CONTENTS

Preface xvii
Acknowledgments xxiii
Glossary xxv

1 Common Concepts for Metaheuristics 1

1.1 Optimization Models 2
 1.1.1 Classical Optimization Models 3

1.1.2 Complexity Theory 9
 1.1.2.1 Complexity of Algorithms 9
 1.1.2.2 Complexity of Problems 11

1.2 Other Models for Optimization 14
 1.2.1 Optimization Under Uncertainty 15
 1.2.2 Dynamic Optimization 16
 1.2.2.1 Multiperiodic Optimization 16
 1.2.3 Robust Optimization 17

1.3 Optimization Methods 18
 1.3.1 Exact Methods 19
 1.3.2 Approximate Algorithms 21
 1.3.2.1 Approximation Algorithms 21
 1.3.3 Metaheuristics 23
 1.3.4 Greedy Algorithms 26
 1.3.5 When Using Metaheuristics? 29

1.4 Main Common Concepts for Metaheuristics 34
 1.4.1 Representation 34
 1.4.1.1 Linear Representations 36
 1.4.1.2 Nonlinear Representations 39
 1.4.1.3 Representation-Solution Mapping 40
 1.4.1.4 Direct Versus Indirect Encodings 41
 1.4.2 Objective Function 43
 1.4.2.1 Self-Sufficient Objective Functions 43
1.4.2.2 Guiding Objective Functions
1.4.2.3 Representation Decoding
1.4.2.4 Interactive Optimization
1.4.2.5 Relative and Competitive Objective Functions
1.4.2.6 Meta-Modeling

1.5 Constraint Handling
1.5.1 Reject Strategies
1.5.2 Penalizing Strategies
1.5.3 Repairing Strategies
1.5.4 Decoding Strategies
1.5.5 Preserving Strategies

1.6 Parameter Tuning
1.6.1 Off-Line Parameter Initialization
1.6.2 Online Parameter Initialization

1.7 Performance Analysis of Metaheuristics
1.7.1 Experimental Design
1.7.2 Measurement
1.7.2.1 Quality of Solutions
1.7.2.2 Computational Effort
1.7.2.3 Robustness
1.7.2.4 Statistical Analysis
1.7.2.5 Ordinal Data Analysis
1.7.3 Reporting

1.8 Software Frameworks for Metaheuristics
1.8.1 Why a Software Framework for Metaheuristics?
1.8.2 Main Characteristics of Software Frameworks
1.8.3 ParadisEO Framework
1.8.3.1 ParadisEO Architecture

