, 249–250, 289
Qanads, 9
Qingdao (China) ecoblock/ecocity, 122–123, 282–286, 489, 490, 503, 508, 556–560
Rain gardens, 126, 195
Rainwater, 179, 185–186, 279, 352
Rainwater harvesting (RWH), 10, 195, 252–256, 279–280
for ecocities, 125
for lawn irrigation, 247
Real time control (RTC), 123–124
Reclaimed water. See also Water reclamation and reuse
deﬁned, 278
disinfection of, 340–346
excess, discharge of, 311
sources of, 275
Redundancy, 148–149
Regenerative adaptive design (RAD), 493–494
Regenerative fuel cells, 401
Regional ecological footprints, 485
Regionalized systems, 97, 120, 455–457
Regulators (institutions), 527
Regulators (stormwater), 216, 217
Renewable energy sources, 37–38
solar energy, 380–387
wind power, 387–392
Republic of Korea, 41
Residential water use, 239, 241–249
grey water reuse, 258
rainwater harvesting, 253–254
Resilience, 136, 145
adaptive planning for, 155, 158
as dimension of sustainability, 84–85
in non-equilibrium paradigm, 142–143
Resilience strategies, 144–155
adaptive capacity, 154–155
diversity/biodiversity, 149–152
multifunctionality, 146–148
 multiscale networks and connectivity, 152–154
redundancy and modularization, 148–149
Resource optimization, xv
Resource preservation, 82–85
Resource recovery, 329–336. See also Water reclamation and reuse
from residual solids, 334–336
traditional technologies for, 311–329
Retrofitting cities, 75, 97, 98, 457–476
for damages from changed hydrology, 458–463
daylighting, 469–476
legacy pollution remediation, 467–469
to remove fragmentation of channel, 463–467
Reverse osmosis (RO), 261–264, 339, 340, 354
Roofs, green, 190–193
Runoff:
pollution from, 179–182
storage and conveyance of, 187
Runoff control for reuse, 189–212
bioﬁlters, 200–201
environmental corridors and buffer zones, 199–200
ﬁlter strips, 196–198
green roofs, 190–193
hard infrastructure, 216–218
LID soft surface approaches, 190–201
LID urban drainage, 218–221
ponds, 201–207
porous pavements, 193–195
rain gardens, 195
rainwater harvesting, 195
wetlands, 207–212
winter limitations, 212–216
St. Louis, Missouri, 47
San Antonio River (Texas), 433–436
San Diego, California, 301–302
Sanitary sewage conveyance, 124, 126
Sanitary sewers, 182, 183
Sanitary sewer overﬂows (SSOs), 27, 28, 182, 183, 267, 509
São Paulo, Brazil, 48
Satellite withdrawal and treatment, 282–283
Scenario planning, 155–157
Schwab Rehabilitation Hospital (Chicago), 191
Sea level rise, 56–58
SEA Street Seattle, 159–162, 186–187, 189, 196, 508–509
Secondary Drinking Water Regulations, 235
Self-organizing mapping (SOM), 444–446
Seoul, Korea, 256, 433
Separated sewer systems, 183, 184
Separators (stormwater), 216, 217
Sequencing batch reactors (SBRs), 319
Sewage conveyance, 124, 126
Sewers, 182–184
Shortages of water, see Water scarcity/shortages
Sludge, as resource, 334–336
Sludge handling, 329–334
Smart growth, 63, 65, 488–489
Social equity (in TBL concept), 104, 105, 493, 495
INDEX

Social policy imperatives, 85–87
Solaire Apartments (New York City), 191, 295–296
Solar energy, 380–387, 403
Solar water heaters, 373–375
Solid waste:
 energy from, 392–399
 management, reuse, disposal of, 530–531
Sonoma Mountain Village (California, U.S.), 363, 489, 490, 579–585
Source separation, 125, 312–315
South America, 335, 371, 384, 512
Spatial integration, 123–124
Staten Island Bluebelt (New York), 162–165
Status quo, impossibility of, 60–65
Stockholm, Sweden, 51, 144
Stony Brook (Boston), 18, 19, 109–110, 429
Storage-oriented, slow-release systems, 186
Storm sewers, 182, 183, 216
Stormwater, 177–221
 aesthetic problems from, 178
 as asset and resource, 184–186
 current urban drainage, 182–184
 in emerging (fifth) paradigm, 110–113
 and fragmentation of habitats, 178–180
 hydrologic problems from, 177–178
 in Low Impact Development, 186–189
 pollution from, 110–111, 179–182
 and quality of water bodies, 177
 rainwater vs., 279
 reclamation and reuse of, 279–280
 runoff control for reuse, 189–212
Strawberry Creek (California), 436, 441
Stream restoration, 88, 427–478
 in emerging (fifth) paradigm, 108–110
 goals of, 437–438, 453–455
 rediscovering urban streams, 427–437
 regionalized vs. cluster-based distributed systems, 455–457
 to remedy impacts of urbanization, 438–453
 retrofitting older cities, 457–458
