Contents

About the IFST Advances in Food Science Book Series xvii
List of Contributors xix

1 Food Processing By-Products and their Utilization: Introduction 1
Anil Kumar Anal

1.1 Introduction 1
1.2 Food Processing Wastes and By-Products for Industrial Applications 2
1.3 By-Products from Cereal Processing Industries 2
1.4 Fruits and Vegetables By-Products 3
1.5 By-Products from the Meat and Poultry Processing Industries 5
1.6 Seafood Processing By-Products 6
1.7 By-Products from the Dairy Processing Industries 7
1.8 Conclusion 7
References 7

2 Fruit Processing By-Products: A Rich Source for Bioactive Compounds and Value Added Products 11
Medina-Meza Ilce Gabriela, and Ganjyal Girish

2.1 Introduction 11
2.2 Phenolic Compounds as Functional foods 12
2.2.1 Phenolic Acids 12
2.2.2 Flavonoids 13
2.2.3 Tannins 14
2.2.4 Stilbenes and Lignans 15
2.3 Fruit By-Products Sources 15
2.3.1 Agro-Industrial By-Products 15
2.4 Dietary Fibers-Rich By-Products 18
2.4.1 Hemicelluloses 19
2.4.2 Pectins 19
2.5 Value-Added Products from Fruit By-Products 19
2.5.1 Meat Products 19
2.5.2 Dairy Products 20
2.5.3 Baking Products 20
2.5.4 Ready-To-Eat Products 20
2.6 Future Perspectives 21
References 21
3 Utilization of Waste from Tropical Fruits

H.K. Sharma and Mandeep Kaur

3.1 Introduction
3.1.1 Waste Utilization and Challenges

3.2 Pineapple
3.2.1 Bioethanol
3.2.2 Biogas
3.2.3 Bromelain
3.2.4 Cellulase
3.2.5 Citric Acid
3.2.6 Extruded Product
3.2.7 Jam
3.2.8 Lactic Acid
3.2.9 Animal Feed

3.3 Guava
3.3.1 Pectin
3.3.2 Juice Fortified with Dietary Fibre
3.3.3 Alcoholic Fermentation
3.3.4 Use in Bakery Industry
3.3.5 Single Cell Protein
3.3.6 Lycopene
3.3.7 Utilization as Feed

3.4 Papaya
3.4.1 Papaya Seeds as Antioxidants
3.4.2 Extraction of Papain
3.4.3 Extraction of Oil from Seeds
3.4.4 Alcohol and Vinegar
3.4.5 Utilization of Seed Flour for Food Enrichment
3.4.6 Carboxymethyl Cellulose (CMC)
3.4.7 Single Cell Protein

3.5 Summary and Future Trends

References

4 Valorization of Vegetable Wastes

Taslima Ayesha Aktar Nasrin and Md. Abdul Matin

4.1 Introduction
4.2 Losses of Vegetables from Production to Consumption
4.3 Extent of Vegetable Losses
4.4 Reasons and Overall Prevention of Vegetable Wastes
4.4.1 Production Exceeds Demand
4.4.2 Premature Harvesting
4.4.3 Strict Quality Standards
4.4.4 Poor Storage Facilities
4.4.5 Unsafe Vegetables
4.4.6 Throwing Rather than Using or Re-using
4.4.7 Lack of Processing Facilities
4.4.8 Wide Range of Products/Brands
4.4.9 Inadequate Market Systems
4.4.10 Abundance and Consumer Attitudes

4.5 Loss Quantification of Some Important Vegetables after Harvest
4.5.1 Cabbage
4.5.2 Cauliflower
CONTENTS

4.5.3 Broccoli 59
4.5.4 Sweet Corn 59
4.5.5 Carrots 60
4.5.6 Beetroot 60
4.5.7 Lettuce 60
4.5.8 Capsicums 60
4.5.9 Beans 60

