Activity-related operational risks, 521
Actuarial approach
operational loss measurement, 523–526
and risk measurement, 382–383
risk-neutral approach vs., 463–464
and risk pricing, 459–460
Aczel, Amir D., 25, 42, 46, 53
Advanced measurement approach
(AMA), capital charges, 526
Aggregating risk, summary measures, 285–290
AIB/Allfirst Financial trading loss
AIG Financial Products (FP) trading loss (2008), 13, 82–84
All-or-nothing contribution to risk, 162–163, 317–318, 327
Amaranth Advisors trading loss
Ambiguity aversion. See uncertainty/randomness
American Alpine Club, 102
Aracruz Celulose trading loss
(2008), 104, 110–111, 115, 128, 130
ARCH (autoregressive conditionally heteroscedastic) model, 251
Ars Conjectandi (Bernoulli), 42
Asset liquidity risk
costs/benefits of liquidation, 484–487
defined, 182–183, 481
evaluating, 483, 492–496
Asset-to-risk factor mapping
conceptual models, 210–211
FX example, 214
for single bond position, 271
Asymmetric (skewed) distribution
and credit risk modeling, 182, 394–403
credit vs. market risk, 380–382
and volatility, 190–191
Asymmetric information
historical vs. future data, 36–37
principal-agent issues, 69
Autoregressive conditionally
heteroscedastic (ARCH)
model, 251
Avalanche response, as risk
management model, 93–96, 101–102
Back-office procedures
effective risk management, 513–514, 516, 519, 521–522
as source of operational risk, 112, 116, 118, 125–126, 129, 131–132
Bagehot, Walter, 496–497
Bank for International Settlements (BIS), 91
Bank of Montreal trading loss (2007), 105, 120, 123
Banks
commercial, regulations governing, 90–91
corporate structure and risk management, 85
defining assets, capital holdings, 91–92
and funding liquidity risk, 496–497
measuring and managing liquidity, 498–504
operational risk, 513, 516–519
Barings Brothers failure (1890), 465
Basel Committee on Banking Supervision. See BCBS
Basel II/Basel III rules, 92, 525–526
Basic-indicator (BI) approach, capital charge calculation, 526
Basis point value (BPV), 8
Bayes, Thomas, 52
Bayes’ rule/Theorem, 48–51, 53–58
BCBS (Basel Committee on Banking Supervision), 90–91, 183–184, 226–229, 513, 516–517
Bear Stearns (2008) failure, 63–64
Beliefs/belief inertia, 98
Belief-type probability
Bayes’ rule, 48–51
de Finetti game, 45–46
with frequency-type probability, 52–53, 58
logical probability, 46–47
Berger, Michael, 120
Berkeley, George, 15
Bernoulli, Jakob, 41–42
Bernoulli mixture models applications, 401–403, 443–446
parameters, 451–454
Poisson mixture comparison, 449
using Poisson variable in, 430–431
Bernoulli Probit-Normal Mixture, 457
Bernoulli’s Theorem, 42
Best hedge position calculations, 164–167, 327–335, 354–355, 364
Best practices, 85–86, 131
Beta-equivalent notational, 8
Binning for fixed-income instruments, 215–216
Binomial distribution as analytic approach, 456
Bernoulli trials, 41–42, 478
for defaults, 386–387, 394
negative, 433, 436, 448
BIS (Bank for International Settlements), 91
Blink (Gladwell), 38
Blunden, Tony, 513–514, 517, 521, 523
Board of directors, role in risk management, 3, 67, 85–86, 89
Bonds asset/risk factor mapping, 210–212, 271
comparing multiple assets, 246
corporate, default example, 196–199
Index

