Subject Index

A
Access: to higher education, 156–157, 327; increased with blended learning systems, 9; Internet, 281–282, 352–353, 446–448; to K-12 education, 166; wireless, 42
Accreditation: of online teacher education program, 210, 213; of total online university, 247, 251; World Bank course for, of staff members, 451
Achievement: academic, in online vs. face-to-face courses, 121–122, 290; student, framework for understanding factors affecting, 131–132
Activity-level blending, 11
Advanced distributed learning (ADL), 528–530
Advanced Distributed Learning Lab, 306
Advanced Learning Infrastructure Consortium (Japan), 268
American Federation of Teachers, 374
American Society for Training and Development, 3
America’s Army, 521–522
Angel, 345
ARIADNE European Knowledge Pool, 43
Assessment: blended approach to, at University of Pretoria, 405–406, 409; of instructional design, in China, 303–304; of learners in Cisco Networking Academy, 129–130; Microsoft Learning tool for, of organizations, 95–97. See also Evaluation
Asynchronicity: in corporate training industry, 93, 477; discussion encouraged by, 173, 174; synchronicity vs., 35, 122
Attrition rates: for blended vs. face-to-face courses, 202–203; high, with e-learning, 188; lower, with blended learning, 312–313
Augmented reality, 535, 536–537
Augmented virtuality, 535
Augmented vision, 535
Australia, authentic learning course for realtors in, 510–512. See also University of Wollongong (Australia)
Authentic learning activities, 460, 502–513; blended learning approach to, 505–507, 508, 512–513; as central to designing learning experiences, 503; characteristics of, 504–505; examples of, with blending, 507, 509–512; increasing use of, 502, 562–563; suspension of disbelief needed for, 503–504
Autonomous National University of Mexico (UNAM), 352
Avaya, 58–59, 106–118; Customer Relationship Management (CRM) Portal of, 108–109; ESSba curriculum of, 112–118; knowledge management at, 107; shift from product to customer focus at, 106–107; Solutions Knowledge (ASK) Center of, 109–112
Balance Learning, 183–184
Battlefield Augmented Reality System (BARS), 537
Beijing Normal University (BNU): learning strategies of students at, 299; on-campus blended learning course at, 306–308; online course of, 304–306; SARS epidemic’s effect on, 297, 309. See also China
Bersin & Associates, 4, 10, 311, 313
Blackboard, 186, 345, 355, 356
Blended learning systems: categories of, 13–14; defined, 5
Blending, levels of, 10–13
Boeing Company, 536
Business schools, reception of learning innovations at, 388
Canada, 265, 338–349; benefits of blended learning in, 346–347; challenges for blended learning in, 340, 341, 347–348; examples of blended learning courses in, 341–345; grading online activities in, 346; rationale for blended learning in, 339–340; technology used in blended courses in, 345–346
“Canyon or mirage?:” 448
Capella University, 222, 235–243; design of blended learning at, 238–239; as leader in growth of for-profit education, 245, 247, 250; online discussions at, 236, 237, 239; supplementary role for face-to-face learning at, 235–236, 237, 241–242; written communication emphasis at, 239
Career Education network, 245
Case Western Reserve University, broadband wireless network initiative of, 42
Case-based learning (CBR), 503, 534, 556
Centra software, 313
Certification: blended learning, for University of Phoenix faculty, 229, 230–231; Cisco Networking, 125, 130
Chat programs, social presence with, 49
China, 262, 296–309; challenges to implementing blended learning in, 298–300; designing blended learning in, 299, 300–304; drivers of e-learning in, 297–298, 308–309; e-portfolios in, 309; School of Network Education (SNE) in, 296–297. See also Beijing Normal University (BNU)
Choice, learner, as issue when designing blended learning systems, 15
Cisco, 437; experience of e-learning adviser at, 418, 435–437; as sponsor of teacher education program in Jordan, 440
Cisco Networking Academy (CNA), 59, 125–132; approaches to blended learning in, 130–131; background information on, 121, 125; educational components of, 126–130; evaluating, in different cultures, 437–439; structure of, 125–126, 127; understanding factors affecting student success in, 131–132
City University (London), 164
Class discussions. See Discussions
Class management, blended instructional approach for, 276–277. See also Learning management systems (LMS)
Classroom learning model, at University of Phoenix, 224–225
Coaching: IBM’s Edvisor tool for personalized, 498–499; IBM’s simulator for, 62, 65; increase in, in U.K., 182; in intelligent tutoring systems, 523, 524; in learning ecology framework, 82, 83
Coast Community College District (Costa Mesa, CA), 360, 361
Cognition and Technology Group at Vanderbilt, 304, 305
Cognitive rehearsal, 23
Collaboration for Online Higher Education and Research (COHERE) universities (Canada), 338; benefits of blended learning for, 346–347; challenges for blended learning in, 340, 341, 347–348; examples of blended courses in, 341–345; grading of online activities by, 346; technology used in blended courses of, 345–346
Colleges. See Community colleges; Higher education; specific colleges
Communication: Capella University’s emphasis on written, 239; matching type of blending with, 332–333; Shannon and Shramm’s model of, 51–52