 and water centric ecocities, 453–476
Street Edge Alternative project, see SEA Street
Struvite, 313, 337–339
Subsurface flow wetlands, 319–323
Surface drainage, 126–129
Sustainability, 4, 493–497. See also Urban sustainability
 achieving, 135–137
 and aging infrastructure, 59–60
 conversion of distributed systems for, 511–514
 definitions of, 4, 80–82
 drivers of change toward, 42–65
 and greenhouse emissions/global warming, 51–59
 and population increases/pressures, 44–49
 and status quo/business as usual, 60–65
 water scarcity and flooding of large cities, 49–51
Sustainability science, 83, 99, 101
Sustainable communities, 482–535. See also Ecocities; Urban sustainability
 distributed systems for, 497–514
 institutions and governance for, 525–535
 integrated planning and management, 482–487
 integrated resources management, 493–497
 system analysis and modeling, 514–525
 urban planning, 487–493
Sustainable Urban Drainage Systems (SUDS), 29–30, 63, 118, 186. See also Low Impact Development (LID)
Sustainable water centric ecocities, xv
Swales, 112, 123, 126, 196, 197
Sweden, 539–540
SWITCH program, 533, 534
Sydney, Australia, 429
Syngas, 393
System analysis and modeling, 514–525
Take, make, waste approach, 495
Tampa Bay Seawater Desalination Plant (Florida), 265–266
Tankless water heaters, 373
Technocratic scenario (infrastructure improvement), 62–63
Thames River (London), 23, 28
Thermal gasification, 335
Tianjin (China), 123, 282, 285–286, 489, 490, 503, 541, 560–566
Tokyo, Japan, 18, 22, 30
Topaz solar power plant (California), 384
Toronto, Ontario, 429
Total Maximum Daily Load (TMDL) process, 94, 449
Transit-oriented development (TOD), 488
Transportation, 32–39, 418–419, 487–489
Treasure Island (California, U.S.), 489, 490, 573–578
Treatment and resource recovery unit processes, 311–354
 algae to biogas, 327–329
 anaerobic sludge blanket reactors, 324–327
 biological treatments, 324–329
 decentralized water reclamation technologies, 348–354
 direct electricity and hydrogen production, 327
 disinfection, 340–346
 energy and GHG emission issues, 346–348
 membrane filtration and reverse osmosis, 339–340
 nutrient recovery, 336–339
 sludge handling and resource recovery, 329–336
source separation, 312–315
traditional water/resource reclamation technologies, 311–324
Trickling filters, 318, 415
Trinity River (Texas), 280–281, 456
Triple bottom line (TBL), 104, 136, 493–495, 518–525
Triple bottom line–life cycle assessment (TBL-LCA), 64, 104–106, 493, 518
Tucson, Arizona, 26, 106
Ultrafiltration (UF), 339–340
Ultraviolet radiation, disinfection by, 343–346
United Kingdom, 369
United Nations Millennium Ecosystem Assessment, 138, 143
Upflow anaerobic sludge blanket (UASB) reactors, 324–327, 398–399, 409, 413–414
Urban ecosystems, 88, 150, 151
Urbanization, 42, 46–47
adverse impacts of, 438–453
new paradigm of, xv–xvi
Urban landscape, 113–114
Urban metabolism (pollution), 272–274
Urban planning, 137, 487–493. See also Planning and design
Urban sprawl, 38–40
Urban sustainability, 72–129. See also Sustainable communities
Cities of the Future–water centric ecocities, 114–124
components of, 73, 74
definitions of sustainability, 80–82
ecocity/ecovillage concepts, 124–129
economic vs. resources preservation, 82–85
and economy, 94–97
emerging water systems, 99–104
and environmental policy, 94
environment and ecology components of, 87–90
and living within limits, 90–94
new paradigm for, 73–75, 97–114
and pollution, 76–80
resilience dimension of, 84–85
society as component of, 85–87
stormwater pollution and flood abatement, 110–113
stream restoration, 108–110
through planning and design, 137–138
triple bottom line–life cycle assessment, 104–106
urban landscape, 113–114
vision of, 72–73
water reclamation and reuse, 106–108
Urban water supply grid, 252
Urine (yellow) water, 106, 242–243, 313, 314, 409
Use Attainability Analysis (UAA), 448–449, 451
Used water, 75. See also Water reclamation and reuse
energy from, 126, 392–407
heat recovery from, 379–380
reclamation processes for, 408–411
Venice, Italy, 57–58
Virtual water, 240–241
Vision of sustainability, 72–73
Vltava River (Czech Republic), 28
Wastewater, 121. See also Used water contaminants in, 299–300
historic management of, 8, 10–11, 15, 16