and credit risk modeling, 378, 404, 409, 417, 463, 465, 472, 475
DV01/BPV, 8, 154–156, 271
floating-rate, and CDS behavior, 80
liquidation costs, 503–504, 506
portfolio analysis involving, 333, 336–337, 351, 355, 360
and rate swaps, 74–83
risks associated with, 95, 179, 181–182
risky, pricing model for, 470–472
and share value, 71
tail events associated with,
104–105, 114, 116, 119, 121–122, 128
volatility contributions/
comparisons, 159, 166–167
BPV (basis point value), 8
Brazil currency markets, and trading
loss events, 130
Breast cancer risk calculations,
49–51
CAC index futures
best hedge positions/replicating portfolios, 164–166
beta-equivalent position, 8
estimating volatility of, 156–157
liquidity of, 488
marginal contribution
calculations, 161–162
and normal distribution, 145
in parametric estimates, 216–217
portfolio analysis example, 269, 313–316, 324–334, 348
volatility contributions/
Capital asset pricing model, 214
Capital charges (Basel II), calculating, 525–526
Capital holdings, 91–92
Cash flow. See also Funding
liquidity risk
cash-flow mapping, 215–216
credit default swaps, 80–82, 214, 466–468
future, valuing, 461
and interest rate swaps, 74–75
and liquidity risk, 182
and market/cash distribution, 510–511
risky bonds, 214, 470–472
Cash flow mapping, 215
Cayne, Jimmy, 63–64
CDSs (credit default swaps)
and AIG Financial Products failure, 82–84
applying market pricing to,
471–472
behavior of and risk calculations,
79–84
equivalence to floating rate note,
466–467
pricing model, 467–470
Central limit theorem, 44, 327
Central tendency, 188
CEO (chief executive officer), risk management responsibilities,
3, 10, 67, 73, 86–87, 89
China Aviation Oil (Singapore) trading loss (2004), 105, 108–109, 119, 124, 128, 130
CITIC Pacific trading loss (2008), 104, 116, 124, 128
Citron, Robert, 114
Closing-time problem, 218–219
Codelco trading loss (1993), 105, 107–109, 121, 124
Cognitive biases, 22
Coleman, Thomas S., 71
Collateral calls, 182, 509–511
Commodity price risk, 179–180
Common factor structure, 400
Communications. See Risk communication/reporting
Compensation and incentives, 68–71, 478, 518
Constructivist (actuarial) approach, 382–383
Contribution to risk tools, 161–163
Convolution, 201
Copulas, 241–243, 299–304
Corporate structure, 84–87, 125–127. See also Board of directors; CEO (chief executive officer)
Correlations
assets within a portfolio, 326–327
correlation matrix estimates, 251
credit risk modeling, 394–403
daily, and portfolio risk estimates, 218–219
and diversification, 404–407
and joint default probability, 388–389
over time, 246–248
and risk reduction potential, 314–317
Counterparty risk, 181, 379
Covariance, 217–219, 242, 249, 266, 331. See also Variance-covariance distribution
Cramér, Harald, 188–189
Credit analysis, 473–477
Credit default correlations, 405–406
Credit default swaps. See CDS (credit default swaps)
CreditMetrics, 421–429
Credit migration, 478
Credit risk
data inputs, 379, 383, 390–391
defined, 180–181, 377
legal issues, 383
limits, implementing, 89
market risk vs., 379–383
operational risk vs., 515
and P&L distribution estimates, 377–378
and risk-weighted assets, 92
varieties of, 181–182, 378–379
CreditRisk+ model
assumptions, 434–435
conditional independence across firms, 431–434
CreditMetrics model comparison, 458
credit risk pricing vs., 409–410
intensity volatility and default correlation, 437–441
loss distribution, 441–443
overview, 429–430
parameters, 454
Poisson process, Poisson mixture, and negative binomial default distribution, 430–432, 435–436
specific factor, 441–442
static vs. dynamic models, 410–411
Credit risk modeling
Bernoulli vs. Poisson mixture models, 451–456
equivalent Martingale/risk-neutral pricing, 461–463
reduced form approach, 429–443
risk pricing approach, 459–460, 463–464
static/structural approach, 409, 411–429, 443–448, 450
stylized approaches, 383–386, 388–409
taxonomy, overview, 410–412
technical challenges, 390
Credit structures, types of, 464–477
Credit Suisse Financial Products, 429, 432, 437–438, 441
Crisis funding requirements, 502–503
CRO (chief risk officer), 86
Cross-currency settlement risk, 107
Crouhy, Michel, 85–88, 90, 179–180, 204, 261, 327

