CONTENTS

Preface xv
Contributors xvii
1. Introduction 1
2. General Oceanography of the Baltic Sea 5
 2.1 Specific Natural Conditions and Their Consequences 5
 2.2 Estuarine Circulation 11
 2.2.1 Long-Term Exchange 11
 2.2.2 Short-Term Barotropic Exchange 12
 2.2.3 Stratification and Mixing in the Channels 18
 2.2.4 Quantifying the Stochastic Salt Exchange Associated with the Barotropic Water Exchange 20
 2.3 Wind-Driven Currents 22
 2.3.1 Ekman Current and Transport 22
 2.3.2 Upwelling and Coastal Jets 24
 2.4 Surface Waves, Tides, Seiches, Surges 26
 2.4.1 Surface Gravity Waves 26
 2.4.2 Seiches and Wind Stau 28
 2.4.3 Tides 29
 2.5 Kelvin Waves, Topographic Waves, and Eddies 31
 2.5.1 Kelvin Waves 31
 2.5.2 Coastal Trapped Waves and Continental Shelf Waves 32
 2.5.3 Eddies 34
 2.6 Internal Waves, Turbulence, Diapycnal Mixing 35
 2.6.1 Introduction 35
 2.6.2 Vertical Mixing in the Interior 36
 References 39
3. The History of Long-Term Observations in Warnemünde 45
 3.1 Introduction 45
 3.2 Shipborne Measurements at Fixed Stations 46
 3.2.1 Basic Oceanographic Instrumentation for Shipborne Measurements 46
 3.2.2 Oceanographic Observations in the 1950s and 1960s 47
4. Weather of the Baltic Sea

4.1 Introduction

4.2 Extreme Weather Conditions
 4.2.1 Hurricanes, Gales
 4.2.2 Storm Surges
 4.2.2.1 Features of the Northwest Situation
 4.2.2.2 Features of the Northeast Situation

4.3 Special Weather Situations
 4.3.1 Baltic Cyclones
 4.3.2 Land and Sea Breeze
 4.3.3 Warnemünde Wind
 4.3.4 General Vb- and Omega-Weather Types
 4.3.4.1 The Vb-Weather Type
 4.3.4.2 The Omega-Weather Type

4.4 Greenhouse Effect

Acknowledgment

References

5. Baltic Climate Change

5.1 Introduction

5.2 Seasonal Cycles

5.3 Climatic Trends

5.4 Climatic Variability
 5.4.1 Year-to-Year Fluctuations
 5.4.2 Decadal Scale Changes
 5.4.3 Possible Trigger Mechanisms

5.5 Conclusions and Outlook

References

6. Current Observations in the Western Baltic Sea

6.1 Introduction

6.2 Great Belt and Fehmarnbelt
 6.2.1 Great Belt
 6.2.2 Fehmarnbelt
6.3 Arkona Sea West and Drogden Sill 129
 6.3.1 Darss Sill 130
 6.3.2 Drogden Sill 131
 6.3.3 From Kriegers Flak to Hiddensee 132
6.4 Around Rügen 134
 6.4.1 West Off Hiddensee 134
 6.4.2 Wittow 135
 6.4.3 Kap Arkona 136
 6.4.4 Tromper Wiek 137
 6.4.5 From Landtief A to Jan Heweliusz 137
 6.4.6 Oderbank 139
6.5 Conclusions 140
Acknowledgments 140
References 140