1.9 Conclusions

1.10 Exercises

2 Single-Solution Based Metaheuristics
2.1 Common Concepts for Single-Solution Based Metaheuristics
2.1.1 Neighborhood
2.1.2 Very Large Neighborhoods
2.1.2.1 Heuristic Search in Large Neighborhoods
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.2.2</td>
<td>Exact Search in Large Neighborhoods</td>
<td>98</td>
</tr>
<tr>
<td>2.1.2.3</td>
<td>Polynomial-Specific Neighborhoods</td>
<td>100</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Initial Solution</td>
<td>101</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Incremental Evaluation of the Neighborhood</td>
<td>102</td>
</tr>
<tr>
<td>2.2</td>
<td>Fitness Landscape Analysis</td>
<td>103</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Distances in the Search Space</td>
<td>106</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Landscape Properties</td>
<td>108</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Distribution Measures</td>
<td>109</td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Correlation Measures</td>
<td>111</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Breaking Plateaus in a Flat Landscape</td>
<td>119</td>
</tr>
<tr>
<td>2.3</td>
<td>Local Search</td>
<td>121</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Selection of the Neighbor</td>
<td>123</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Escaping from Local Optima</td>
<td>125</td>
</tr>
<tr>
<td>2.4</td>
<td>Simulated Annealing</td>
<td>126</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Move Acceptance</td>
<td>129</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Cooling Schedule</td>
<td>130</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Initial Temperature</td>
<td>130</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Equilibrium State</td>
<td>131</td>
</tr>
<tr>
<td>2.4.2.3</td>
<td>Cooling</td>
<td>131</td>
</tr>
<tr>
<td>2.4.2.4</td>
<td>Stopping Condition</td>
<td>133</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Other Similar Methods</td>
<td>133</td>
</tr>
<tr>
<td>2.4.3.1</td>
<td>Threshold Accepting</td>
<td>133</td>
</tr>
<tr>
<td>2.4.3.2</td>
<td>Record-to-Record Travel</td>
<td>137</td>
</tr>
<tr>
<td>2.4.3.3</td>
<td>Great Deluge Algorithm</td>
<td>137</td>
</tr>
<tr>
<td>2.4.3.4</td>
<td>Demon Algorithms</td>
<td>138</td>
</tr>
<tr>
<td>2.5</td>
<td>Tabu Search</td>
<td>140</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Short-Term Memory</td>
<td>142</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Medium-Term Memory</td>
<td>144</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Long-Term Memory</td>
<td>145</td>
</tr>
<tr>
<td>2.6</td>
<td>Iterated Local Search</td>
<td>146</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Perturbation Method</td>
<td>148</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Acceptance Criteria</td>
<td>149</td>
</tr>
<tr>
<td>2.7</td>
<td>Variable Neighborhood Search</td>
<td>150</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Variable Neighborhood Descent</td>
<td>150</td>
</tr>
<tr>
<td>2.7.2</td>
<td>General Variable Neighborhood Search</td>
<td>151</td>
</tr>
<tr>
<td>2.8</td>
<td>Guided Local Search</td>
<td>154</td>
</tr>
</tbody>
</table>
3.4 Other Evolutionary Algorithms

3.4.1 Estimation of Distribution Algorithms
3.4.2 Differential Evolution
3.4.3 Coevolutionary Algorithms
3.4.4 Cultural Algorithms

3.5 Scatter Search
3.5.1 Path Relinking

3.6 Swarm Intelligence

3.6.1 Ant Colony Optimization Algorithms

3.6.1.1 ACO for Continuous Optimization Problems

3.6.2 Particle Swarm Optimization

3.6.2.1 Particles Neighborhood
3.6.2.2 PSO for Discrete Problems

3.7 Other Population-Based Methods

3.7.1 Bees Colony

3.7.1.1 Bees in Nature
3.7.1.2 Nest Site Selection
3.7.1.3 Food Foraging
3.7.1.4 Marriage Process

3.7.2 Artificial Immune Systems

3.7.2.1 Natural Immune System
3.7.2.2 Clonal Selection Theory
3.7.2.3 Negative Selection Principle
3.7.2.4 Immune Network Theory
3.7.2.5 Danger Theory

3.8 P-metaheuristics Implementation Under ParadisEO

3.8.1 Common Components and Programming Hints

3.8.1.1 Main Core Templates—ParadisEO–EO’s Functors
3.8.1.2 Representation

3.8.2 Fitness Function

3.8.2.1 Initialization
3.8.2.2 Stopping Criteria, Checkpoints, and Statistics
3.8.2.3 Dynamic Parameter Management and State Loader/Register

3.8.3 Evolutionary Algorithms Under ParadisEO

3.8.3.1 Representation
3.8.3.2 Initialization
3.8.3.3 Evaluation
3.8.3.4 Variation Operators 279
3.8.3.5 Evolution Engine 283
3.8.3.6 Evolutionary Algorithms 285
3.8.4 Particle Swarm Optimization Under ParadisEO 286
 3.8.4.1 Illustrative Example 292
3.8.5 Estimation of Distribution Algorithm Under ParadisEO 293
3.9 Conclusions 294
3.10 Exercises 296