Daily volatility, 9
Damage control, 6, 93–95, 99, 530
Data
for asset liquidity risk estimates, 492
for bank funding liquidity risk estimates, 499–500
for credit risk estimates, 379, 383, 390–391, 416, 454
historical vs. future, 36–37, 205–206
internal vs. external, 176–177
and IT infrastructure, 72–73, 176–177
for operational risk estimates, 515
Default probability, 414–421, 430, 432
De Finetti, Bruno/De Finetti game, 45–46, 48
Delta normal distribution. See Parametric approach
Dependence
across defaults, 425, 428
across firms, 419–421, 428–431, 436, 445
copulas, 241–243, 300, 303
credit risk distributions, 278, 281, 386, 388–391
credit risk modeling, 394–403
multivariate analyses, 296
tail dependence, 245, 248, 305–306
Derivatives, second
and funding liquidity risk, 505–508
parametric estimation using, 307–310
Desk-level traders, view of risk, 7–8
Dexia Bank trading loss (2001), 105, 110–111, 121
Dimensionality, 251
Disasters, financial. See Financial risk events; Tail (extreme) events
Dispersion. See Scale
Dispersion/density functions, 16–20, 189–191
Diversification, 196, 403–407
Dollar duration, 8
Dow Jones Industrial Average, 227–229, 235–237
Dynamic reduced form risk pricing, 461–464
Econometrics, 251
Economic capital
and credit risk modeling, 377–378, 393, 459–460, 477
crisis funding, 502–504
Elliptical distributions, 201
Ellsberg, Daniel/Ellsberg paradox, 58–62
Embedded options, 70–71
Employer-employee relations, 68–69
Equity price risk, 179
Equity traders, 8
Equivalent Martingale/risk-neutral approach to risk pricing, 461–463
Erdős, Paul, 35
ES (expected shortfall), 199–200
Exponential weighting, 250–251
Exposure, measuring, 8, 388–389
Extreme events. See Tail (extreme) events
Extreme value theory (EVT), 237–241, 245, 296–299
Factors, factor loadings, principal component analysis, 342–344, 346, 400
Failure to segregate, as cause of trading loss event, 131
Familiarity and effectiveness, 97–98
Fannie Mae/Freddie Mac, 133
Fat tails, 246–248
Feller, William, 15, 29–30
Finance unit (risk management group), 89
Financial times series, 245–248
5%/95% VaR, 198
Fixed-income traders, 7–8
Foreign exchange. See FX (foreign exchange) speculation
Franklin, Benjamin, 46, 206
Fraudulent trading and financial loss events, 107–112
fraud without, 124
and operational risk management, 516–519
preventing, 125–127
tangential fraud, 128
types of fraud, 123–125
Fréchet-class distribution, 238–240
Frequency-type probability, 43–45, 47, 52–53, 58
365–366, 368, 403, 405–406, 525
FRN (floating-rate notes), 80–82, 466–467
Front-back office separation, and trading loss events, 125, 129, 131
Funding liquidity risk defined, 182–183, 481–483
and derivatives, 505–508
leverage instruments, 505–507
market-to-market payments and market/cash volatility, 509
Metallgesellschaft trading loss (1993), 511–512
risk management using, 496, 498–504
FX (foreign exchange) speculation as cause of trading losses, 107, 128–130, 179
forward contracts, risks associated with, 207–208
risk estimates, valuation model, 211–212
Galai, Dan, 85–88, 90, 179–180, 204, 261, 327
Gamma random variable, 479
GARCH (generalized autoregressive conditionally heteroscedastic) model, 251
Gardner, Martin, 32
Garman, M. B., 160, 312, 318
General Electric, 106
Generalized linear mixed credit risk models, 448
Generalized pareto distribution. See GPD
GEV (generalized extreme value) distribution, 237–240, 296–299
Index

Gigerenzer, Gerd, 21, 24, 39, 49, 51, 58
Gladwell, Malcolm, 38, 63–64
Global financial crisis, 92
Goldman Sachs, 103, 151, 354, 512
Gordy, M. B., 458
GPD (generalized pareto distribution), 237, 240–241, 296–300
Gumbel-class distribution, 238–240

Hacking, Ian, 48, 52–53
Haldane, Andrew, 101

Hedge funds
loss events, 76, 103, 113–114, 116, 118, 120, 125, 127–128
operational risk, 513, 521–522
performance fees, 71
Herstatt. See Bankhaus Herstatt
Heuristics (rules of thumb), 22, 151–152
High-water mark, 71

Historical approach
asset to risk factor mapping, 271–272
modeling, 221–223
P&L distribution, 274–276
parametric and Monte Carlo approaches vs., 224–225
summary, 217–218
volatility and VaR, 223–224, 278–281

Hot Spots and Hedges (Litterman), 160, 312, 318

Human factor, 96–97, 99
Hyperinflation, 132
Hypo Group Alpe Adria trading loss (2004), 105, 110–111, 120, 124

Idiosyncratic risk
system risk vs., 12–13, 102
trading loss events, 1974-2008, 103–122

Iguchi, Toshihide, 124

Incentive schemes, 70
Incremental VaR. See All-or-nothing contribution to risk
Infinitesimal contribution to risk. See Marginal contribution to risk
Inflation, 106–107, 132

Innumeracy, statistical, overcoming, 39

Interest rate risk, 179

Intuition, human
and probability, 22–26, 29–30, 37–38
role in risk management, 68

IRSs (interest rate swaps), 74–79
IT (information technology)
infrastructure needs, 72–73, 177

Japan, banking crises, 91, 134
Jett, Joseph, 122
Jobs, Steve, 25–26
Jorion, Philippe, 72, 79, 154, 183–184, 191, 204, 221, 226, 241–243, 318, 327, 482

JPMorgan, 203, 421
Kahneman, Daniel, 22–24
Kealhofer, Stephen, 416–417
Kerviel, Jérôme, 113, 124
Keynes, John Maynard, 47–48, 60
INDEX