Communities of practice: at Avaya, 107, 111; knowledge-sharing in, 462, 463, 464, 465; portals as fostering, 482; trend toward development of, 95, 98, 562; in World Bank e-learning, 452
Community building: in blended contexts, 34, 138–139, 141–143, 560; in online courses at University of Waikato (New Zealand), 172, 173; using mixed and virtual reality technologies for, 535; in virtual for-profit university, 254–255. See also Learning communities
Community colleges, 360–372; distance education offered by, 360–361; earliest forms of blended learning at, 362–363; perspectives on blended (hybrid) courses at, 365–372; socialization in blended learning offered by, 362
"Canyon or mirage?:” 448
Computer-mediated learning. See Distributed learning
Constructivist learning theory: authentic learning activities supported by, 502, 503, 533; blended learning in Europe and, 420, 429; Maths e-Curriculum as application of, 440
Content: as consideration in selecting learning delivery technologies, 33; consistency vs. variability of, 122–123; digital, 41–43; discussed in live interactions, 37–38; as focus in first-generation learning systems, 479; multiple perspectives on, 23; of virtual for-profit university’s courses, 247, 253. See also Learning content management systems (LCMS)
Context: for blended learning in developing countries, 448–449; as focus of real-time work flow–based learning, 480; importance of, 24
Control: in first-generation learning systems, 475; in learning ecology framework, 79, 81; local, of education, 120, 165; students taking, of learning, 367
Corinthian Colleges, 245
Corporate training. See Training
Corporation for National Research Initiatives, 530
Cost-effectiveness: of blended learning approach, 98; as consideration in learning ecology framework, 80; increased with blended learning systems, 10, 28; of innovative technologies, 16; of Microsoft’s blended learning applications, 100, 102, 103. See also Return on investment (ROI)
Course-level blending, 11
Courses: hybrid or reduced face-time, 156, 160–161; online, study hours for, 287–288; standardization vs. individualization of, 123; Web-supplemented or technology-enhanced, 156, 159–160
Cultural adaptation, as issue when designing blended learning systems, 16
Culture: differences in, and evaluating Cisco Networking Academy Program, 437–439; Japanese, and development of e-learning, 268; learning, 37–38; organizational, community building affected by, 145; transforming focus of, 58–59, 106–118
Cyber Korea 21, 268
Cyber-universities, Korean, 282–293; areas of study offered by, 286–287; demographics of students in, 286; enrollment in, 283–285; future issues for, 291–293; history of, 282–283; perceptions of online learning through, 287–291; types of, 285–286
Dallas Community College District (TX), 360, 361
Deakin University (Australia), 163–164
Degree programs: blended, at University of Waikota (New Zealand), 173–178; blended learning enrollments in, at University of Phoenix, 228; hybrid or blended, 156, 161–162
Department for Education and Skills (U.K.), 185
Designing blended learning: aspects of, resulting in disappointing outcomes, 30; in China, 299, 300–304; deconstructing time when, 366; faculty skill in, 196–197, 198–201; following instructional systems design (ISD) process when, 31–34; IBM’s four-tier learning model as framework for, 61–63; incorporating mixed and virtual reality, 540–545; issues relevant to, 14–16; learning ecology framework used for, 80–86; Microsoft Learning’s approach to, 97–99; pedagogical techniques commonly used in, 555–557; at Shell EP, 465–466; weighing strengths and weaknesses when, 16–19
Developing countries: challenges for blended e-learning in, 456–457; context for blended learning in, 448–449; models of e-learning in, 449–451; rates of Internet use in, 446–448; World Bank’s Global Distance Learning Network (GDLN) program for, 453–455
Digital content, 42–43
Digital divide: growth of rates of use of Internet and, 446–448; as issue when designing blended learning systems, 15–16; in Malaysia, 320
Discussions: asynchronous, 173, 174; with blended instructional approach, 273–274, 313; in face-to-face vs. computer-mediated environments, 17–19; female students’ participation in, 290; grading, 346; online, at Capella University, 236, 237, 239
Distance education: increasing number of higher education institutions offering, 195; offered by community colleges in pre-Internet era, 360–361
Distributed learning: convergence of face-to-face learning with, 5, 6; dimensions of interactions in, 5–7; strengths and weaknesses of discussions in, 18
E-College Wales, 187–192; Evaluation Report, 188, 190
E-learning: continuum of, at University of Glamorgan, 186; defined, 77, 185, 419; emerging technologies for, 557–559; first-generation systems for, 474–476; future of, in workplace learning settings, 552–553; growth of, 93–94, 182; high
attrition rate with, 188; Japan’s readiness for, 267–268; Khan’s global framework for, 217; lessons about, from IBM’s Basic Blue for Managers program, 72–74; models of, in developing countries, 449–451; overcoming technology dissonance in, 441–442; pedagogical techniques commonly used in, 555–557. See also Online learning

