CONTENTS

About the Authors iii
Preface v

PART ONE
INTRODUCTION 1

Chapter 1
Introduction to Data Communications 1

1.1 Introduction 1
1.2 Data Communications Networks 4
   1.2.1 Components of a Network 4
   1.2.2 Types of Networks 6
1.3 Network Models 7
   1.3.1 Open Systems Interconnection Reference Model 8
   1.3.2 Internet Model 9
   1.3.3 Message Transmission Using Layers 10
1.4 Network Standards 13
   1.4.1 The Importance of Standards 13
   1.4.2 The Standards-Making Process 13
   1.4.3 Common Standards 16
1.5 Future Trends 16
   1.5.1 Wireless LAN and BYOD 16
   1.5.2 The Web of Things 17
   1.5.3 Massively Online 17
1.6 Implications for Management 18

PART TWO
FUNDAMENTAL CONCEPTS 26

Chapter 2
Application Layer 26

2.1 Introduction 26
2.2 Application Architectures 27
2.2.1 Host-Based Architectures 28
2.2.2 Client-Based Architectures 28
2.2.3 Client-Server Architectures 29
2.2.4 Cloud Computing Architectures 32
2.2.5 Peer-to-Peer Architectures 34
2.2.6 Choosing Architectures 35
2.3 World Wide Web 36
   2.3.1 How the Web Works 36
   2.3.2 Inside an HTTP Request 37
   2.3.3 Inside an HTTP Response 38
2.4 Electronic Mail 39
   2.4.1 How Email Works 40
   2.4.2 Inside an SMTP Packet 43
   2.4.3 Attachments in Multipurpose Internet Mail Extension 43
2.5 Other Applications 44
   2.5.1 Telnet 44
   2.5.2 Instant Messaging 45
   2.5.3 Videoconferencing 46
2.6 Implications for Management 48

Chapter 3
Physical Layer 60

3.1 Introduction 60
3.2 Circuits 62
   3.2.1 Circuit Configuration 62
   3.2.2 Data Flow 63
   3.2.3 Multiplexing 64
3.3 Communication Media 66
   3.3.1 Twisted Pair Cable 66
   3.3.2 Coaxial Cable 67
   3.3.3 Fiber-Optic Cable 67
   3.3.4 Radio 69
   3.3.5 Microwave 69
   3.3.6 Satellite 70
   3.3.7 Media Selection 71
3.4 Digital Transmission of Digital Data 72
   3.4.1 Coding 72
   3.4.2 Transmission Modes 73
6.4.2 Selling the Proposal to Management 179
6.4.3 Deliverables 180
6.5 Implications for Management 180

Chapter 7
Wired and Wireless Local Area Networks 184

7.1 Introduction 184
7.2 LAN Components 185
  7.2.1 Network Interface Cards 186
  7.2.2 Network Circuits 186
  7.2.3 Network Hubs, Switches, and Access Points 187
  7.2.4 Network Operating Systems 190
7.3 Wired Ethernet 191
  7.3.1 Topology 191
  7.3.2 Media Access Control 194
  7.3.3 Types of Ethernet 195
7.4 Wireless Ethernet 196
  7.4.1 Topology 196
  7.4.2 Media Access Control 196
  7.4.3 Wireless Ethernet Frame Layout 197
  7.4.4 Types of Wireless Ethernet 198
  7.4.5 Security 199
7.5 The Best Practice LAN Design 201
  7.5.1 Designing User Access with Wired Ethernet 202
  7.5.2 Designing User Access with Wireless Ethernet 202
  7.5.3 Designing the Data Center 204
  7.5.4 Designing the e-Commerce Edge 206
  7.5.5 Designing the SOHO Environment 207
7.6 Improving LAN Performance 208
  7.6.1 Improving Server Performance 209
  7.6.2 Improving Circuit Capacity 210
  7.6.3 Reducing Network Demand 211
7.7 Implications for Management 211

Chapter 8
Backbone Networks 222

8.1 Introduction 222
8.2 Switched Backbones 223
8.3 Routed Backbones 226
8.4 Virtual LANs 229

Chapter 9
Wide Area Networks 245

9.1 Introduction 245
9.2 Dedicated-Circuit Networks 246
  9.2.1 Basic Architecture 246
  9.2.2 T Carrier Services 249
  9.2.3 SONET Services 251
9.3 Packet-Switched Networks 251
  9.3.1 Basic Architecture 252
  9.3.2 Frame Relay Services 253
  9.3.3 Ethernet Services 254
  9.3.4 MPLS Services 255
  9.3.5 IP Services 256
9.4 Virtual Private Networks 257
  9.4.1 Basic Architecture 257
  9.4.2 VPN Types 258
  9.4.3 How VPNs Work 258
9.5 The Best Practice WAN Design 261
9.6 Improving WAN Performance 262
  9.6.1 Improving Device Performance 262
  9.6.2 Improving Circuit Capacity 263
  9.6.3 Reducing Network Demand 263
9.7 Implications for Management 264

Chapter 10
The Internet 276

10.1 Introduction 276
10.2 How the Internet Works 277
  10.2.1 Basic Architecture 277
  10.2.2 Connecting to an ISP 279
  10.2.3 The Internet Today 280
10.3 Internet Access Technologies 281
  10.3.1 Digital Subscriber Line (DSL) 281
  10.3.2 Cable Modem 283
  10.3.3 Fiber to the Home 285
  10.3.4 WiMax 285
10.4 The Future of the Internet 286
  10.4.1 Internet Governance 286
  10.4.2 Building the Future 287
10.5 Implications for Management 289
PART FOUR
NETWORK MANAGEMENT

Chapter 11
Network Security

11.1 Introduction
11.1.1 Why Networks Need Security
11.1.2 Types of Security Threats
11.1.3 Network Controls
11.2 Risk Assessment
11.2.1 Develop risk measurement criteria
11.2.2 Inventory IT assets
11.2.3 Identify Threats
11.2.4 Document Existing Controls
11.2.5 Identify Improvements
11.3 Ensuring Business Continuity
11.3.1 Virus Protection
11.3.2 Denial of Service Protection
11.3.3 Theft Protection
11.3.4 Device Failure Protection
11.3.5 Disaster Protection
11.4 Intrusion Prevention
11.4.1 Security Policy
11.4.2 Perimeter Security and Firewalls
11.4.3 Server and Client Protection
11.4.4 Encryption
11.4.5 User Authentication
11.4.6 Preventing Social Engineering
11.4.7 Intrusion Prevention Systems
11.4.8 Intrusion Recovery

Chapter 12
Network Management

12.1 Introduction
12.2 Designing for Network Performance
12.2.1 Managed Networks
12.2.2 Managing Network Traffic
12.2.3 Reducing Network Traffic
12.3 Configuration Management
12.3.1 Configuring the Network and Client Computers
12.3.2 Documenting the Configuration
12.4 Performance and Fault Management
12.4.1 Network Monitoring
12.4.2 Failure Control Function
12.4.3 Performance and Failure Statistics
12.4.4 Improving Performance
12.5 End User Support
12.5.1 Resolving Problems
12.5.2 Providing End User Training
12.6 Cost Management
12.6.1 Sources of Costs
12.6.2 Reducing Costs
12.7 Implications for Management

Appendices (Online)
Glossary (Online)
Index