Kindleberger, Charles P., 132
Kluppelberg, Claudia, 226
Kmenta, Jan, 230
Knight, Frank, 47, 59
Kolmogorov, A. N., 47
KRIs (key risk indicators), 522–523
Langer, Ellen, 63
Laplace, Pierre-Simon, 52
Law of large numbers, 42, 44–45, 48, 64, 237, 444
Lee, David, 120
Lee, K. T. A., 305
Leeson, Nick, 112, 115, 131
Legg Mason Value Trust performance, 53–58
Legitimate practices, trading losses from, 127–129
Lehman Brothers’ trading loss (2008), 13, 379, 390
LeRoy, Stephen F., 47
Let’s Make a Deal (TV show), 30–36
Leveraged instruments. See also CDS (credit default swaps); Hedge funds
defined, 82
and liquidity risk, 182, 497–498, 505–507
speculation in, 111–114, 128, 130
LGD (loss given default), 388–389, 442, 447
Limits, implementing, 89–90
“Linda the Bank Teller” example, 22–24
Linear mixed models, generalized, 448–450
Line managers, 3, 5, 67
Liquidating assets, costs, 483–487
Liquidity risk
asset liquidity risk, 484–496
asset vs. funding liquidity, 481
credit vs. market risk, 380
funding liquidity risk, 496–512
and systemic failures, 512
Litterman, Robert, 151–152, 157–160, 204, 282, 311–312, 316, 318
Lleo, Sébastien, 72, 183
Local-valuation method, 221
Location, in distribution measurements, 20, 188
Logical probability, 46–47
Lombard Street (Baghot), 496–497
London Interbank Offered Rate (LIBOR), 80–82
Loss-distribution measurements for operational loss, 523–526
Losses, anticipating, 42, 135. See also P&L (profit and loss)
Loss event categories, 516–519
Lowenstein, Roger, 58, 76, 78–79
Luck, 6, 25–28, 64, 530
Luck (Rescher), 6
Mackay, Charles, 132
Macroeconomic financial crises. See Systemic risk
Managers
collaborations tandem with risk professionals, 138
contribution to trading loss events, 131
incentivizing, 68–70
overconfidence, 63
responding to shareholders/owners, 68–69
risk understanding, importance, 73, 137–138
Index

training to use measurement tool, 67–68
Manhattan Investment Fund trading loss (2000), 105, 110–111, 120, 124, 128
Manias, Panics, and Crashes: A History of Financial Crises (Kindleberger), 132
Marginal contribution to risk calculating, 160–162, 318–327, 365–368
definitions and terms used for, 317–318
reporting, 353–354
subportfolios, partitioning approach, 361–362
volatility estimates
 multiple-asset best hedge position, 364–365
 simple portfolio, 329–333
 single-asset best hedge position, 363
 single-asset zero position, 362–363
Margin calls, 182–183
Mark, Robert, 85–88, 90, 179–180, 204, 261, 327
Market/cash distribution, 509–510
Market risk
credit risk vs., 379–383
defined, 178–179
estimating
 historical approach, 217–218
 Monte Carlo approach, 218
 parametric approach, 216–217
limits associated with, implementing, 89
modeling, 219–223
operational risk vs., 515
 and P&L, 207–208, 270–284
reporting
sample portfolio, 347–353
subportfolios, 355–360
risk categories, 179–180
risk factor distribution estimates, 244–251
and risk-weighted assets, 92
terminology for, 7
Market-to-market payments, 509
Markowitz framework, 18–19
Marrison, Charles (Chris), 179, 226, 319, 324, 368, 392, 402–504
Mean-variance Markowitz framework, 18–19
Merton, Robert C., 71, 410–416
Meta distributions, 300
MF Global Holdings trading loss (2008), 105, 110–111, 122
Migration modeling, for credit risk estimates, 421–429
Mikosch, Thomas, 226
Miller, Bill. See also Legg Mason Value Trust Fund, 26–28, 53
Mirror portfolios. See Replicating portfolios
Mixture of distributions for credit risk modeling, 401–403
two-position example, 303–304
Mixture of normals assumption, 291–296
MKMV (Moody’s KMV) credit risk model
CreditMetrics model vs., 429
data sources, 416
default probability function, 418–419
factor structure and dependence across firms, 419–421
implementing, 416–417
unobservable assets, 417–418
Mlodinow, Leonard, 24, 36–39
Monte Carlo approach to risk estimation
asset-to-risk-factor mapping, 271–272
copula/multivariate approach, 300–306
marginal contribution to risk calculations, 366–368
overview, 217–218
P&L distribution, 276–278
parametric and historical approaches vs., 224–225
volatility and VaR calculations, 206, 223–224, 278–281, 324
Monty Hall problem, 30–36
Mortgage bonds. See also Tail (extreme) events
and credit risk modeling, 378, 475
liquidation costs, 506
repo market for, 506
subprime, 83, 181–182, 465, 512
Multiple asset portfolios. See also Covariance
analytic challenges, 10
analyzing tail events, parametric assumptions, 294–296
calculating marginal contribution to risk, 364–365
mixture of normals approach, 294
replicating portfolios for, 165, 167, 335–337
Multiple-issuer credit risk, 181, 378–379
Multivariate distributions, 231, 241–243, 305. See also Copulas
National Australia Bank trading loss (2004), 105, 108–109, 121, 124
Natural frequencies, 49, 51
NatWest Markets trading loss (1994), 105, 110–111, 121, 124, 128
Negative binomial distribution, 479–480
Newton, Isaac, 98
New York Times, 60
Nocera, Joe, 103, 512
Non-normal multivariate distributions, 241–243
Nonsymmetrical distribution, 145–146
Normal distribution
analyzing tail events, 292
calculating risk factor distributions, 272–273
determinants, 244
and marginal contribution to volatility, 324
overview, 144–146
P&L distribution estimates, 154
predicting tail events, 227–229
Normal mixture distributions, 231
Normal-normal distribution, 303–304
Normal trading, and trading loss events, 108–111
Norway, systemic banking crisis (1987-1993), 134