4.6 Utilization of Vegetable Wastes 61
4.6.1 Utilization of Wastes by Priority Basis 61
4.6.2 Vegetable Demand should be Increased 62
4.6.3 Vegetables for Better Health 62
4.6.4 Bio Gas and Electricity Generation from Vegetable Wastes 63
4.6.5 Bioactive Compounds Extraction from Vegetable Wastes 64
4.6.6 Increment of Bioactive Compounds in Vegetables 66
4.6.7 Bioactive Compounds Affected by Stimulators 67
4.6.8 Extraction Techniques of Bioactive Compounds 70
4.6.9 Dietary Fibres from Vegetable Waste 73
4.6.10 Resistant Starch from Vegetable Waste 75
4.6.11 Vegetable Waste as Vermicomposting Agent 76
4.6.12 Biofuel and Biochar from Vegetable Waste 76
4.6.13 Fish Food from Vegetable Waste 77
4.6.14 Aquaponic using Vegetable Waste 78
4.6.15 Waste as Animal Feed 78
4.6.16 Activated Carbon from Vegetable Waste 80
4.6.17 Biodegradable Plastic 80
4.6.18 Vegetable Wastes as Substrates in Citric Acid Production 80

4.7 Conclusion 81
References 81

5 Application of Food By-Products in Medical and Pharmaceutical Industries 89
Muhammad Bilal Sadiq, Manisha Singh, and Anil Kumar Anal

5.1 Introduction 89
5.2 Agroindustry By-Products and Potential Recovery of Bioactive Compounds 90
5.2.1 Fruits 90
5.2.2 Vegetables 94
5.3 By-Products from Animal Origin 96
5.3.1 By-Products from Meat Processing 96
5.3.2 Fish and Seafood Processing 99
5.4 Conclusion 103
References 103

6 Dietary Fibers, Dietary Peptides and Dietary Essential Fatty Acids from Food Processing By-Products 111
Seema Medhe, Manisha Anand, and Anil Kumar Anal

6.1 Introduction 111
6.2 Dietary Fiber from Food Processing By-Products 112
6.2.1 Structural Features of Dietary Fiber 112
6.2.2 Technological Functionality of Dietary Fiber 113
6.2.3 Health Benefits of Dietary Fibers 114
6.2.4 Dietary Fiber from Fruits and Vegetables 115
6.2.5 Dietary Fiber from Legumes 116
CONTENTS

6.2.6 Dietary Fiber from Cereals 117
6.2.7 Coffee, Tea and Cocoa 118
6.2.8 Spices 119
6.2.9 Utilization of Dietary Fiber in Different Food Industries 119

6.3 Dietary Proteins and Peptides from Food Processing By-Products 120
6.3.1 Oil Seed Processing By-Products Valorization to Produce Proteins 120
6.3.2 Proteins from Dairy Waste 123
6.3.3 Proteins from Sugar Industry Waste 124
6.3.4 Proteins from Marine Waste 124
6.3.5 Antimicrobial Peptides from Marine By-Products 125
6.3.6 Peptides from Meat and Meat Processing Waste 125

6.4 Dietary Essential Fatty Acids 126
6.4.1 Health Benefits of Omega Fatty Acids 127
6.4.2 Essential Fatty Acids from Marine Waste 127
6.4.3 Methods of Extraction of Omega Fatty Acid 127

References 129

7 Prebiotics and Dietary Fibers from Food Processing By-Products 137

Santad Wichienchot and Wan Rosli Bin Wan Ishak

7.1 Introduction 137
7.2 Oligosaccharides from Food Processing By-Products 140
7.2.1 Pectic Oligosaccharide (POS) 140
7.2.2 Xylo-Oligosaccharide (XOS) 143
7.2.3 Chito-Oligosaccharide (COS) 146
7.2.4 Inulin and Fructo-Oligosaccharide (FOS) 148
7.2.5 Soybean Oligosaccharide (SOS) 151
7.3 Polysaccharides from Food Processing and Agricultural By-Products 155
7.3.1 β-Glucans 155
7.3.2 Non-Starch Dietary Fibers 158
7.3.3 Resistant Starch 162
7.4 Conclusion 164