4 Metaheuristics for Multiobjective Optimization 308

4.1 Multiobjective Optimization Concepts 310
4.2 Multiobjective Optimization Problems 315
 4.2.1 Academic Applications 316
 4.2.1.1 Multiobjective Continuous Problems 316
 4.2.1.2 Multiobjective Combinatorial Problems 317
 4.2.2 Real-Life Applications 318
 4.2.3 Multicriteria Decision Making 320
4.3 Main Design Issues of Multiobjective Metaheuristics 322
4.4 Fitness Assignment Strategies 323
 4.4.1 Scalar Approaches 324
 4.4.1.1 Aggregation Method 324
 4.4.1.2 Weighted Metrics 327
 4.4.1.3 Goal Programming 330
 4.4.1.4 Achievement Functions 330
 4.4.1.5 Goal Attainment 330
 4.4.1.6 ϵ-Constraint Method 332
 4.4.2 Criterion-Based Methods 334
 4.4.2.1 Parallel Approach 334
 4.4.2.2 Sequential or Lexicographic Approach 335
 4.4.3 Dominance-Based Approaches 337
 4.4.4 Indicator-Based Approaches 341
4.5 Diversity Preservation 343
 4.5.1 Kernel Methods 344
 4.5.2 Nearest-Neighbor Methods 346
 4.5.3 Histograms 347
4.6 Elitism 347
4.7 Performance Evaluation and Pareto Front Structure 350
 4.7.1 Performance Indicators 350
 4.7.1.1 Convergence-Based Indicators 352
 4.7.1.2 Diversity-Based Indicators 354
 4.7.1.3 Hybrid Indicators 355
 4.7.2 Landscape Analysis of Pareto Structures 358

4.8 Multiobjective Metaheuristics Under ParadisEO 361
 4.8.1 Software Frameworks for Multiobjective Metaheuristics 362
 4.8.2 Common Components 363
 4.8.2.1 Representation 363
 4.8.2.2 Fitness Assignment Schemes 364
 4.8.2.3 Diversity Assignment Schemes 366
 4.8.2.4 Elitism 367
 4.8.2.5 Statistical Tools 367
 4.8.3 Multiobjective EAs-Related Components 368
 4.8.3.1 Selection Schemes 369
 4.8.3.2 Replacement Schemes 370
 4.8.3.3 Multiobjective Evolutionary Algorithms 371

4.9 Conclusions and Perspectives 373

4.10 Exercises 375

5 Hybrid Metaheuristics 385
 5.1 Hybrid Metaheuristics 386
 5.1.1 Design Issues 386
 5.1.1.1 Hierarchical Classification 386
 5.1.1.2 Flat Classification 394
 5.1.2 Implementation Issues 399
 5.1.2.1 Dedicated Versus General-Purpose Computers 399
 5.1.2.2 Sequential Versus Parallel 399
 5.1.3 A Grammar for Extended Hybridization Schemes 400
 5.2 Combining Metaheuristics with Mathematical Programming 401
 5.2.1 Mathematical Programming Approaches 402
 5.2.1.1 Enumerative Algorithms 402
 5.2.1.2 Relaxation and Decomposition Methods 405
 5.2.1.3 Branch and Cut and Price Algorithms 407
 5.2.2 Classical Hybrid Approaches 407
 5.2.2.1 Low-Level Relay Hybrids 408
 5.2.2.2 Low-Level Teamwork Hybrids 411
CONTENTS

5.2.2.3 *High-Level Relay Hybrids* 413
5.2.2.4 *High-Level Teamwork Hybrids* 416

5.3 Combining Metaheuristics with Constraint Programming 418
5.3.1 Constraint Programming 418
5.3.2 Classical Hybrid Approaches 419
5.3.2.1 *Low-Level Relay Hybrids* 420
5.3.2.2 *Low-Level Teamwork Hybrids* 420
5.3.2.3 *High-Level Relay Hybrids* 422
5.3.2.4 *High-Level Teamwork Hybrids* 422