E-portfolios: in China, 306, 308, 309; at University of Pretoria, 402

Ecology framework. See Sun Microsystems, learning ecology framework

Economic development, international, 444–446, 448. See also World Bank

Economist Intelligent Unit, 267

Education (K–12): Hawaiian blended effort to expand access in, 166; Maths e-Curriculum in, 440–441; Red Escolar program (Mexico), 355–354. See also Higher education

Education Network Australia (EdNA), 43

Education unplugged, 43–44

EDUCAUSE, 196

EDUSAT (Satellite Educational System) (Mexico), 352

Edvisor learning tool, 498–499

EEurope, 423

E-Learning Guild, 553

Embedded learning: defined, 495–496; IBM’s Edvisor as tool for, 498–499; learning expanded from individuals to organizations with, 496–497

Embedded scaffolds, 534–535

Employees: desire of, for more interaction with coworkers, 493; limited time for training, 494–495; link between learning and retention of, 491–492; productivity of, increased with blended learning, 512

Enabling blends, 13

Enhancing blends, 13–14

Estrella Mountain Community College (AZ), 363, 364

EUN Schoolnet, 430

Europe, 417; current status of blended education in, 420–421; e-learning definition in, 419; E-Learning Initiative in, 425–426, 427; E-Learning Program in, 423, 426–427; eEurope launched in, 423; role of e-learning in, 424–425; self-learning in, 421–422; shift from distance to blended learning in, 424; status of adoption of blended learning in, 427–430; variation in education and training systems in, 421

European Commission, 423, 424; Education and Training, 426; European Credit Transfer System, 427; Information Society, 419

Evaluation: increased data for, with e-learning, 158–159; strategies for, of IBM’s Basic Blue for Managers program, 66–68; in virtual for-profit university, 253–254; when designing blended learning experiences, 34. See also Assessment

Experiences: interaction as, 49–52; learning from, 138; rich Internet, 50–51

Experimentation, applications of learning ecology framework as, 85

F

Face-to-face learning: added to online course, 188–190, 191; convergence of distributed learning with, 5, 6; dimensions of interactions in, 5–7; effectiveness of, vs. online learning, 121–122; at Open University Malaysia (OUM), 316, 317–318; perceived importance of, in blended environments, 145, 238; strengths and weaknesses of discussions in, 18; supplemental role of, at Capella University, 235–236, 237, 241–242; unique features of, 122–123

Facilitating blended learning: aspects of, resulting in disappointing outcomes, 30; choosing right people for, 35; team approach to, 35–36; training trainers for, 36–37, 38

Faculty: adjunct, in National University’s online teacher education program, 217, 218; increased workloads for, 334, 335, 337, 407; of Jones International University, 252; of Korean cyber-universities, 292–293; new roles for, with blended learning, 332, 358; professional development on blended learning, 178–179, 198–201, 229–231, 292–293; support for, when teaching blended learning courses, 178–179, 197, 232; of University of Phoenix blended learning courses, 227, 228, 229–231, 232–233. See also Tutors

Fidelity, of online vs. face-to-face learning, 122

Flexibility: as benefit of blended learning, 9, 28, 97, 196, 198; of online learning, 18, 122, 190

For-profit universities: blended learning models for, 248–250; competition between traditional universities and, 256–257; factors driving growth of, 246–248; increasing number of, 245; international ventures of, 246, 258; issues for future of, 256–258. See also Capella University; Jones International University (JIU); University of Phoenix

Foreign languages: e-learning courses for State of Wisconsin employees in, 100; future delivery of online learning in, 257

Future: of blended learning systems, 7–8; emerging technologies for, 557–559; of for-profit
universities, 256–258; growth of blended learning in, 553–555; for mixed and virtual reality technologies, 546; of online teaching and learning, 551–553; pedagogical techniques in, 555–557; questions about, and learning ecology framework, 89–90; trends in, of blended learning, 559–564
Future Combat Systems (FCS), 540, 542–545
Future Force Warrior (FFW), 540, 542–545

G

Georgia Perimeter College, 159–160
Government Accounting Office, 529
Graduation, reducing time to, 158