References 165

8 Utilization of By-Products from Food Processing as Biofertilizers and Biopesticides 175

Avishek Datta, Hayat Ullah, and Zannatul Ferdous

8.1 Introduction 175
8.2 Concept of Food Processing By-Products 176
8.2.1 Existing Methods of By-Product/Wastes Management Practiced by Food Industries 177
8.3 Plant-Based Food By-Products and their Importance as Biofertilizers 178
8.3.1 Sugarcane By-Products 178
8.3.2 Utilization of Oilseed Processing By-Products as Biofertilizer 179
8.3.3 Food Processing Industrial Sludge as Sources of Biofertilizers 182
8.3.4 Rice Straw and Rice Bran 182
8.3.5 Coffee Processing By-Products 183
8.3.6 Tea Processing Wastes 183
8.3.7 Turmeric Solid Waste 184
8.3.8 Cassava Processing By-Product as Biofertilizers 184
8.4 Importance of Plant-Based Food Processing By-Products as Biopesticides 185
8.4.1 Maize Gluten Meal 185
9 Banana Peels and their Prospects for Industrial Utilization

Prema Khawas, Arup Jyoti Das, and Sankar Chandra Deka

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>195</td>
</tr>
<tr>
<td>9.2 Chemical Properties and Bioactive Compounds Present in Banana Peel</td>
<td>196</td>
</tr>
<tr>
<td>9.2.1 Nutrients</td>
<td>196</td>
</tr>
<tr>
<td>9.2.2 Phytochemicals and Antioxidants</td>
<td>197</td>
</tr>
<tr>
<td>9.2.3 Flavonoids and Polyphenols</td>
<td>197</td>
</tr>
<tr>
<td>9.2.4 Micronutrient</td>
<td>198</td>
</tr>
<tr>
<td>9.2.5 Bioactive Components</td>
<td>199</td>
</tr>
<tr>
<td>9.3 Utilization of Banana Peel</td>
<td>199</td>
</tr>
<tr>
<td>9.3.1 Yellow Noodles</td>
<td>199</td>
</tr>
<tr>
<td>9.3.2 Dietary Fibre Concentrate</td>
<td>199</td>
</tr>
<tr>
<td>9.3.3 α-amylase</td>
<td>199</td>
</tr>
<tr>
<td>9.3.4 Xylose</td>
<td>200</td>
</tr>
<tr>
<td>9.3.5 Lipase</td>
<td>200</td>
</tr>
<tr>
<td>9.3.6 Wine Vinegar</td>
<td>200</td>
</tr>
<tr>
<td>9.3.7 Wine</td>
<td>201</td>
</tr>
<tr>
<td>9.3.8 Feed</td>
<td>201</td>
</tr>
<tr>
<td>9.3.9 Sustainability</td>
<td>201</td>
</tr>
<tr>
<td>9.3.10 Bioethanol</td>
<td>202</td>
</tr>
<tr>
<td>9.3.11 Alkali</td>
<td>202</td>
</tr>
<tr>
<td>9.3.12 Biogas</td>
<td>203</td>
</tr>
<tr>
<td>9.4 Conclusion</td>
<td>203</td>
</tr>
<tr>
<td>References</td>
<td>203</td>
</tr>
</tbody>
</table>

10 Utilization of Carrot Pomace

H.K. Sharma and Navneet Kumar

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>207</td>
</tr>
<tr>
<td>10.1.1 Carrot</td>
<td>208</td>
</tr>
<tr>
<td>10.1.2 Processing of Carrot</td>
<td>208</td>
</tr>
<tr>
<td>10.1.3 Carrot By-Products</td>
<td>212</td>
</tr>
<tr>
<td>10.1.4 Carrot Pomace</td>
<td>212</td>
</tr>
<tr>
<td>10.2 Value-Added Products from Carrot Pomace Powder</td>
<td>216</td>
</tr>
<tr>
<td>10.2.1 Biscuits</td>
<td>216</td>
</tr>
<tr>
<td>10.2.2 Cookies</td>
<td>216</td>
</tr>
<tr>
<td>10.2.3 Wheat Rolls</td>
<td>217</td>
</tr>
<tr>
<td>10.2.4 Wheat Bread</td>
<td>217</td>
</tr>
<tr>
<td>10.2.5 Fish Sausage</td>
<td>218</td>
</tr>
<tr>
<td>10.2.6 Extrudates</td>
<td>218</td>
</tr>
<tr>
<td>10.2.7 Fiber</td>
<td>222</td>
</tr>
<tr>
<td>10.2.8 Bio-ethanol</td>
<td>222</td>
</tr>
<tr>
<td>10.2.9 Functional Components</td>
<td>222</td>
</tr>
<tr>
<td>10.2.10 Citric Acid Production</td>
<td>223</td>
</tr>
</tbody>
</table>
11 Processing and Utilization of Soy Food By-Products

