Contents

Preface to the Fourth Edition xix
Introduction xxi

Part I Atmospheric Flows, Extreme Wind Speeds, Bluff Body Aerodynamics 1

1 Atmospheric Circulations 3
 1.1 Atmospheric Thermodynamics 3
 1.1.1 Temperature of the Atmosphere 3
 1.1.2 Radiation in the Atmosphere 4
 1.1.3 Compression and Expansion. Atmospheric Stratification 5
 1.1.4 Molecular and Eddy Conduction 6
 1.1.5 Condensation of Water Vapor 7
 1.2 Atmospheric Hydrodynamics 7
 1.3 Windstorms 10
 1.3.1 Large-Scale Storms 10
 1.3.2 Local Storms 10
 References 16

2 The Atmospheric Boundary Layer 17
 2.1 Wind Speeds and Averaging Times 17
 2.2 Equations of Mean Motion in the ABL 19
 2.3 Wind Speed Profiles in Horizontally Homogeneous Flow Over Flat Surfaces 20
 2.3.1 The Ekman Spiral 21
 2.3.2 Neutrally Stratified ABL: Asymptotic Approach 22
 2.3.3 Brunt-Väisälä Frequency. Types of Neutrally Stratified ABLs 24
 2.3.4 The Logarithmic Mean Wind Profile 27
 2.3.5 Power Law Description of ABL Wind Speed Profiles 30
 2.3.6 ABL Flows in Different Surface Roughness Regimes 31
 2.3.7 Relation Between Wind Speeds with Different Averaging Times 33
 2.4 ABL Turbulence in Horizontally Homogeneous Flow Over Smooth Flat Surfaces 35
 2.4.1 Turbulence Intensities 35
Contents

