Brief Table of Contents

PART ONE: STATICALLY DETERMINATE STRUCTURES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Structural Loads</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>System Loading and Behavior</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>Reactions</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>Shearing Force and Bending Moment</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>Introduction to Plane Trusses</td>
<td>117</td>
</tr>
<tr>
<td>7</td>
<td>Plane Trusses, Continued</td>
<td>143</td>
</tr>
<tr>
<td>8</td>
<td>Three-Dimensional or Space Trusses</td>
<td>168</td>
</tr>
<tr>
<td>9</td>
<td>Influence Lines for Beams</td>
<td>185</td>
</tr>
<tr>
<td>10</td>
<td>Truss Influence Lines and Moving Loads</td>
<td>204</td>
</tr>
<tr>
<td>11</td>
<td>Deflections and Angle Changes Using Geometric Methods</td>
<td>225</td>
</tr>
<tr>
<td>12</td>
<td>Deflections and Angle Changes Using Geometric Methods Continued</td>
<td>248</td>
</tr>
<tr>
<td>13</td>
<td>Deflections and Angle Changes Using Energy Methods</td>
<td>264</td>
</tr>
</tbody>
</table>

PART TWO: STATICALLY INDETERMINATE STRUCTURES

Classical Methods

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Introduction to Statically Indeterminate Structures</td>
<td>297</td>
</tr>
<tr>
<td>15</td>
<td>Force Methods of Analyzing Statically Indeterminate Structures</td>
<td>305</td>
</tr>
<tr>
<td>16</td>
<td>Force Methods of Analyzing Statically Indeterminate Structures Continued</td>
<td>322</td>
</tr>
<tr>
<td>17</td>
<td>Influence Lines for Statically Indeterminate Structures</td>
<td>347</td>
</tr>
<tr>
<td>18</td>
<td>Slope Deflection: A Displacement Method of Analysis</td>
<td>363</td>
</tr>
</tbody>
</table>

PART THREE: STATICALLY INDETERMINATE STRUCTURES

Common Methods in Current Practice

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Approximate Analysis of Statically Indeterminate Structures</td>
<td>389</td>
</tr>
<tr>
<td>20</td>
<td>Moment Distribution for Beams</td>
<td>413</td>
</tr>
<tr>
<td>21</td>
<td>Moment Distribution for Beams for Frames</td>
<td>433</td>
</tr>
<tr>
<td>22</td>
<td>Introduction of Matrix Methods</td>
<td>461</td>
</tr>
<tr>
<td>23</td>
<td>Fundamentals of the Displacement or Stiffness</td>
<td>470</td>
</tr>
<tr>
<td>24</td>
<td>Stiffness Matrices for Inclined Members</td>
<td>494</td>
</tr>
<tr>
<td>25</td>
<td>Additional Matrix Procedures</td>
<td>518</td>
</tr>
</tbody>
</table>
APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The Catenary Equation</td>
<td>533</td>
</tr>
<tr>
<td>B</td>
<td>Matrix Algebra</td>
<td>538</td>
</tr>
<tr>
<td>C</td>
<td>Wind, Seismic, and Snow Load Tables and Figures</td>
<td>553</td>
</tr>
<tr>
<td>D</td>
<td>Computer Analysis of Various Structures Using SAP2000</td>
<td>565</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>573</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>579</td>
</tr>
</tbody>
</table>
Table of Contents

DEDICATION vii
PREFACE xiii

PART ONE: STATICALLY DETERMINATE STRUCTURES 1

CHAPTER 1
Introduction 3
1.1 Structural Analysis and Design 3
1.2 History of Structural Analysis 4
1.3 Basic Principles of Structural Analysis 7
1.4 Structural Components and Systems 8
1.5 Structural Forces 9
1.6 Structural Idealization (Line Diagrams) 11
1.7 Calculation Accuracy 13
1.8 Checks on Problems 13
1.9 Impact of Computers on Structural Analysis 14

CHAPTER 2
Structural Loads 16
2.1 Introduction 16
2.2 Structural Safety 17
2.3 Specifications and Building Codes 17
2.4 Types of Structural Loads 20
2.5 Dead Loads 20
2.6 Live Loads 21
2.7 Live Load Impact Factors 23
2.8 Live Loads on Roofs 23
2.9 Rain Loads 24
2.10 Wind Loads 26
2.11 Simplified ASCE Procedure for Estimating Wind Loads 29
CHAPTER 1

2.12 Detailed ASCE Procedure for Estimating Wind Loads 31
2.13 Seismic Loads 32
2.14 Equivalent Lateral Force Procedure for Estimating Seismic Loads 34
2.15 Snow Loads 37
2.16 Other Loads 40
2.17 Problems for Solution 41

CHAPTER 3

System Loading and Behavior 43
3.1 Introduction 43
3.2 Tributary Areas 44
3.3 Influence Areas 48
3.4 Live Load Reduction 48
3.5 Loading Conditions for Allowable Stress Design 50
3.6 Loading Conditions for Strength Design 52
3.7 Concept of the Force Envelope 55
3.8 Problems for Solution 56