H

Handle System, 530
Harvard Business School (HBS): benefits of blended learning at, 183, 313; study of student satisfaction with IBM blended learning, 66, 68–69, 74
Harvard Business School Publishing Tools, ManageMentor, 62, 64
Harvard University, 410
Hawaii Department of Education, initiative to expand access (K–12), 166
Higher education: benefits of blended learning in, 156–159, 183, 196, 346–347; competition between traditional and for-profit institutions in, 256–257; drivers of blended learning trend in, 325–326; evolution of blended learning in, 167; expanding access to, 156–157, 327; future growth of blended learning in, 553, 554; future of online teaching and learning in, 551–552; growth of e-learning in, 182; increasing number of distance education courses offered in, 195; students’ expectations of technology in, 157–158; trends in Japanese, 268–269; types of blended learning programs in, 156, 159–162. See also Community colleges; For-profit universities; specific colleges and universities
Higher Education Funding Council for England (HEFCE), 184, 325
Highlearrn, 375
Hybrid courses, 156, 160–161

I

IBM, 267, 460, 491–499; challenges to training at, 493; commitment to learning initiatives by, 491–493; Edvisor learning tool of, 460, 498–499; four-tier learning model of, 57, 61–63; implementation of embedded learning at, 496; new learning approaches at, 499; transforming learning from individual to organization at, 496–497; workplace trends affecting training at, 493–495
IBM’s Basic Blue for Managers program, 63–74; lessons about e-learning from, 72–74; organizational impacts of, 71–72; phases of, 57–58, 63–66; results achieved by, 68–71; strategies for evaluating, 66–68
Iii online (Japan), 270–271
Information and communication technology (ICT): as basis of blended learning, 185, 186, 281; countries with government programs promoting educational use of, 267–268; as enabling local context for international development, 445–446; New Zealand teacher training using, 177–178; rates of use of, in developing vs. advanced countries, 446–448
Information distribution, blended instructional approach for, 275–276
Information in Place, 543
Information technology (IT). See Information and communication technology (ICT)
Instant messaging, social presence with, 49
Institutional-level blending, 12–13
Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), 352; learning management systems used by, 354, 355–357; student and faculty roles in blended learning at, 357–358; Virtual University of, 354–355
Instructional designs, adapting, for blended learning, 278
Instructional methods: acceptance of new, in China, 299–300; commonly used in e-learning, 555–557; improved with blended learning systems, 8–9; personality types as requiring different, 145–146; preferences for, 73, 204–205; using blended learning for different purposes, 273–277; using Internet, 374
Instructional systems design (ISD) process, following, when designing blended learning experiences, 31–34
Instructor-led training (ILT): declining market share for, 93, 94; study of outcomes of, vs. blended format, 140–146
Instructors. See Faculty; Tutors
Integrated Solutions Technology (IST) (Philippines), technology training at, 101–102
Intelligent tutoring systems, 522–524
Interactions: defined, 45; as determinant of student satisfaction, 347, 348; dimensions of, in distributed vs. face-to-face learning, 5–7; employees’ desire for more, with coworkers, 493; importance of, 44–45; live, 14–15; 35, 37–38; models of, 45–52; strategies of, for blended learning, 52–53; synchronous vs. asynchronous, 35; technology as enhancing, 339–340
Interfaculty Initiative in Information Studies (Japan), 270
International Christian University (ICU) (Japan), 271–277; drivers of online education, 271–272; instructional approaches using blended learning, 272–277; WebCT use by, 272, 273, 276, 277
International Data Corporation, 41, 48
International Digital Object Identifier Foundation, 530
Internet: growth of, in Mexico, 352–353; Korean access to and infrastructure for, 281–282; rates of use of, in developing vs. advanced countries, 446–448; used as instructional tool in higher education, 374
Interstate New Teacher Assessment and Support Consortium, 214
Israel. See Tel-Aviv University (TAU)
IT training. See Technology training
J
Japan, 261–262, 267–279; e-learning readiness of, 267–268; examples of blended learning programs in, 269–271; future issues for blended learning in, 278; trends in higher education in, 268–269. See also International Christian University (ICU)
Jones International University (JIU), 222, 250–257; accreditation of, 247, 251; community building by, 254–255; course content of, 247, 253; financial challenge for, 255; future issues for, 256–257; history of, 250–251; iterative development model of, 252–254; quality issues faced by, 255–256; technology-based model of, 251–252; UN’s Virtual Development Academy and, 247
Jordan Education Initiative (JEI), 418, 439–441
K
Kaplan College, 245, 247, 250, 258
Kirkwood Community College (IA), 363
Knowledge: blended approach for creating, 274–275; changing, as challenge for multinational companies, 462–463; in real-time work flow–based learning, 482–484, 485
Knowledge augmented reality for maintenance assistance (KARMA), 536
Knowledge divide, 448
Knowledge ecology matrix, 58, 86–89
Knowledge management, at Avaya, 107
Knowledge transfers, international economic development and, 444–446
Korea, 262, 281–293; Cyber Korea 21 initiative in, 268; cyber-universities in, 282–287; future issues for e-learning in, 291–293; growth of blended learning in, 281, 291; Internet access and infrastructure in, 281–282; knowledge transfers in, 444; trends in online learning in, 287–291
Korea Education and Research Information System (KERIS), 281, 285, 286
Learning and Study Skills Inventory (LASSI), 299
Learning ecology framework. See Sun Microsystems, learning ecology framework
Learning management systems (LMS): learning ecology model and, 86; limitations of, 474–476; real-time work flow–based learning contrasted to, 479