Objective probability. See Frequency-type probability
One-off events, probability of. See Belief-type probability
Operational risk
 capital charges and, 525–526
 loss events vs., 517, 519
 managing and mitigating, 513–514, 527
 market risk/credit risk vs., 515
 measuring and modeling losses, 523–526
 overview, 183–184, 514–519
 sources and types, 519–523
Operations/middle office (risk management group), 89
Opportunity, capitalizing on, 6, 8, 16, 530
Options, embedded, 70–71, 111
Orange County, CA trading loss (1994), 104, 110–111, 114, 127
“Order of Magnitude Physics” (Sanhoy, Phinney, and Goldreich), 138–139
OTC (over-the-counter) transactions, 106, 115, 181, 379, 509
Other mapping/binning, 210, 215–216
Overconfidence, problem of, 62–65, 172

P&L (profit and loss) distribution
 ambiguity of, 140, 142–143
 and asset liquidity risk, 494–496
 asset/risk factor mapping, 210–216
 as basis for financial risk management, 7, 139–141, 178, 223–224
 constructivist vs. market approach, 382–383
 and costs of liquidation, 483, 484–488
 and credit risk, 377–378
day-by-day P&L, 482–483
 location and scale (dispersion), 188
 and operational risk, 515, 519–523
 and risk factor distribution, 144–146, 216–219, 244
 sources of variability, 8, 16–21, 207
 and static credit risk modeling, 410
time scaling, 149–150, 200–202
 volatility and VaR and, 143–149, 199–200
 when comparing securities or assets, 155–156
Paradoxes, and ambiguity, 58–62
Parametric approach/parametric distribution
 asset-to-risk-factor mapping, 271
 historical and Monte Carlo approaches vs., 224–225
 modeling, 220–221
 overview, 154, 216–217
P&L distribution estimates, 273–274
Parametric approach (Continued)
 risk factor distribution, 272–273, 307–310
 second derivatives, 262–267
 tail events, 291–296
 volatility and VaR, 205–206, 223, 278–281
Partitioning, 327, 361–362
Past/future asymmetry, 36–37
Pentagon Papers, 60
Physical measure/actuarial approach to risk pricing, 459–460
Poisson distribution, 444, 479
Poisson mixture models, 446–449, 455–456
Poisson random variable, 430–432
Popper, Karl, 47–48
Portfolio allocation. See also P&L (profit and loss) distribution;
 Risk management; Risk measurement
diversification and, 196, 403–404
manager responsibilities, 3, 7
Markowitz framework and, 19
 and P&L, 207
Portfolio analysis. See also specific risk measurement approaches
 all-or-nothing contribution to risk, 327
 asset liquidity risk estimates, 492–494
 best hedge position calculations, 327–333
 comparing positions, summary measures, 283–284
 contribution to risk calculations, 160–163, 317–327
 and correlation, 218–219, 326–327
day-by-day P&L, 482–483
 liquidation costs, simple CAC portfolio, 488–491
multi-asset replicating portfolio, 335–337
principal components analysis, 337–346
risk reduction potential calculation, 314–317
simple replicating portfolios, 333–335
understanding and communicating risk, 311, 347–354
using copula and Monte Carlo approach, 300–306
using parametric approaches, 291–296
volatility and VaR measures, 270–283, 313–315
zero position contribution to risk, 327
Price, Richard, 52
Principal-agent problems, 68–69
Principal components analysis
 application to P&L estimates, 344–346
 basic concepts and approach, 337–340
 risk aggregation using, 340–344, 370–375
 user-chosen factors, 346
 using, 215, 312
Probability
 assumptions and, 31, 37–38
 Bayes’ rule (Theorem), 48–51
 belief-type probability, 45–47
 binomial distribution, 478
 combining belief-type and frequency-type probability, 52–53, 58
 of default, modeling, 388–389
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>defined</td>
<td>39</td>
</tr>
<tr>
<td>frequency-type probability</td>
<td>43–45</td>
</tr>
<tr>
<td>gamma random variable</td>
<td>479</td>