long-distance transfers of, 26–28
untreated, 18
Wastewater treatment, 16
Bardenpho system for, 29
conventional vs. reclamation and reuse, 276–278. See also Water reclamation and reuse
Water, 228–232
and ecological footprint, 485, 486
reclamation and reuse of, see Water reclamation and reuse
virtual, 240–241
Water centric (eco)cities, 453–476. See also Cities of the Future
distributed systems for, 455–457, 497–500
goals of, 453–455
retrofitting older cities, 457–476
Water centric urbanism, 5. See also Urban sustainability
Water conservation, 241–252. See also Water use commercial and public, 249–250
leaks and other losses, 251–252
residential water use, 241–249
Water-energy nexus, 358–371
direct electric energy production from biogas and used water, 399–407
energy conservation, 371–380
energy from renewable sources, 380–392
energy from used water and waste organic solids, 392–399
GHG emissions from urban areas, 360–361
GHGs and energy for use/disposal of water, 348–360
integrated resource recovery facilities, 411–416
net zero carbon footprint goal, 365–371
overall energy outlook, 416–422
on regional and cluster scale, 362–364
and used water reclamation processes, 408–411
INDEX

Water footprint, 240, 486–487
Water Framework Directive (WFD), 25, 28, 66, 443
Water heaters, 372–379
Water management:
 for Cities of the Future, 114–116
 paradigms of, see Paradigms of water management
Water pollution control regulations, xiii
Water quality:
 goals and limits for, 286–308
 for groundwater recharge, 300–304
 for integrated reclamation/reuse, 304–308
 for landscape and agricultural irrigation, 289–293
 for potable reuse, 297–304
 standards/criteria/guidelines for, 234–235
 for uses other than irrigation and potable water, 293–297
 of water bodies, 177
Water Quality Standards Regulation, 449
Water reclamation and reuse, xv, 272–308
 centralized vs. decentralized reclamation, 281–282
 cluster water reclamation units, 282–286
 concept of, 274–279
 decentralized reclamation technologies, 348–354
 in emerging paradigm, 106–108
 energy and GHG emission issues, 346–348
 gray water, 256–259
 groundwater recharge, 300–304
 integrated reclamation/reuse in Singapore, 304–308
 landscape and agricultural irrigation, 289–293
 potable reuse, 234, 297–300
 rainwater and stormwater, 279–280. See also Rainwater harvesting (RWH)
 for sustainable communities, 505–514
 traditional technologies for, 311–312
 types of solids from, 331–334
 uses other than irrigation and potable water, 293–297
 water quality goals/limits, 286–308
 water-sewage-water cycle, 280–281
Water reclamation plants (WRPs), 107, 282–286, 498–499
Water reuse, 278. See also Water reclamation and reuse
Water scarcity/shortages, 49–51, 60, 228–234
Water Safe Design Urban (WSUD), 63, 186. See also Low Impact Development (LID)
Water-sewage-water (WSW) cycle, 20, 280–281
Watershed management agency, 528, 531–532
Watershed-scale utilities, 527–532
Watershed-wide goals, 118–119
Water sources, 252–268
 desalination of seawater and brackish water, 260–266
 rainwater harvesting, 252–256
 stormwater and other freshwater flows, 266–268
 urban water supply grid, 252
Water supply grid, 252
Water systems:
 in emerging (fifth) paradigm, 99–104
 leaks and other losses in, 251–252
 in the United States, 532
Water use, 228–250
 commercial and public, 249–250
 decentralized, 497–499
 drinking water quality standards, 234–235
 fundamentals of, 232–235
 minimum criteria for, 234
 municipal, 235–240
 virtual water, 240–241
 water on Earth, 228–232
Weirs, 463
Westergasfabriek Park (Amsterdam), 162, 163
Western Harbor (Malmö, Sweden), 167–170
Wet detention ponds, 201, 202, 204–207
Wetlands, 207–212, 259, 319–323, 348. See also Constructed wetlands
White water, 106, 278
Wildlife corridors, 154
Willingness to pay (WTP), 521–525
Willow Brook (British Columbia), 219
Wind power, 55, 387–392
Wisconsin, 444
Wood gas, 392
Woodlands (Texas), 521–522
World Commission on Environment and Development, 81
World Wildlife Fund (WWF), 119
Xeriscapes, 247–248, 289
Yangtze River (China), 28
Yellow water, 278. See also Urine (yellow) water
Yokohama, Japan, 48
Zero energy building (ZEB), 365
Zhiliangjiawo New Town (China), 220, 504–505, 507
Zhuang River (China), 470–471
Zurich, Switzerland, 436, 472, 474–476