Leadership development: IBM’s Basic Blue for Managers program for, 63–74; Oracle’s Leader Track program for, 59, 136–147
Learners. See Students
Learning, 5–7, 18; characteristics of, favoring blended learning, 24–25; choosing technologies for, 32–33, 334–335; control over, in learning ecology framework, 79, 81; embedded, 495–499; from experience, 138; formal vs. informal, 25, 79–80, 112; IBM’s Edvisor tool for, 498–499; IBM’s four-tier model of, 61–63; link between employee retention and, 491–492; reflection needed for, 137; technologies for delivering, 28–29. See also E-learning: Face-to-face learning; Online learning
Learning communities: creating, when designing blended learning experiences, 34; development of trust in, 143–145; effects of blended environment on, 145–146. See also Community building
Learning content management systems (LCMS), 462, 463; limitations of, 474–476; real-time work flow–based learning contrasted to, 479
Learning management systems (LMS): learning ecology model and, 86; limitations of, 474–476; multinational’s use of, with LCMS, 462–463; at Open University Malaysia, 319; real-time work flow–based learning contrasted to, 479; sharing, in Japan, 270–271; used by Tel-Aviv University, 375; used in Canadian universities’ blended courses, 345; used in Mexico, 354, 355–357. See also Blackboard; WebCT
Learning spaces: accommodating diverse, 97, 158, 167, 509, 561; learning ecology framework and, 87, 89; match between delivery mode and, 313, 478
Lisbon Strategy for eEurope, 423
Live-virtual-constructive (L-V-C) simulations, 527–528
Longitudinality of learning, 24–25
Microsoft de Argentina, technology training at, 102–103
Microsoft Learning, 58, 92–103; assess, learn, and apply training framework from, 95–99; blended learning experiences designed by, 97–99; case histories of training delivered by, 99–103; core pillars of, 92–93; recommendations on technology training from, 103
Military training, 517–518, 519–531; collective, 525–528; establishment of requirements for, 520–521; future programs for, 528–530; individual, 521–525; scope of, 519–520, 521, 522; unique aspects of, 530–531; using mixed and virtual reality technologies in, 537, 540, 542–545
Millennials, 204–205
Ministry of Education (China), 296–297
Ministry of Education (Korea), 282–283, 286
Ministry of Education (New Zealand), 170
Mixed and virtual reality technologies, 518, 533–546; applications of, 536–538; challenges of using, for training, 538–540; continuum of types of, 535–536; designing blended learning using, 540–545; future for, 546; theoretical foundations of training using, 533–535
Mobile Augmented Reality Contextual Embedded Training and EPSS (MARCETE), 537
Multimedia Educational Resource for Learning and Online Teaching (MERLOT), 42, 552
Multinational companies, 459–460; blending learning and work-based activities in courses of, 463–464; changing workforce demographics as problem for, 463; keeping up-to-date with changing knowledge as problem for, 462–463. See also specific companies
National Board for Professional Teaching Standards, 214
National Board of Employment Education and Training (Australia), 326
National Council for the Accreditation of Teacher Education, 214
National Learning Infrastructure Initiative, 201
National Survey of Student Engagement, 157
National University, 153, 209–219; growth of online programs at, 210–211, 212; online teacher education program of, 209, 211, 213–219; Spectrum Pacific Learning Company established by, 210
Naval Research Lab, augmented reality simulation developed by, 537
NetMath project, 410–411
New Zealand. See University of Waikato (UOW) (New Zealand)
Northern Arizona University, 363
Notice board sites, 405, 411–412
Observability, as aid to adopting e-learning, 73
ODL Pedagogy Center, 318
Ohio State University, 410
OneCleveland initiative, 42
Online learning: effectiveness of, vs. face-to-face learning, 121–122, 290; face-to-face interaction added to, 189–190, 191; failure of academic institutions offering only, 325; future of, 551–552; increasing acceptance of, 246–247; learner characteristics needed for, 124; at Open University Malaysia (OUM), 316, 318–319; positive and negative aspects of, 190; trends in, in Korea, 287–291; unique features of, 122–123; University of Phoenix’s model of, 224–225; variations of, at University of
Central Florida, 197–198. See also E-learning
Open and distance learning (ODL), in Europe, 421–422
Open distance learning (ODL), at Open University Malaysia, 317, 318
Open University Malaysia (OUM), 262–263, 315–323, 319; blended learning model of, 315–317; challenges to blended learning at, 320–322; face-to-face learning at, 316, 317–318; future of blended learning at, 322–323; learning management system (LMS) at, 319; microblend options offered at, 311, 315–316; online learning at, 316, 318–319; online tutors at, 318–319, 320; self-managed learning at, 316–317
Open University (OU) (U.K.), 264, 387–398; approach to blended learning at, 387–388; blended management education courses offered by, 388–390; business schools’ reception of learning innovations and, 388; e-tivities offered by, 392, 396; future of blended learning at, 397–398; online problem-based learning at, 390, 392; online tutors at, 394–397; Selinger’s experience with, 436; student satisfaction with blended learning at, 390, 391; teamwork emphasis in online management education offered by, 392–394; type of courses offered by, 421–422
Oracle Corporation, Leader Track training program, 59, 136–147; blended format adopted for, 136–137; future of, 147; outcomes of blended vs. instructor-led version of, 140–146; overview of, 139–140; ROI of blended version of, 146–147; theoretical foundation for blended learning and, 137–139
 Organizations: culture of, community building affected by, 145; preparing, to support blended learning, 39
Outcomes: with blended vs. instructor-led leadership development program, 140–146; interactions as, 46–48