CHAPTER 4

Reactions 57
4.1 Equilibrium 57
4.2 Moving Bodies 57
4.3 Calculation of Unknowns 58
4.4 Types of Support 59
4.5 Stability, Determinacy, and Indeterminacy 61
4.6 Unstable Equilibrium and Geometric Instability 64
4.7 Sign Convention 65
4.8 Free-Body Diagrams 66
4.9 Horizontal and Vertical Components 67
4.10 Reactions by Proportions 67
4.11 Reactions Calculated by Equations of Statics 68
4.12 Principle of Superposition 71
4.13 The Simple Cantilever 72
4.14 Cantilevered Structures 73
4.15 Reaction Calculations for Cantilevered Structures 75
4.16 Arches 77
4.17 Three-Hinged Arches 78
4.18 Uses of Arches and Cantilevered Structures 83
4.19 Cables 83
4.20 Problems for Solution 88

CHAPTER 5

Shearing Force and Bending Moment 95
5.1 Introduction 95
5.2 Shear Diagrams 97
5.3 Moment Diagrams 98
PART TWO: STATICALLY INDETERMINATE STRUCTURES
Classical Methods
TABLE OF CONTENTS

16.3 Analysis of Trusses Redundant Internally and Externally 329
16.4 Temperature Changes, Shrinkage, Fabrication Errors, and So On 330
16.5 Castigliano’s First Theorem 332
16.6 Analysis Using Computers 341
16.7 Problems for Solution 342

CHAPTER 17
Influence Lines for Statically Indeterminate Structures 347
17.1 Influence Lines for Statically Indeterminate Beams 347
17.2 Qualitative Influence Lines 353
17.3 Influence Lines for Statically Indeterminate Trusses 356
17.4 Problems for Solution 360

CHAPTER 18
Slope Deflection: A Displacement Method of Analysis 363
18.1 Introduction 363
18.2 Derivation of Slope-Deflection Equations 363
18.3 Application of Slope Deflection to Continuous Beams 366
18.4 Continuous Beams with Simple Ends 369
18.5 Miscellaneous Items Concerning Continuous Beams 371
18.6 Analysis of Beams with Support Settlement 372
18.7 Analysis of Frames—No Sidesway 374
18.8 Analysis of Frames with Sidesway 376
18.9 Analysis of Frames with Sloping Legs 382
18.10 Problems for Solution 382

PART THREE:
STATICALLY INDETERMINATE STRUCTURES
Common Methods in Current Practice

CHAPTER 19
Approximate Analysis of Statically Indeterminate Structures 389
19.1 Introduction 389
19.2 Trusses with Two Diagonals in Each Panel 390
19.3 Continuous Beams 391
19.4 Analysis of Building Frames for Vertical Loads 395
19.5 Analysis of Portal Frames 398
19.6 Analysis of Building Frames for Lateral Loads 400
19.7 Approximate Analyses of Frame Compared to “Exact” Analysis by SABLE32 407
19.8 Moment Distribution 408
19.9 Analysis of Vierendeel “Trusses” 408
19.10 Problems for Solution 410

CHAPTER 20
Moment Distribution for Beams 413
20.1 Introduction 413
20.2 Basic Relations 415
CHAPTER 25
Additional Matrix Procedures 518
25.1 General 518
25.2 Addition of Stiffness Equations 518
25.3 Stiffness Matrices for Inclined Members 520
25.4 Stiffness Equations for Structures with Enforced Displacements 523
25.5 Stiffness Equations for Structures with Members Experiencing Temperature Changes 524
25.6 Stiffness Equations for Structures Whose Members Have Incorrect Lengths 526
25.7 Applications of Matrix Partitioning 526
25.8 Condensation 527
25.9 Band Width of Stiffness Matrices for General Structures 528
25.10 Problems for Solution 531

APPENDICES

APPENDIX A
The Catenary Equation 533

APPENDIX B
Matrix Algebra 538
B.1 Introduction 538
B.2 Matrix Definitions and Properties 538
B.3 Special Matrix Types 539
B.4 Determinant of a Square Matrix 540
B.5 Adjoint Matrix 541
B.6 Matrix Arithmetic 542
B.7 Gauss’s Method for Solving Simultaneous Equations 547
B.8 Special Topics 548

APPENDIX C
Wind, Seismic, and Snow Load Tables and Figures 553

APPENDIX D
Computer Analysis of Various Structures Using SAP2000 565
D.1 Introduction 565
D.2 Analysis of Plane Trusses 565
D.3 Analysis of Space Trusses 567
D.4 Analysis of Statically Indeterminate Plane Trusses 568
D.5 Analysis of Composite Structures 570
D.6 Analysis of Continuous Beams and Frames 571

Glossary 573
Index 579