7. Sea State, Tides 143

7.1 Sea State 143
 7.1.1 History of Observation and Research 143
 7.1.2 Observation and Measurement 146
 7.1.3 Sea State Characteristics and Wave Generating Factors 146
 7.1.3.1 Wind Sea Characteristics 147
 7.1.3.2 Wave Height Frequency Distribution 150
 7.1.3.3 Wave Spectra 151
 7.1.3.4 Wave Generating and Wave Modifying Factors
 (Wind, Fetch, Wind Duration, Water Depth) 152
 7.1.3.5 Special Phenomena (Air-Sea Temperature, Currents,
 Crossing Seas) 156
 7.1.4 Calculation and Forecast of the Sea State 158
 7.1.4.1 Empirical Wave Parameter Calculation 159
 7.1.4.2 Empirical Wave Spectra 161
 7.1.4.3 Numerical Models 162
 7.1.5 Wave Climatology 164
 7.1.5.1 Open Sea Wave Climate 165
 7.1.5.2 Wave Climate of the Coastal Zone 175
 7.1.6 Extreme Wave Conditions 178
7.2 Tides 181
 7.2.1 History of Tidal Research in the Baltic Sea 184
 7.2.2 Theory of Tides in the Baltic Sea and a Proper Model Concept 185
 7.2.3 Modeling of Co-Oscillating and Direct Tides 190
Acknowledgment 193
References 193

8. Ice 199

8.1 Introduction 199
8.2 The Baltic Sea and Winter Time Maritime Transportation 201
8.3 Frequency of Ice Occurrence in the Baltic Sea as Well as Mean and Extreme Ice Parameters from Representative Stations in the Period 1956–2005 207

8.4 Ice Conditions in the Baltic Sea and Adjacent Waters in 1956–2005 212

8.4.1 Transition Area between the North Sea and Baltic Sea 212
 8.4.1.1 Skagerrak and Kattegat 212
 8.4.1.2 Belts and Sound 214

8.4.2 Western Baltic 214

8.4.3 Southern Baltic 215

8.4.4 Northern Baltic 219

8.4.5 Gulf of Riga 220

8.4.6 Gulf of Finland 221

8.4.7 Gulf of Bothnia 222
 8.4.7.1 Sea of Åland 224
 8.4.7.2 Archipelago Sea 224
 8.4.7.3 Sea of Bothnia 225
 8.4.7.4 Bay of Bothnia and the Quark 225

8.5 Classification of Ice Winters 225

8.5.1 Maximum Extent of Ice Coverage in the Baltic Sea 1720–2005 225
 8.5.1.1 Material 226
 8.5.1.2 Classification of Ice Coverage 226
 8.5.1.3 Analysis of Time Series 226
 8.5.1.4 Ice Seasons 1956–2005 228