\section*{P}

Pedagogy. See Instructional methods
Personality types, instructional methods required for, 145–146
Personalization: of Avaya’s ASK Center, 111–112; with learning ecology framework, 85–86
Pew Charitable Trust, 10
Philadelphia, wireless access initiative in, 42
Phoenix College, 362
Pilot testing: learning ecology model applications as similar to, 85; when designing blended learning experiences, 34
Prime Minister of Japan and His Cabinet, 268
Privatization, of Japanese universities, 269. See also For-profit universities
Problem-based embedded training, 540, 542–545
Problem-based learning (PBL): for authentic learning, 503, 513, 534; blended approach to, 226–227; online instructors’ preference for, 556, 557; at Open University (U.K.), 389, 390, 392
Productivity, increased with blended learning, 312
Professional development: for faculty, on blended learning, 11–12
Program completion rates. See Attrition rates
Program-level blending, 11–12

\section*{Q}

Quality: assuring, of blended learning in Japan, 278; improving, in higher education, 158–159; of learning experiences, and learning ecology framework, 79; virtual for-profit universities and, 255–256

\section*{R}

Real-time work flow–based learning, 460, 479–490; benefits of, 489; components of architecture for, 481–486; example of, 486–488; paradigm shift with, 479–481
Realtors, authentic learning course for, 510–512
Red Escolar program (Mexico), 353–354
Reduced face-time courses, 156, 160–161
Reflection: as component of self-regulated learning, 301; with computer-mediated learning environment, 18; needed for learning, 137; as work-based activity at Shell EP, 469
Research Initiative for Teaching Effectiveness, 340
Return on investment (ROI): from Avaya’s blended learning program, 117–118; documentation of, in blended learning, 10; from IBM’s blended learning program, 10, 68, 70–71; non-calculation of, from e-learning courses, 554; from Oracle’s blended leadership development training, 146–147. See also Cost-effectiveness
Rio Salado College (AZ), 360, 361
Role of the Manager@IBM program, 498–499
Rubicon, 440, 441
Rwanda, teacher training in, 418, 433–435

\section*{S}

SARS epidemic, e-learning in China and, 297, 309
Satisfaction, student: amount of interaction as determinant of,
347, 348; with blended learning at University of Central Florida, 203–205; with blended learning courses, 196; with face-to-face interaction added to online courses, 188–190, 191; with IBM’s blended learning program, 66, 68–69, 74; with online courses in Korea, 289–290; with Open University’s (U.K.) blended management education program, 390, 391