M.K. Tripathi and Rahul Shrivastava

11.1 Introduction
 11.1.1 Soybean: Global Scenario and its Future
 11.1.2 Post-Production Management of Soyabean
 11.1.3 Soybeans Product History
 11.1.4 Nutrient Composition Soyabean

11.2 Soy Products and Human Diet
 11.2.1 Nutritionally Balanced Diets
 11.2.2 Lipid Metabolism
 11.2.3 Glucose Tolerance
 11.2.4 Caloric Reduction
 11.2.5 Zinc Bioavailability
 11.2.6 Iron Bioavailability

11.3 Functionality of Soyabean in Various Food Products
 11.3.1 Fermented Products
 11.3.2 Dairy Type Products
 11.3.3 Cereal-Based Products
 11.3.4 Meat and Seafood Products
 11.3.5 Beverages
 11.3.6 Daily Intake
 11.3.7 Soybean in Meals

11.4 Processing and Soyabean Composition
 11.4.1 Proteins
 11.4.2 Soybean Processing and Trypsin Inhibitors
 11.4.3 Soybean Processing and Phytic Acid Composition
 11.4.4 Soybean Processing and Saponins Composition
 11.4.5 Soybean Processing and Isoflavones

11.5 Raw Soy and Soybean Inhibitors in Digestive Enzymes of the Pancreas

11.6 Soybean Inhibitors and Inactivation of Digestive Enzymes

11.7 Beneficial Effects of Soy-Containing Diets
 11.7.1 Cholesterol-Lowering
 11.7.2 Soybean Bowman Birk Inhibitor as an Anticarcinogen
 11.7.3 Soybean Lectins

11.8 Traditional Soy-Foods
 11.8.1 Tofu
 11.8.2 Soy Milk
 11.8.3 Green Vegetable Soybeans
 11.8.4 Tempeh
 11.8.5 Miso
 11.8.6 Soy Sauce
 11.8.7 Natto
 11.8.8 Okara
 11.8.9 Soy Sprouts
 11.8.10 Soybean Oil
 11.8.11 Second-Generation Soy-Foods
 11.8.12 Soy Nuts
 11.8.13 Meat Alternatives
11.8.14 Cheese Alternatives 259
11.8.15 Soymilk Yogurt 259
11.8.16 Non-Dairy Frozen Desserts 259

11.9 Source of Various Enzymes having Industrial Significance 260
11.9.1 Cellulases 260
11.9.2 α- and β-Amylases 260
11.9.3 Proteases 260
11.9.4 Phytases 260
11.9.5 Transglutaminases 261
11.9.6 Ureases 261
11.9.7 Peroxidases 261
11.9.8 α-Galactosidases 261

11.10 Major Soybean By-Products 262
11.10.1 Okara and its Uses 262
11.10.2 Livestock Fodder 262
11.10.3 Organic Compost 262
11.10.4 Pet Food 262
11.10.5 Soysage 262
11.10.6 Baked Goods 263
11.10.7 Okara Tempeh 263
11.10.8 Okara Party Mix 263
11.10.9 Soysage Paté 263
11.10.10 Okara and Vegetable Saute 263
11.10.11 Okara Burgers 263
11.10.12 Okara Onchom 263
11.10.13 Other Food Uses 264

11.11 Tofu Whey and its Uses 264
11.11.1 Natural Organic Soap 265
11.11.2 Livestock Fodder 265
11.11.3 Organic Fertilizer 265
11.11.4 Fuel Alcohol 265
11.11.5 Soymilk Curds 265
11.11.6 Soybean Hulls or Seed Coats 266