</tr>
<tr>
<td>joint, in credit risk modeling</td>
<td>426–429</td>
</tr>
<tr>
<td>negative binomial distribution</td>
<td>479–480</td>
</tr>
<tr>
<td>nonintuitive approaches to</td>
<td>24–25</td>
</tr>
<tr>
<td>and past/future asymmetry</td>
<td>36–37</td>
</tr>
<tr>
<td>Poisson distribution</td>
<td>479</td>
</tr>
<tr>
<td>probability theory, history</td>
<td>47</td>
</tr>
<tr>
<td>probability paradoxes</td>
<td>28–36</td>
</tr>
<tr>
<td>and randomness</td>
<td>22–24</td>
</tr>
<tr>
<td>and runs, streaks</td>
<td>25–28, 40–41</td>
</tr>
<tr>
<td>uses for</td>
<td>42</td>
</tr>
<tr>
<td>Process/business line operational risks</td>
<td>521</td>
</tr>
<tr>
<td>Procter & Gamble trading loss</td>
<td>105, 110–111, 121</td>
</tr>
<tr>
<td>Profits. See P&L (profit and loss)</td>
<td></td>
</tr>
<tr>
<td>distribution</td>
<td></td>
</tr>
<tr>
<td>Proxy mapping</td>
<td>210, 216</td>
</tr>
<tr>
<td>Quantile distributions</td>
<td>254–256, 258–261</td>
</tr>
<tr>
<td>Quantitative risk measurement. See</td>
<td></td>
</tr>
<tr>
<td>Risk measurement</td>
<td></td>
</tr>
<tr>
<td>Ramsey, Frank Plumpton</td>
<td>48</td>
</tr>
<tr>
<td>Randomness. See Uncertainty and randomness</td>
<td></td>
</tr>
<tr>
<td>Random walks</td>
<td>28–30</td>
</tr>
<tr>
<td>Reckoning with Risk: Learning to Live with Uncertainty (Gigerenzer), 39</td>
<td></td>
</tr>
<tr>
<td>Regulation</td>
<td>90–92, 131, 134, 517–518, 520</td>
</tr>
<tr>
<td>Reinhart, Carmen M., 13, 133</td>
<td></td>
</tr>
<tr>
<td>Replicating portfolios</td>
<td></td>
</tr>
<tr>
<td>multi-asset portfolios</td>
<td>335–337</td>
</tr>
<tr>
<td>reporting</td>
<td>354–355</td>
</tr>
<tr>
<td>stepwise procedure for</td>
<td>369–370</td>
</tr>
<tr>
<td>using, 164–167, 333–335</td>
<td></td>
</tr>
<tr>
<td>volatility estimates</td>
<td>329</td>
</tr>
<tr>
<td>Rescher, Nicholas</td>
<td>6, 64, 530</td>
</tr>
<tr>
<td>Reserves</td>
<td>477</td>
</tr>
<tr>
<td>Risk</td>
<td></td>
</tr>
<tr>
<td>ambiguity/uncertainty vs.</td>
<td>58</td>
</tr>
<tr>
<td>defined</td>
<td>15, 19, 178, 187–188</td>
</tr>
<tr>
<td>idiosyncratic vs. systemic</td>
<td>12–13, 102</td>
</tr>
<tr>
<td>importance of managers’ understanding of</td>
<td>73</td>
</tr>
<tr>
<td>luck vs.</td>
<td>64</td>
</tr>
<tr>
<td>multifaceted nature of</td>
<td>17–20</td>
</tr>
<tr>
<td>sources of</td>
<td>158–160</td>
</tr>
<tr>
<td>types of, overview</td>
<td>178–184</td>
</tr>
<tr>
<td>upside vs. downside</td>
<td>16</td>
</tr>
<tr>
<td>Risk advisory director</td>
<td>86</td>
</tr>
<tr>
<td>Risk aggregation</td>
<td>337–346</td>
</tr>
<tr>
<td>Risk assessment (operational risk)</td>
<td>519–523</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>59</td>
</tr>
<tr>
<td>Risk communication/reporting</td>
<td></td>
</tr>
<tr>
<td>best hedges and replicating portfolios</td>
<td>354–355</td>
</tr>
<tr>
<td>bottom-up vs. top-down approach</td>
<td>347</td>
</tr>
<tr>
<td>consistency in</td>
<td>7</td>
</tr>
<tr>
<td>daily data reporting</td>
<td>72–73, 177</td>
</tr>
<tr>
<td>data inputs</td>
<td>176–177</td>
</tr>
<tr>
<td>importance</td>
<td>4, 11, 39, 172, 311</td>
</tr>
<tr>
<td>IT systems</td>
<td>177</td>
</tr>
<tr>
<td>marginal contribution to risk</td>
<td>353–354</td>
</tr>
<tr>
<td>risk management group</td>
<td>89</td>
</tr>
<tr>
<td>for sample portfolio, summary</td>
<td>347–353</td>
</tr>
<tr>
<td>for subportfolios</td>
<td>355–360</td>
</tr>
<tr>
<td>Risk events. See Tail (extreme) events</td>
<td></td>
</tr>
</tbody>
</table>
Risk management. See also P&L (profit and loss) distribution; Portfolio analysis; Risk communication/reporting; Risk measurement as core competence, 5, 67, 101–102, 175–176, 529–530
credit risk management, 409–410
fraud-preventing policies and systems, 125–127