Scaffolding, 534–535
School of Network Education (SNE) (China), 296–297
Self-direction: Chinese students as lacking, 299–300; as occurring late in blended courses, 367, 368
Self-learning, in Europe, 421–422
Self-managed learning (SML), at Open University Malaysia (OUM), 316–317
Self-regulation, learner, as issue when designing blended learning systems, 15
Sharable Content Object Reference Model (SCORM), 518, 529–530
Shell EP, 459–460, 464–472; design of blended courses at, 465–466; example of blended course at, 470–471; issues in creating blended courses at, 471–472; problems facing, 464–465; traditional learning activities in blended courses at, 469–470; work-based activities in blended courses at, 466–469
Shinshu University (Japan), 271
Simulations: for coaching, 62, 65; military training using, 525–528, 537; in real-time work flow-based learning, 484–485
Singapore, 263; development of supporting academic skills in, 333; government initiatives for modernizing education in, 268, 327; knowledge transfers in, 444; overview of blended learning in, 330–331; student-centered teaching and learning strategies in, 331; technology matched to learning tasks in, 335
Skills: academic, developing supporting, 333–334; American workforce’s lack of, 495–494
Sloan-C Consortium, 201–202
Social experience: as benefit of blended learning approach, 25, 97; with face-to-face learning, 122, 188–190, 191; lacking with distance education telecourses, 361–362; learning as, 80, 227
Social presence: defined, 48; interactions for establishing, 48–49
South Africa. See University of Pretoria (South Africa)
South Korea. See Korea
Southern Maine Technical College, 160–161
Spectrum Pacific Learning Company, 210
St. Petersburg Junior Colleges (FL), 411–412
Students: characteristics of, needed for online learning, 124; framework for understanding factors affecting success of, 131–132; generations of, instructional methods preferred by, 204–205; increased data on progress of, with e-learning, 158–159; increased workloads for, 334; increasing technological savvy of, 195–196; new roles for, with blended learning, 332, 357–358; older demographics of, 196; standardized assessment of, in Cisco Networking Academy, 129–130; technology expectations of, 157–158; working adults as, 247–248. See also Satisfaction, student
Sun Microsystems, learning ecology framework, 58, 76–90; future developments and, 89–90; ideas underlying, 79–80; knowledge ecology matrix as modification of, 58, 86–89; matrix model of, 80–85; observations from applying, 85–86; rationale for using, 76–78
Supporting blended learning: aspects of, resulting in disappointing outcomes, 30; change-initiative perspective in, 37–38; development of academic skills as, 333–334; establishing system for, in Japan, 278; models of, as issue when designing blended learning, 15; necessity of, 197, 348; organizational preparation for, 39; at University of Phoenix, 232; at University of Waikato (New Zealand), 178–180. See also Learning management systems (LMS)
Surveys of European Universities Skills in Information and Communication Technology for Staff and Students (SEUISS Project), 157
Sylvan Learning Systems, 245, 246, 250, 258
Synchronicity: in corporate training industry, 93, 477; vs. asynchronicity, 35, 122

T

Teacher education: in Jordan, 418, 439–441; National University’s online program for, 209, 211, 213–219; in New Zealand, 177–178; online course for, in China, 304–306; in Rwanda, 418, 433–435
Team approach, to facilitating blended learning, 35–37, 38
Technologies: choosing, 32–33, 334–335; chronology of, for learning delivery, 28–29; emerging, for blended learning in future, 557–559; as enhancing interactions, 339–340; innovative, cost of, 16; Jones International University’s learning model as based on, 251–252; permitting social presence, 49; personal and mobile digital, 41–44; students’ expectations of, in higher education, 157–158; students’ increasing familiarity with,
195–196; for University of Phoenix blended learning courses, 227; used in blended courses in Canada, 345–346; used in education in Mexico, 351–352. See also Information and communication technology (ICT); Mixed and virtual reality technologies

Technology dissonance, 442

Technology training: growth of global demand for, 93–94; Microsoft Learning’s assess, learn, and apply framework for, 95–103; trends in, 94–95

Technology-enhanced courses, 156, 159–160

Tel-Aviv University (TAU), 264, 374–384; asynchronous forums at, 382–383; content of course Web sites at, 377–379; increase in Web-supported instruction at, 376–377; overview of Virtual TAU project of, 375; transitional status of blended learning at, 383–384; use of course Web site content at, 380–382

Telesecundaria (Mexico), 351–352

Tertiary education. See Higher education

Thomson and NETg, 183

Thomson Corporation, 312

Time: deconstructing, when designing blended courses, 366; limited, for employee training, 494–495. See also Asynchronicity; Synchronicity

Training: benefits of using blended learning for, 97–98, 125–125, 312–313; challenges to, at IBM, 493; evolution of blended learning for, 476–478; for facilitators of blended learning, 36–37, 38; limited time for, of workers, 494–495; models for, as issue when designing blended learning systems, 15; to transform Avaya’s sales culture, 112–118; trend toward blended learning in, in U.K., 183–184; using mixed and virtual reality technologies for, 533–546. See also Leadership development; Military training; Professional development; Technology training

Transactions, interactions as, 45–46

Transforming blends, 13, 14

Trialability, as aid to adopting e-learning, 73

Trust: building, in online environments, 172, 394; development of, in learning communities, 143–145

Tutors: increased workloads for, with blended learning, 334; new roles for, 332; at Open University Malaysia, 318–319, 320; at Open University (U.K.), 394–397; support for, 334. See also Intelligent tutoring systems

U

U.K. eUniversities Worldwide (UKeU), 183, 325

United Kingdom: definition of blended learning in, 185–186; growth of e-learning in, 182; trend toward blended learning in, 183, 184. See also Open University (OU) (U.K.)