2.4.2 Integral Turbulence Scales 36

2.4.3 Spectra of Turbulent Wind Speed Fluctuations 38

2.4.4 Cross-spectral Density Functions 44

2.5 Horizontally Non-Homogeneous Flows 45

2.5.1 Flow Near a Change in Surface Roughness. Fetch and Terrain Exposure 45

2.5.2 Wind Profiles over Escarpments 46

2.5.3 Hurricane and Thunderstorm Winds 48

References 51

3 Extreme Wind Speeds 55

3.1 Cumulative Distributions, Exceedance Probabilities, Mean Recurrence Intervals 55

3.1.1 Probability of Exceedance and Mean Recurrence Intervals 55

3.1.1.1 A Case Study: The Fair Die 55

3.1.1.2 Extension to Extreme Wind Speeds 56

3.1.2 Mixed Wind Climates 56

3.2 Wind Speed Data 57

3.2.1 Meteorological and Micrometeorological Homogeneity of the Data 57

3.2.2 Directional and Non-Directional Wind Speeds 58

3.2.3 Wind Speed Data Sets 58

3.2.3.1 Data in the Public Domain 58

3.2.3.2 Data Available Commercially 60

3.3 \(\bar{N} \)-year Speed Estimation from Measured Wind Speeds 61

3.3.1 Epochal Versus Peaks-Over-Threshold Approach to Estimation of Extremes 61

3.3.2 Extreme Value Distributions and Their Use in Wind Climatology 62

3.3.3 Wind Speed Estimation by the Epochal Approach 63

3.3.3.1 Method of Moments 63

3.3.4 Sampling Errors in the Estimation of Extreme Speeds 64

3.3.5 Wind Speed Estimation by the Peaks-Over-Threshold Approach 65

3.3.6 Spatial Smoothing 66

3.3.7 Development of Large Wind Speed Datasets 66

3.4 Tornado Characterization and Climatology 66

3.4.1 Tornado Flow Modeling 66

3.4.2 Summary of NUREG/CR-4461, Rev. 2 Report [17] 67

3.4.3 Design-Basis Tornado for Nuclear Power Plants 68

References 70

4 Bluff Body Aerodynamics 73

4.1 Governing Equations 74

4.1.1 Equations of Motion and Continuity 74

4.1.2 The Navier–Stokes Equation 75

4.1.3 Bernoulli’s Equation 76

4.2 Flow in a Curved Path: Vortex Flow 77

4.3 Boundary Layers and Separation 78

4.4 Wake and Vortex Formations in Two-Dimensional Flow 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Pressure, Lift, Drag, and Moment Effects on Two-Dimensional Structural Forms</td>
<td>89</td>
</tr>
<tr>
<td>4.6</td>
<td>Representative Flow Effects in Three Dimensions</td>
<td>93</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Cases Retaining Two-Dimensional Features</td>
<td>96</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Structures in Three-Dimensional Flows: Case Studies</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>Aerodynamic Testing</td>
<td>105</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>105</td>
</tr>
<tr>
<td>5.2</td>
<td>Basic Similarity Requirements</td>
<td>105</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Dimensional Analysis</td>
<td>105</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Basic Scaling Considerations</td>
<td>107</td>
</tr>
<tr>
<td>5.3</td>
<td>Aerodynamic Testing Facilities</td>
<td>108</td>
</tr>
<tr>
<td>5.4</td>
<td>Wind Tunnel Simulation of Atmospheric Boundary Layers</td>
<td>120</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Effect of Type of Spires and Floor Roughness Elements</td>
<td>120</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Effect of Integral Scale and Turbulence Intensity</td>
<td>122</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Effects of Reynolds Number Similarity Violation</td>
<td>123</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Comparisons of Wind Tunnel and Full-Scale Pressure Measures</td>
<td>125</td>
</tr>
<tr>
<td>5.5</td>
<td>Blockage Effects</td>
<td>127</td>
</tr>
<tr>
<td>5.6</td>
<td>The High-Frequency Force Balance</td>
<td>128</td>
</tr>
<tr>
<td>5.7</td>
<td>Simultaneous Pressure Measurements at Multiple Taps</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>132</td>
</tr>
<tr>
<td>6</td>
<td>Computational Wind Engineering</td>
<td>135</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>135</td>
</tr>
<tr>
<td>6.2</td>
<td>Governing Equations</td>
<td>136</td>
</tr>
<tr>
<td>6.3</td>
<td>Discretization Methods and Grid Types</td>
<td>136</td>
</tr>
<tr>
<td>6.4</td>
<td>Initial and Boundary Conditions</td>
<td>137</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Initial Conditions</td>
<td>137</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Boundary Conditions</td>
<td>138</td>
</tr>
<tr>
<td>6.5</td>
<td>Solving Equations</td>
<td>139</td>
</tr>
<tr>
<td>6.6</td>
<td>Stability</td>
<td>139</td>
</tr>
<tr>
<td>6.7</td>
<td>Turbulent Flow Simulations</td>
<td>140</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Resolved and Modeled Turbulence</td>
<td>140</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Direct Numerical Simulation (DNS)</td>
<td>140</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Large Eddy Simulations (LES)</td>
<td>142</td>
</tr>
<tr>
<td>6.7.4</td>
<td>Reynolds-Averaged Navier–Stokes Simulation (RANS)</td>
<td>144</td>
</tr>
<tr>
<td>6.7.5</td>
<td>Hybrid RANS/LES Simulation</td>
<td>146</td>
</tr>
<tr>
<td>6.7.6</td>
<td>Performance of Turbulence Models</td>
<td>148</td>
</tr>
<tr>
<td>6.8</td>
<td>Verification and Validation. Uncertainty Quantification</td>
<td>148</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Sources of Inaccuracy in CWE Simulations</td>
<td>149</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Verification and Validation</td>
<td>150</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Quantification of Errors and Uncertainties</td>
<td>151</td>
</tr>
<tr>
<td>6.9</td>
<td>CWE versus Wind Tunnel Testing</td>
<td>151</td>
</tr>
<tr>
<td>6.10</td>
<td>Best Practice Guidelines</td>
<td>152</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>152</td>
</tr>
</tbody>
</table>
7 Uncertainties in Wind Engineering Data 157
 7.1 Introduction 157
 7.2 Statistical Framework for Estimating Uncertainties in the Wind Loads 157
 7.3 Individual and Overall Uncertainties 159
 7.3.1 Uncertainties in the Estimation of Extreme Wind Speeds 159
 7.3.2 Uncertainties in the Estimation of Exposure Factors 160
 7.3.3 Uncertainties in the Estimation of Pressure Coefficients 161
 7.3.4 Uncertainties in Directionality Factors 164
References 164

Part II Design of Buildings 167

8 Structural Design for Wind 169
 8.1 Modern Structural Design for Wind: A Brief History 169
 8.2 Database-Assisted Design 171
 8.3 Equivalent Static Wind Loads 174
 8.4 DAD versus ESWL 176
References 176