goals and importance, 3–6, 70–71, 92
heuristics, cautions about, 97–98
infrastructure/programming needs, 176–178, 391
liquidity risk assessments, 492–494
managing people, 68–71
managing processes and procedures, 71–72
and operational risk, 504, 513–515, 527
organizational structure/culture and, 6, 71, 84, 87
parties responsible for, 3–4, 7–9, 12, 85–87, 89
processes and procedures for, 39, 71–72, 86–90, 92–93
probabilistic intuition, 42–43
risk measurement vs., 3, 5
understanding day-by-day P&L, 312, 482–483
understanding tail events and systematic failures, 13, 296–299, 512
using risk professionals, 138
Risk measurement. See also P&L (profit and loss) distribution;
Risk management and specific measurement tools and approaches
best hedge position calculations, 164, 327–333
frequency-and belief type probabilities, 52
comparing securities and assets, 155–157, 285–286
consistent measurements, tools for, 7, 43, 67–68, 184–185
contribution to risk calculations, 160–163, 317–318
credit risk vs. market risk, 390
data needs and sources, 7–9, 379
distributions/density, 16–17, 20–21, 144–146
expected shortfall calculations, 199–200
funding liquidity risk, 498–504
identifying sources and direction of risk, 340–344
interest rate swaps (IRS), 74–79
importance and goals, 4, 96–97, 175–176
independence of within corporate structure, 87
information technology infrastructure needs, 72–73
language of quantification, 6–7
limitations, 5, 170–172
market approach, 382–383
measuring extreme (tail) events, 151–153
portfolio management tools, 311–312
principal components analysis, 337–346
risk management vs., 3, 5
standard vs. extreme conditions, 202–203, 291–296
summary measures, 19–21, 188–189
uniform foundation for, 4
using approximation, simple answers, 138–139
RiskMetrics, 215–216, 318, 327
Risk-neutral risk pricing, 461–464
Risk pricing, 461–472
Risk reduction potential calculation, 314–317
Risk unit (risk management group), 89, 137–138
Risk-weighted assets, 91–92
Rogoff, Kenneth S., 13, 133
Rogue trading, 103, 112
Rosenhouse, Jason, 32–33
Rubin, Howard A., 119
Runs, streaks, 25–28, 40–41
Rusnak, John, 118
Russia, systemic crises in, 76, 78
S&P500, average daily volatility and return, 20, 159, 189, 249, 422–423
Sadia trading loss (2008), 104, 110–111, 118, 128, 130
Sampling distribution, 256, 258–261
Santayana, George, 206
Savage, Leonard J., 48
Vos Savant, Marilyn, 32–33
Scale (dispersion), 20–21, 141, 146, 153, 188–190, 291–292
Schoutens, Wim, 226, 227–229
Second derivatives, 262–267, 307–310
Segars, Johan, 226, 227–229
Selvin, Steve, 32
Senior managers, 7–9, 12, 85–87, 89
Sensitivity, measuring, 8
Settlement risk, 181, 379
Shareholders, 68–69, 71, 85, 123, 125, 129, 413
Share value, bonds, 71, 74–83
Shaw, W. T., 305
Shortfall, expected. See VaR (Value at Risk), 365–368
Showa Shell Sekiyu trading loss (1993), 104, 108–109, 114, 124, 128, 130
Siegel, Larry B., 71
σ (sigma). See Volatility
Single assets
analyzing tail events, 292–293
calculating marginal contribution to risk, 362–363
Single-firm (marginal) migration matrixes, 421–425
Single-issuer credit risk, 181, 378
Skewness, 394–403
Social proof (herding instinct), 98
Société Générale trading loss (2008), 92, 108–109, 113, 124, 130
South Sea Bubble, 132–133
Spain, systemic banking crisis (1977-1985), 134
Speculation, failures associated with, 78, 103, 127–130
Standard error, 254–256, 261, 405
Standardizing positions, summary measures for, 283–284
Static structural risk models, 411–416
Statistical approaches and randomness, uncertainty, 21–39. See also Distributions; P&L (profit and loss) distribution; Risk measurement; VaR (value at risk); Volatility and specific statistical approaches
Statistical or empirical factor mapping, 210, 214–215