United National Development Programme, Virtual Development Academy, 247

Universities. See For-profit universities; Higher education; specific universities

University National Autonomous Mexico, 351

University of British Columbia (UBC), 155

University of Central Florida (UCF), 153, 197–205; classroom space efficiencies at, 201; faculty professional development program at, 198–201; learning effectiveness with blended learning at, 202–203; online learning modalities at, 197–198; student satisfaction with blended learning at, 203–205

University of Glamorgan (Wales), 152–153; blended learning experience of, 186–192; continuum of e-learning at, 186

University of Illinois Urbana-Champaign, NetMath project, 410–411

University of Iowa, 410

University of Maryland, 360

University of Nebraska, 360

University of Phoenix, 221–222, 223–234; blended learning enrollments at, 228; classroom and online learning models at, 224–225, 249; competency development in blended learning at, 231–232; faculty for blended learning courses of, 227, 228, 229–231, 232–233; international ventures of, 246, 258; as leader in growth of for-profit education, 245, 247, 250; local and distance blended learning models at, 225–227; professional preparation by, 234; research on instructional delivery modes at, 233; support for blended learning at, 232; technology for blended learning courses of, 227

University of Pittsburgh, 410

University of Pretoria (South Africa), 264–265, 400–413; growth of Web-supported courses at, 400–403; Web-supported calculus course at, 404–407

University of Queensland, 333

University of the Air (Japan), 269–270

University of Tokyo, 270–271

University of Waikato (UOW) (New Zealand), 152, 169–180; examples of blended learning courses at, 173–178; history of distance education at, 169–170; overview of online courses at, 170–173; technological and pedagogical support at, 178–180

University of Washington, MagicBook project, 538
University of Wollongong (Australia), 263; change in student body at, 326–327, 328; communication-blending match at, 332–333; increased workloads at, 334; new roles for students and faculty at, 332; overview of blended learning at, 327–329; student-centered teaching and learning strategies in, 331–332

University System of Georgia (USG), 165–166

U.S. Army: augmented reality simulation developed by, 537; Natick Soldier Center, 540; problem-based embedded training by, 540, 542–545

U.S. Department of Defense, 520, 521, 540. See also Military training

U.S. Department of Education, 8, 195

V

Value sorting, 24

Videoconferencing: Maricopa Community College District’s experience with, 362–363; teacher-student interaction increased with, 333; technical support needed for, 335; at University of Waikato (New Zealand), 172, 179; at Villanova, 161; World Bank e-learning using, 450, 452, 453, 454–455

Villanova University, 161–162

Virtual Development Academy, United National Development Programme, 247

Virtual reality. See Mixed and virtual reality technologies

Virtual TAU. See Tel-Aviv University (TAU)

Virtual universities. See Jones International University (JIU)

W

Wales. See University of Glamorgan (Wales)

Web conferencing systems, social presence with, 49

Web-supplemented courses, 156, 159–160

WebCT, 151–152, 155–167; Canadian universities using, 345; on enterprise-wide approaches to blended learning, 162–166; on evolution of blended learning in higher education, 167; founding of, 155; International Christian University’s (Japan) use of, 272, 273, 276, 277; Southern Maine Technical College course using, 160; types of blended learning programs identified by, 151, 156, 159–162; University of Pretoria’s (South Africa) use of, 401, 402, 404, 405, 406; Villanova University courses using, 161

Western Association of Schools and Colleges (WASC), 210, 211

Western Cooperative for Educational Telecommunications (WCET), 552

White House, 520; Office of the Press Secretary, 494

WIDE University (Japan), 270

Wireless networks, 42

Wisconsin, State of, technology training for employees of, 99–101

Withdrawal rates. See Attrition rates

Workforce: American, skills gap of, 493–494; changing demographics of, 463, 494; ongoing training needed by, 247–248

Workload: for faculty, 288, 334, 335, 347, 384, 407; for students, 288, 334, 384; for tutors, 334

World Bank, 418; blended e-learning offered by, 451–453; Global Distance Learning Network (GDLN) program of, 453–455; lessons from, on blended e-learning in developing countries, 455–457

World Economic Forum, 282