9 Stiffness Matrices, Second-Order Effects, and Influence Coefficients 179
 9.1 Stiffness Matrices 179
 9.2 Second-Order Effects 180
 9.3 Influence Coefficients 181
References 181

10 Aerodynamic Loads 183
 10.1 Introduction 183
 10.2 Pressure Tap Placement Patterns and Tributary Areas 183
 10.3 Aerodynamic Loading for Database-Assisted Design 184
 10.4 Peaks of Spatially Averaged Pressure Coefficients for Use in Code Provisions 186
 10.4.1 Pressures Within an Area A Contained in a Specified Pressure Zone 186
 10.4.2 Identifying Areas A Within a Specified Pressure Zone 187
 10.5 Aerodynamic Pressures and Wind-Driven Rain 193
References 193

11 Dynamic and Effective Wind-Induced Loads 195
 11.1 Introduction 195
 11.2 The Single-Degree-of-Freedom Linear System 196
 11.3 Time-Domain Solutions for 3-D Response of Multi-Degree-of-Freedom Systems 197
 11.3.1 Natural Frequencies and Modes of Vibration 198
 11.3.2 Solutions of Equations of Motion of Forced System 199
 11.4 Simultaneous Pressure Measurements and Effective Wind-induced Loads 200
Reference 201
Contents

12 Wind Load Factors and Design Mean Recurrence Intervals

- **12.1 Introduction**
- **12.2 Uncertainties in the Dynamic Response**
- **12.3 Wind Load Factors: Definition and Calibration**
- **12.4 Wind Load Factors vs. Individual Uncertainties**
 - 12.4.1 Effect of Wind Speed Record Length
 - 12.4.2 Effect of Aerodynamic Interpolation Errors
 - 12.4.3 Number of Pressure Taps Installed on Building Models
 - 12.4.4 Effect of Reducing Uncertainty in the Terrain Exposure Factor
 - 12.4.5 Flexible Buildings
 - 12.4.6 Notes
- **12.5 Wind Load Factors and Design Mean Recurrence Intervals**
- References

13 Wind Effects with Specified MRIs: DCIs, Inter-Story Drift, and Accelerations

- **13.1 Introduction**
- **13.2 Directional Wind Speeds and Response Surfaces**
- **13.3 Transformation of Wind Speed Matrix into Vectors of Largest Wind Effects**
 - 13.3.1 Matrix of Largest Directional Wind Speeds
 - 13.3.2 Transformation of Matrix \([U_{ij}] \) into Matrix of Demand-to-Capacity Indexes \([DCI_{ik}^m(U_{ij})] \)
 - 13.3.3 Vector \(\{DCI_{m,i}\} = \{\max_j(DCI_{m,k}^i(U_{ij}))\} \)
- **13.4 Estimation of Directional Wind Effects with Specified MRIs**
- **13.5 Non-Directional Wind Speeds: Wind Directionality Reduction Factors**
- **13.6 Demand-to-Capacity Indexes**
- **13.7 Inter-Story Drift and Floor Accelerations**
- References

14 Equivalent Static Wind Loads

- **14.1 Introduction**
- **14.2 Estimation of Equivalent Static Wind Loads**
- References

15 Wind-Induced Discomfort in and Around Buildings

- **15.1 Introduction**
- **15.2 Occupant Wind-Induced Discomfort in Tall Buildings**
 - 15.2.1 Human Response to Wind-Induced Vibrations
- **15.3 Comfort Criteria for Pedestrian Areas Within a Built Environment**
- **15.4 Zones of High Surface Winds Within a Built Environment**
- **15.5 Wind Effects Near Tall Buildings**
- **15.6 Wind Speeds at Pedestrian Level in a Basic Reference Case [8]**
- **15.7 Case Studies**
- **15.8 Frequencies of Occurrence of Unpleasant Winds**
- References
Contents

15.5.1 Detailed Estimation Procedure 242
15.5.2 Simplified Estimation Procedure 246
References 248

16 Mitigation of Building Motions 251
16.1 Introduction 251
16.2 Single-Degree-of-Freedom Systems 252
16.3 TMDs for Multiple-Degree-of-Freedom Systems 255
References 256