Staying Alive in Avalanche Terrain (Tremper), 96–98

Stochastic dominance, 17

Stock prices
application of frequency probability to, 44–45
risks associated with, 95

Strategic operational risks, 520–521

Structural credit risk models, 410–411

Student-normal distribution, 303–304

Student-Student distribution, 303–304

Student t distribution, 230–236, 291–296, 305–306
alternate student distribution, 303–306

Stylized credit risk model, 384–391

Stylized financial time series, 245–248

Subadditivity, 196–198

Subjective probability. See Belief-type probability

Subportfolio analysis, 355–362

Summary measures
for aggregating risk, 285–290
distribution/density functions, 19–21
limits of, 205
for standardizing and comparing positions, 285–286
for tail events, 290–306
for volatility and VaR, 270–283

Summary risk report, 349

Supervision, lax, 109–112, 116, 129, 131

Swap rates and spreads, 76–78

Symmetric distributions, 190–191, 195–196

Systemic risk
costs, 102–103
idiosyncratic risk vs., 12–13, 102
and managing liquidity crises, 512

systemic financial events, 132–135

Tail (extreme) events
analytic tools and techniques, 226–230
copulas, 148–149, 241–243
distribution, order statistics, 256
idiosyncratic, 103
and limits of quantitative approach, 172
measuring, 139
1974-2008, summary, 103–122
parametric analysis for single asset, 291–296
Student t distribution, 230–236
Two-point mixture of normals distribution, 231–236
understanding, importance, 101–102
use of VaR for, 149, 203–205
variability among, 205

Taleb, Nassim, 24

Temporal factors, 380

Thirlwell, John, 513–514, 517, 521, 523

Threshold models. See Structural credit risk models
Time scaling, 149–150, 200–202

Time-series econometrics, 244–248

Titanic disaster example, 102
Traders, compensation approaches, 70–71
“trader’s put,” 70–71
Trading in excess of limits, 108–111
Trading loss events, 1974-2008
categories of loss, 107–112
failure to segregate and lax supervision, 131
from fraudulent practices, 107–112, 123–125, 127
from legitimate business practices, 127
lessons learned from, 131–132
loss accumulation periods, 130–131
main causes, 131
from non-fraudulent or tangentially fraudulent practices, 127–130
size and description of loss, 113–122
summary table, 103–107
A Treatise on Probability (Keynes), 48
Tremper, Bruce, 96–98, 101
Triangle addition for volatility, 313–315, 325–326
Tversky, Amos, 22–24
Two-point mixture of normals distribution, 231–236
Uncertainty/randomness
ambiguity aversion, need for control, 38–39, 59, 62–64, 142–143
and human intuition, 22–26, 37–38
and past/future asymmetry, 36–37
and people management, 69–70
and risk management, 140
risk vs., 58
runs, streaks, 25–28, 40–41
sources, overview, 251–252
and volatility, VaR, 252–254, 283–284
Unique risk ranking, 18
United States
Treasury rates, 76–78
U.S. Treasury bond
calculating DV01/bpv, 154–155
distribution and tail behavior, 153
marginal contribution calculations, 161–165
P&L distribution example, 141–142
time scaling example, 150
volatility, 143–144
Valuation model for asset mapping, 210, 211–212
Value Trust Fund winning streak, 53–58
VaR (Value at Risk)
for aggregating risk, 285–290
all-or-nothing contribution calculations, 327
calculating, 221, 223–224, 299, 306
conditional VaR/expected shortfall, 199–200
contribution to risk calculations, 316–326, 365–368
credit risk modeling using, 391–393
defined, 10, 191–193
interpreting, cautions, 89, 146–148, 170–171, 204–206, 283–284
VaR (Continued)
for liquidation cost estimates, 488–491, 494–496
probability expressions, 42, 191
relation to volatility, 194–195
reporting risk estimates using, 352–353
for single bond position, 270–283
small-sample distribution, 254–261
for standardizing and comparing positions, 283–284
and subadditivity, 196–198
and symmetric vs. asymmetric distribution, 194, 206
for tail events, 226, 295
with two-point mixture of normal distribution, 232
using effectively, 148–149, 158–160, 202–206
variability in over time, 150, 252–254
Variance, 143, 256–258
Variance-covariance distribution, 216–217, 251. See also
Parametric approach to risk estimation
Variance-covariance matrix, 221, 244, 249, 251, 292, 294, 319, 371–375
Vasicek, Oldrich, 416–417
Venn, John, 47–48
Volatility (; standard deviation)
aggregating/summarizing risk using, 158–160, 283–290
best hedge positions/replicating portfolios, 164–166, 329–333
contribution to risk calculations, 162–163, 316–326
exponential weighting, 250–251
interpreting, cautions, 143–144, 170–171
liquidity risk estimates, 487–491, 494–496
low vs. high dispersion, 190
marginal contribution calculations, 160–162, 318–326, 362–368
market/cash distribution, 509–510
relation to VaR, 194–195
reporting risk estimates using, 351–352
for single bond position, 270–283
for tail events, 295
triangle addition for, 313–315, 325–326
using effectively, 148–149, 190–191, 312–313
variability of over time, 150, 245, 248–249
variance-covariance distribution estimates, 248–251
volatility estimates for simple portfolio, 329–333
Volatility (standard deviation), measurement uncertainties, 283–284
Volatility point, 78
Voltaire, 101
Von Mises, Richard, 47
Weather predictions, 45
Weatherstone, Dennis, 203
Worst-case situations, 171, 203–205
Yates, Mary, 101
Z% VaR, 194, 205, 232