11.12 Applications of important soybean products 266
11.12.1 Okara as Source of Dietary Fiber in Functional Food Development 266
11.12.2 Okara as Source of Protein in Functional Food Development 266
11.12.3 Production of Natural Cellulose Fibers from Soybean Straw 267
11.12.4 Recovery of Phytosterols from Waste Residue of Soybean Oil Deodorizer Distillate 267
11.12.5 Production of α-Galactosidase from Soybean Vinasse 268
11.12.6 Production of Bio-Ethanol from Soybean Molasses 268
11.12.7 Production of Citric Acid from Okara 269
11.12.8 Antioxidant Extraction from Soybean By-Products 269

References 270

12 Value-Added By-Products from Rice Processing Industries 277
Kittima Triratanasirichai, Manisha Singh, and Anil Kumar Anal

12.1 Introduction 277

12.2 Rice Bran 279
12.2.1 Protein and Peptide 279
12.2.2 Protein Extraction Method 280
12.2.3 Gamma-Oryzanol (γ-Oryzanol) and Wax 284

12.3 Rice Hull and Rice Bran Fiber 286
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4 Conclusions</td>
<td>287</td>
</tr>
<tr>
<td>References</td>
<td>287</td>
</tr>
<tr>
<td>13 Bioprocessing of Beverage Industry Waste for Value Addition</td>
<td>295</td>
</tr>
<tr>
<td>Surangna Jain and Anil Kumar Anal</td>
<td></td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>295</td>
</tr>
<tr>
<td>13.2 Coffee</td>
<td>295</td>
</tr>
<tr>
<td>13.2.1 Coffee Processing</td>
<td>295</td>
</tr>
<tr>
<td>13.2.2 By-Products and Wastes from Coffee Processing</td>
<td>296</td>
</tr>
<tr>
<td>13.2.3 Utilization of Coffee By-Products and Wastes</td>
<td>296</td>
</tr>
<tr>
<td>13.3 Tea</td>
<td>298</td>
</tr>
<tr>
<td>13.3.1 Processing and Production of Tea</td>
<td>298</td>
</tr>
<tr>
<td>13.3.2 Tea By-Products and Wastes and their Utilization</td>
<td>298</td>
</tr>
<tr>
<td>13.4 Fruit Juice and Soft Drinks</td>
<td>299</td>
</tr>
<tr>
<td>13.5 Alcoholic Beverages</td>
<td>299</td>
</tr>
<tr>
<td>13.5.1 Beer Production</td>
<td>299</td>
</tr>
<tr>
<td>13.5.2 By-Products and Wastes from the Brewing Industry and their</td>
<td>300</td>
</tr>
<tr>
<td>Utilization</td>
<td></td>
</tr>
<tr>
<td>13.5.3 Wine Production</td>
<td>302</td>
</tr>
<tr>
<td>13.5.4 Brandy</td>
<td>304</td>
</tr>
<tr>
<td>13.6 Conclusion</td>
<td>304</td>
</tr>
<tr>
<td>References</td>
<td>305</td>
</tr>
<tr>
<td>14 Bioactive Compounds and their Health Effects from Honey Processing</td>
<td>309</td>
</tr>
<tr>
<td>Industries</td>
<td></td>
</tr>
<tr>
<td>Zjahra Vianita Nugraheni and Taslim Ersam</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>309</td>
</tr>
<tr>
<td>14.2 Biological Applications of Honey</td>
<td>313</td>
</tr>
<tr>
<td>14.2.1 Antibacterial Effects</td>
<td>313</td>
</tr>
<tr>
<td>14.2.2 Antioxidant Effects</td>
<td>314</td>
</tr>
<tr>
<td>14.2.3 Antiviral Effects</td>
<td>316</td>
</tr>
<tr>
<td>14.2.4 Anti-inflammatory Effects</td>
<td>316</td>
</tr>
<tr>
<td>14.3 Conclusion</td>
<td>317</td>
</tr>
<tr>
<td>References</td>
<td>318</td>
</tr>
<tr>
<td>15 Advances in Milk Fractionation for Value Addition</td>
<td>323</td>
</tr>
<tr>
<td>Juan M. Gonzalez, Deepak Bhopatkar, and Dattatreya Banavara</td>
<td></td>
</tr>
<tr>
<td>15.1 Dairy Ingredient Development</td>
<td>323</td>
</tr>
<tr>
<td>15.2 Milk Proteins</td>
<td>324</td>
</tr>
<tr>
<td>15.3 Milk Proteins Classification</td>
<td>325</td>
</tr>
<tr>
<td>15.3.1 Caseins</td>
<td>326</td>
</tr>
<tr>
<td>15.3.2 Whey Proteins</td>
<td>326</td>
</tr>
<tr>
<td>15.3.3 Milk Fat Globule Membrane Proteins</td>
<td>327</td>
</tr>
<tr>
<td>15.3.4 Milk Protein Fractionation Technologies</td>
<td>327</td>
</tr>
<tr>
<td>15.3.5 Milk Protein Ingredients</td>
<td>328</td>
</tr>
<tr>
<td>15.3.6 Milk Protein Hydrolysates</td>
<td>331</td>
</tr>
<tr>
<td>15.4 Milk Fats</td>
<td>334</td>
</tr>
<tr>
<td>15.4.1 Milk Fat Classification</td>
<td>334</td>
</tr>
<tr>
<td>15.4.2 Milk Fat Ingredients</td>
<td>334</td>
</tr>
</tbody>
</table>
CONTENTS