17 Rigid Portal Frames 259
17.1 Introduction 259
17.2 Aerodynamic and Wind Climatological Databases 260
17.3 Structural System 261
17.4 Overview of the Design Procedure 262
17.5 Interpolation Methods 263
17.6 Comparisons Between Results Based on DAD and on ASCE 7 Standard 264
17.6.1 Buildings with Various Eave Heights 264
17.6.2 Buildings with Various Roof Slopes 265
References 265

18 Tall Buildings 267
18.1 Introduction 267
18.2 Preliminary Design and Design Iterations 267
18.3 Wind Engineering Contribution to the Design Process 268
18.4 Using the DAD_ESWL Software 268
18.4.1 Accessing the DAD_ESWL Software 269
18.4.2 Project Directory and its Contents 269
18.4.3 Software Activation. Graphical User Interface 270
18.5 Steel Building Design by the DAD and the ESWL Procedures: Case Studies 271
18.5.1 Building Description 271
18.5.2 Using the DAD and the ESWL Options 274
References 280

Part III Aeroelastic Effects 283

19 Vortex-Induced Vibrations 287
19.1 Lock-In as an Aeroelastic Phenomenon 287
19.2 Vortex-Induced Oscillations of Circular Cylinders 287
19.3 Across-Wind Response of Chimneys and Towers with Circular Cross Section 292
References 296

20 Galloping and Torsional Divergence 297
20.1 Galloping Motions 297
20.1.1 Glauert–Den Hartog Necessary Condition for Galloping Motion 297
20.1.2 Modeling of Galloping Motion 300
20.1.3 Galloping of Two Elastically Coupled Square Cylinders 300
20.2 Torsional Divergence 303
References 304

21 Flutter 305
21.1 Formulation of the Two-Dimensional Bridge Flutter Problem in Smooth Flow 306
21.2 Aeroelastic Lift and Moment Acting on Airfoils 307
21.3 Aeroelastic Lift, Drag And Moment Acting on Bridge Decks 308
21.4 Solution of the Flutter Equations for Bridges 311
21.5 Two-Dimensional Bridge Deck Response to Turbulent Wind in the Presence of Aeroelastic Effects 311
References 312

22 Slender Chimneys and Towers 315
22.1 Slender Chimneys with Circular Cross Section 315
22.1.1 Slender Chimneys Assumed to be Rigid 315
22.1.2 Flexible Slender Chimneys 318
22.1.3 Approximate Expressions for the Across-Wind Response 318
22.2 Aeroelastic Response of Slender Structures with Square and Rectangular Cross Section 321
22.3 Alleviation of Vortex-Induced Oscillations 325
References 327

23 Suspended-Span Bridges 331
23.1 Introduction 331
23.2 Wind Tunnel Testing 331
23.3 Response to Vortex Shedding 335
23.4 Flutter and Buffeting of the Full-Span Bridge 338
23.4.1 Theory 338
23.4.2 Example: Critical Flutter Velocity and Buffeting Response of Golden Gate Bridge 341
23.5 Stay Cable Vibrations 344
23.5.1 Cable Vibration Characteristics 344
23.5.2 Mitigation Approaches 344
References 345

Part IV Other Structures and Special Topics 347

24 Trussed Frameworks and Plate Girders 349
24.1 Single Trusses and Girders 350
24.2 Pairs of Trusses and of Plate Girders 352
24.2.1 Trusses Normal to Wind 353
24.2.2 Trusses Skewed with Respect to Wind Direction 353
24.2.3 Pairs of Solid Plates and Girders 355
24.3 Multiple Frame Arrays 357
24.4 Square and Triangular Towers 361
24.4.1 Aerodynamic Data for Square and Triangular Towers 361
References 366

25 Offshore Structures 367
25.1 Wind Loading on Offshore Structures 367
25.1.1 Wind Loads on Semisubmersible Units 368
25.1.2 Wind Loads on a Guyed Tower Platform 371
25.2 Dynamic Wind Effects on Compliant Offshore Structures 376
25.2.1 Turbulent Wind Effects on Tension Leg Platform Surge 376
References 382

26 Tensile Membrane Structures 385
References 386

27 Tornado Wind and Atmospheric Pressure Change Effects 389
27.1 Introduction 389
27.2 Wind Pressures 390
27.3 Atmospheric Pressure Change Loading 393
27.4 Experimental Modeling of Tornado-Like Wind Flows 396
References 397