5.4 Hybrid Metaheuristics with Machine Learning and Data Mining 423
5.4.1 Data Mining Techniques 423
5.4.2 Main Schemes of Hybridization 425
5.4.2.1 *Low-Level Relay Hybrid* 425
5.4.2.2 *Low-Level Teamwork Hybrids* 426
5.4.2.3 *High-Level Relay Hybrid* 428
5.4.2.4 *High-Level Teamwork Hybrid* 431

5.5 Hybrid Metaheuristics for Multiobjective Optimization 432
5.5.1 Combining Metaheuristics for MOPs 432
5.5.1.1 *Low-Level Relay Hybrids* 432
5.5.1.2 *Low-Level Teamwork Hybrids* 433
5.5.1.3 *High-Level Relay Hybrids* 434
5.5.1.4 *High-Level Teamwork Hybrid* 436
5.5.2 Combining Metaheuristics with Exact Methods for MOP 438
5.5.3 Combining Metaheuristics with Data Mining for MOP 444

5.6 Hybrid Metaheuristics Under ParadisEO 448
5.6.1 Low-Level Hybrids Under ParadisEO 448
5.6.2 High-Level Hybrids Under ParadisEO 451
5.6.3 Coupling with Exact Algorithms 451

5.7 Conclusions and Perspectives 452

5.8 Exercises 454

6 Parallel Metaheuristics 460

6.1 Parallel Design of Metaheuristics 462
6.1.1 Algorithmic-Level Parallel Model 463
 6.1.1.1 *Independent Algorithmic-Level Parallel Model* 463
 6.1.1.2 *Cooperative Algorithmic-Level Parallel Model* 465
6.1.2 Iteration-Level Parallel Model 471
 6.1.2.1 Iteration-Level Model for S-Metaheuristics 471
 6.1.2.2 Iteration-Level Model for P-Metaheuristics 472
6.1.3 Solution-Level Parallel Model 476
6.1.4 Hierarchical Combination of the Parallel Models 478

6.2 Parallel Implementation of Metaheuristics 478
 6.2.1 Parallel and Distributed Architectures 480
 6.2.2 Dedicated Architectures 486
 6.2.3 Parallel Programming Environments and Middlewares 488
 6.2.4 Performance Evaluation 493
 6.2.5 Main Properties of Parallel Metaheuristics 496
 6.2.6 Algorithmic-Level Parallel Model 498
 6.2.7 Iteration-Level Parallel Model 500
 6.2.8 Solution-Level Parallel Model 502

6.3 Parallel Metaheuristics for Multiobjective Optimization 504
 6.3.1 Algorithmic-Level Parallel Model for MOP 505
 6.3.2 Iteration-Level Parallel Model for MOP 507
 6.3.3 Solution-Level Parallel Model for MOP 507
 6.3.4 Hierarchical Parallel Model for MOP 509

6.4 Parallel Metaheuristics Under ParadisEO 512
 6.4.1 Parallel Frameworks for Metaheuristics 512
 6.4.2 Design of Algorithmic-Level Parallel Models 513
 6.4.2.1 Algorithms and Transferred Data (What?) 514
 6.4.2.2 Transfer Control (When?) 514
 6.4.2.3 Exchange Topology (Where?) 515
 6.4.2.4 Replacement Strategy (How?) 517
 6.4.2.5 Parallel Implementation 517
 6.4.2.6 A Generic Example 518
 6.4.2.7 Island Model of EAs Within ParadisEO 519
 6.4.3 Design of Iteration-Level Parallel Models 521
 6.4.3.1 The Generic Multistart Paradigm 521
 6.4.3.2 Use of the Iteration-Level Model 523
 6.4.4 Design of Solution-Level Parallel Models 524
 6.4.5 Implementation of Sequential Metaheuristics 524
 6.4.6 Implementation of Parallel and Distributed Algorithms 525
 6.4.7 Deployment of ParadisEO–PEO 528

6.5 Conclusions and Perspectives 529

6.6 Exercises 531
Appendix: UML and C++ 535
 A.1 A Brief Overview of UML Notations 535
 A.2 A Brief Overview of the C++ Template Concept 536

References 539

Index 587