15.5 Milk Carbohydrates
 15.5.1 Lactose
 15.5.2 Enzymatic and Chemical Modification
15.6 Milk Oligosaccharides
 15.6.1 Oligosaccharide Processing
15.7 Future Outlook
References

16 Bioprocessing of Chicken Meat and Egg Processing Industries’ Waste to Value-Added Proteins and Peptides

Surangna Jain, Damodar Dhakal, and Anil Kumar Anal

16.1 Introduction
16.2 By-Products and Wastes Generated During Chicken Meat and Egg Processing
 16.2.1 Feather
 16.2.2 Skin
 16.2.3 Bones
 16.2.4 Trachea
 16.2.5 Blood
 16.2.6 Feet
 16.2.7 Eggshell and Eggshell Membrane
16.3 Proteins and Peptides derived from Chicken Processing By-Products and Waste
 16.3.1 Collagen
 16.3.2 Gelatin
 16.3.3 Keratin
 16.3.4 Plasma Proteins
 16.3.5 Bioactive Peptides
16.4 Valorization of Egg Waste
16.5 Conclusion
References

17 Bioprocessing of Beef and Pork Meat Processing Industries, ‘Waste to Value-Add’

Damodar Dhakal, Sajal Man Shrestha, and Anil Kumar Anal

17.1 Introduction
17.2 Different By-Products and Waste coming from Beef and Pork Meat Processing Industries
 17.2.1 Skin
 17.2.2 Bones
 17.2.3 Hides and Hooves
 17.2.4 Horn
 17.2.5 Blood
 17.2.6 Lard
 17.2.7 Viscera
17.3 Valorization of Beef and Pork Meat Processing Waste
 17.3.1 Collagen
 17.3.2 Gelatin
 17.3.3 Blood Products
 17.3.4 Bioactive Peptides
 17.3.5 Biodiesel
 17.3.6 Keratin
18 Aquaculture and Marine Products Contribution for Healthcare Application

Maushmi S. Kumar

18.1 Introduction 417
18.2 Various Classes of Freshwater and Marine Products and their Healthcare Application
 18.2.1 Proteins and Peptides 418
 18.2.2 Marine Enzymes 420
 18.2.3 Polyunsaturated Fatty Acids 421
 18.2.4 Seafood Processing By-Products 422
18.3 Recent Patents in Healthcare Applications 426
 18.3.1 Chitin and Chitosan 426
 18.3.2 Phycocolloids 428
 18.3.3 Carotenoids 428
18.4 Conclusion 430
References 431