28 Tornado- and Hurricane-Borne Missile Speeds 399
28.1 Introduction 399
28.2 Tornado-Borne Missile Speeds 399
28.2.1 Deterministic Modeling of Design-Basis Missile Speeds 400
28.2.2 Probabilistic Modeling of Design-Basis Missile Speeds 401
28.3 Hurricane-Borne Missile Speeds 403
28.3.1 Basic Assumptions 403
28.3.2 Numerical Solutions 405
28.3.3 Simplified Flow Field: Closed Form Solutions 406
References 408

Appendices 409

Appendix A Elements of Probability and Statistics 411
A.1 Introduction 411
A.1.1 Definition and Purpose of Probability Theory 411
A.1.2 Statistical Estimation 411
A.2 Fundamental Relations 412
A.2.1 Addition of Probabilities 412
A.2.2 Compound and Conditional Probabilities: The Multiplication Rule 412
A.2.3 Total Probabilities 413
A.2.4 Bayes’ Rule 413
A.2.5 Independence 414
A.3 Random Variables and Probability Distributions 415
A.3.1 Random Variables: Definition 415
A.3.2 Histograms, Probability Density Functions, Cumulative Distribution Functions 415
A.3.3 Changes of Variable 417
A.3.4 Joint Probability Distributions 417
A.4 Descriptors of Random Variable Behavior 419
A.4.1 Mean Value, Median, Mode, Standard Deviation, Coefficient of Variation, and Correlation Coefficient 419
A.5 Geometric, Poisson, Normal, and Lognormal Distributions 420
A.5.1 The Geometric Distribution 420
A.5.2 The Poisson Distribution 421
A.5.3 Normal and Lognormal Distributions 421
A.6 Extreme Value Distributions 422
A.6.1 Extreme Value Distribution Types 422
A.6.1.1 Extreme Value Type I Distribution 422
A.6.1.2 Extreme Value Type II Distribution 423
A.6.1.3 Extreme Value Type III Distribution 423
A.6.2 Generalized Extreme Value (GEV) Distribution 423
A.6.3 Generalized Pareto Distribution (GPD) 423
A.6.4 Mean Recurrence Intervals (MRIs) for Epochal and Peaks-over-Threshold (POT) Approaches 424
A.7 Statistical Estimates 425
A.7.1 Goodness of Fit, Confidence Intervals, Estimator Efficiency 425
A.7.2 Parameter Estimation for Extreme Wind Speed Distributions 426
A.8 Monte Carlo Methods 427
A.9 Non-Parametric Statistical Estimates 428
A.9.1 Single Hazards 428
A.9.2 Multiple Hazards 428
References 430

Appendix B Random Processes 433
B.1 Fourier Series and Fourier Integrals 433
B.2 Parseval’s Equality 435
B.3 Spectral Density Function of a Random Stationary Signal 435
B.4 Autocorrelation Function of a Random Stationary Signal 437
B.5 Cross-Covariance Function, Co-Spectrum, Quadrature Spectrum, Coherence 438
B.6 Mean Upcrossing and Outcrossing Rate for a Gaussian Process 439
B.7 Probability Distribution of the Peak Value of a Random Signal with Gaussian Marginal Distribution 441
Reference 442

Appendix C Peaks-Over-Threshold Poisson-Process Procedure for Estimating Peaks 443
C.1 Introduction 443
C.2 Peak Estimation by Peaks-Over-Threshold Poisson-Process Procedure 444
F.2 NIST-Supplied Documents 482
F.2.1 Rowan Williams Davies Irwin (RWDI) Wind Tunnel Reports 482
F.2.2 Cermak Peterka Petersen, Inc. (CPP) Wind Tunnel Report 482
F.2.3 Correspondence 482
F.2.4 NIST Report, Estimates of Wind Loads on the WTC Towers, Emil Simiu and Fahim Sadek, April 7, 2004 482
F.3 Discussion and Comments 482
F.3.1 General 482
F.3.2 Wind Tunnel Reports and Wind Engineering 483
F.3.2.1 CPP Wind Tunnel Report 483
F.3.2.2 RWDI Wind Tunnel Report 484
F.3.2.3 Building Period used in Wind Tunnel Reports 484
F.3.2.4 NYCBC Wind Speed 484
F.3.2.5 Incorporating Wind Tunnel Results in Structural Evaluations 485
F.3.2.6 Summary 485
F.3.3 NIST Recommended Wind Loads 485

Index 487