19 Seafood By-Products in Applications of Biomedicine and Cosmeticuals

Ngo Dang Nghia

19.1 Introduction 437
 19.1.1 Global Fishery Production 438
 19.1.2 Important Species 438
 19.1.3 Seafood By-Products 439
19.2 Seafood By-Products and Biomedicine 442
 19.2.1 Fish Protein Hydrolysate 443
 19.2.2 Carotenoprotein 445
 19.2.3 Bioactive Peptides 447
 19.2.4 Glycosaminoglycans (GAGs) 448
 19.2.5 Polyunsaturated Fatty Acids 450
 19.2.6 Chitin/Chitosan 452
 19.2.7 Collagen, Gelatin 454
19.3 Marine Cosmeticuals 457
 19.3.1 Cosmetics and Cosmeceuticals 457
 19.3.2 Skin Care 458
 19.3.3 Bioactive Compounds from Seafood By-Products for Skin Care 459
19.4 Conclusions 461
References 461

20 Food Industry By-Products as Protein Replacement in Aquaculture Diets of Tilapia and Catfish

Gabriel Arome Ataguba, Manoj Tukaram Kamble, and Krishna R. Salin

20.1 Introduction 471
 20.1.1 Overview of Aquaculture 471
 20.1.2 Use of Fishmeal 472
 20.1.3 Siluridae 473
 20.1.4 Cichlidae 473
 20.1.5 Food Industry By-Products 474
20.2 Alternatives to Fishmeal in Catfish Diets 475
 20.2.1 Ingredients of Plant Origin 475
 20.2.2 Ingredients of Animal Origin 480
20.2.3 Other By-Products and Immuno-Modulation 482
20.3 Alternatives to Fishmeal in Tilapia Diets 482
20.3.1 Plant By-Product Protein Source 482
20.3.2 Animal By-Product Protein Source 486
20.3.3 Other By-Product Protein Source 490
References 491

21 Value-Added By-Products from Sugar Processing Industries 509
Ali Akbar and Imran Ali

21.1 Introduction 509
21.2 Pulp and Paper Production 512
21.2.1 Pulp Production 512
21.2.2 Paper Production from Bagasse Pulp 513
21.3 Agglomerated Products Production from Bagasse 513
21.3.1 Particle Board Production 514
21.3.2 Fiber Board Production 514
21.4 Alcohols 515
21.4.1 Production of Alcohol 515
21.4.2 Substrate Preparation 515
21.4.3 Preparation and Inoculation of Yeast 516
21.4.4 The Process of Fermentation 516
21.4.5 Alcohol Purification 516
21.4.6 Kinds of Alcohols Obtained from Sugar Industries 517
21.5 Animal Feed 519
21.5.1 Animal Feed from Beet Sugar Industries 519
21.5.2 Animals Feed from Cane Sugar Industries 520
21.6 Acids 521
21.7 Pectins 522
21.8 Functional Foods and Nutraceuticals 522
21.9 Anti-Desiccants 523
21.10 Biodegradable Plastics and Biopolymers 523
21.11 Food Products, Flavorings and Aromas 524
21.12 Char and Biofertilizers 525
21.13 Waste Water Treatment and Environmental Bioremediation 526
21.14 Energy and Biogas from Sugar Industries 527
21.15 Sprays and Colors 527
21.16 Solvents 528
21.17 Bio-Filters 528
21.18 Microbial Substrates 528
21.19 Summary and Future Prospects 528
References 529

22 Regulatory and Legislative Issues for Food Waste Utilization 535
Lavaraj Devkota, Didier Montet, and Anil Kumar Anal

22.1 Introduction 535
22.2 Possible Mitigation Measures for Food Processing Wastes 536
22.2.1 Composting and Land Spreading of Food Processing Waste 536
22.2.2 Feeding Food Processing Waste to Livestock 537
22.2.3 Utilization of Food Processing Waste as Feed/Food Supplement through Value Addition or Modification in Processing Method 537
22.2.4 Food Processing Source Reduction and Waste Management 538
22.3 Impact of Waste Disposal on Environment and Human Health 539
CONTENTS

22.4 Need of Legislative and Regulatory Guidelines
22.5 Concept of Policies, Legislations, Code of Conduct and Regulations for Food Waste Utilization
22.6 Prevailing Legislation and Regulatory Guidelines for Food Waste Utilization
 22.6.1 European Union
 22.6.2 The USA
 22.6.3 Asian Region
22.7 Possible Amendments and Scope for the Development of New Regulations on Food Waste Utilization
22.8 Use of Recent Advancements in Food Waste Utilization
22.9 Conclusion
References

Index