8.5.2 Ice Winter Severity Indicator—Swedish Coast 228

8.5.3 Ice Winter Severity Indicator for the Southern Baltic Sea 229

8.5.4 Accumulated Areal Ice Volume for the Western Baltic Sea 231

8.5.5 Changes of Sea Ice Conditions in the Western Baltic from 1300 to Present 234

References 238

9.1 Introduction 241

9.2 Methodology 243

9.3 Seasonal, Regional, and Interannual Variations of SST in the Baltic Sea 246

9.4 Trends in the Development of SST 252

9.5 Relation to Climate Indices 256

9.6 Regional Particularities in SST Patterns 258
 9.6.1 Upwelling and Other Dynamical Features in the Baltic Sea 258
 9.6.2 Oder River Discharge and Oder Flood 260
 9.6.3 Coastal Wind-Driven Processes along the German Baltic Sea Coast 260
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7</td>
<td>Summary and Conclusions</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>262</td>
</tr>
<tr>
<td>10.</td>
<td>The Inflow of Highly Saline Water into the Baltic Sea</td>
<td>265</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>265</td>
</tr>
<tr>
<td>10.2</td>
<td>The Causes of MBIs and Their Basic Impact on the Baltic Sea</td>
<td>266</td>
</tr>
<tr>
<td>10.3</td>
<td>The Statistical Analysis of Major Baltic Inflows</td>
<td>272</td>
</tr>
<tr>
<td>10.4</td>
<td>The Analysis of Selected Events</td>
<td>280</td>
</tr>
<tr>
<td>10.4.1</td>
<td>MBIs in the 1950s and 1960s</td>
<td>280</td>
</tr>
<tr>
<td>10.4.2</td>
<td>The 1970s</td>
<td>281</td>
</tr>
<tr>
<td>10.4.3</td>
<td>The Very Strong MBI in January 1993</td>
<td>283</td>
</tr>
<tr>
<td>10.4.4</td>
<td>The Warm Water MBI in Autumn 1997</td>
<td>284</td>
</tr>
<tr>
<td>10.4.5</td>
<td>The Specific MBI in January 2003</td>
<td>286</td>
</tr>
<tr>
<td>10.5</td>
<td>The Analysis of Baroclinic Summer Inflows</td>
<td>287</td>
</tr>
<tr>
<td>10.6</td>
<td>The Effects of MBIs and Baroclinic Summer Inflows in the Central Baltic Deepwater</td>
<td>290</td>
</tr>
<tr>
<td>10.6.1</td>
<td>The Effects on the Hydrographic Parameters Temperature, Salinity, and Oxygen Concentration</td>
<td>290</td>
</tr>
<tr>
<td>10.6.2</td>
<td>The Effects on Inorganic Nutrients</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>302</td>
</tr>
<tr>
<td>11.</td>
<td>BALTIC: Monthly Time Series 1900–2005</td>
<td>311</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>311</td>
</tr>
<tr>
<td>11.2</td>
<td>Data Material</td>
<td>314</td>
</tr>
<tr>
<td>11.3</td>
<td>Quality Control and Uncertainties</td>
<td>315</td>
</tr>
<tr>
<td>11.3.1</td>
<td>IOW Data</td>
<td>320</td>
</tr>
<tr>
<td>11.3.2</td>
<td>SMHI Data</td>
<td>321</td>
</tr>
<tr>
<td>11.3.3</td>
<td>NERI Data</td>
<td>323</td>
</tr>
<tr>
<td>11.3.4</td>
<td>IMGW Data</td>
<td>325</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Additional Data</td>
<td>325</td>
</tr>
<tr>
<td>11.4</td>
<td>Monthly Time Series 1900–2005</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>332</td>
</tr>
<tr>
<td>12.</td>
<td>Nutrient Concentrations, Trends and Their Relation to Eutrophication</td>
<td>337</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>337</td>
</tr>
<tr>
<td>12.2</td>
<td>Nutrient Inputs</td>
<td>339</td>
</tr>
<tr>
<td>12.3</td>
<td>Annual Inorganic Nutrient Cycles and Long Term Nutrient Trends in the Surface Layer</td>
<td>340</td>
</tr>
<tr>
<td>12.4</td>
<td>Inorganic Nutrient Reservoirs in the Deep Basins</td>
<td>346</td>
</tr>
<tr>
<td>12.5</td>
<td>Organic Nutrients</td>
<td>352</td>
</tr>
<tr>
<td>12.6</td>
<td>Conclusions</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>363</td>
</tr>
</tbody>
</table>
13. Trace Metals in Baltic Seawater

13.1 The State of Knowledge until 1993

13.2 Trace Metal Trends in the Western and Central Baltic Sea Between Saltwater Inflow Events in 1993 and 2003

13.3 The Influence of Major Saltwater Inflow Events and Stagnant Anoxic Deepwater Conditions on Trace Metal Trends in the Gotland Deep

13.3.1 Pb, Cd, Cu, and Zn Trends “Above and Below Halocline”

13.3.2 Quantification of Trace Metal Fluxes across the Redox Interface Caused by Vertical Turbulent Mixing

13.3.3 The Relation between External and Internal Fluxes

13.4 Seasonal Particulate Trace Metal Fluxes across the Halocline in the Water Column of the Eastern Gotland Basin

13.4.1 Composition of Particles

13.4.2 Mass Fluxes of Main Components and Trace Metals

13.5 Flux and Budget Estimations of Cd, Cu, Pb, and Zn in the Surface Water of the Central Baltic Sea

13.6 Outlook

Acknowledgment

References

14. Sedimentary Records of Environmental Changes and Anthropogenic Impacts during the Past Decades

14.1 Changing Coastlines of the Baltic Sea

14.1.1 Introduction

14.1.2 The Geological/Tectonic Setting of the Baltic Area

14.1.3 Relative Sea-Level Change

14.1.4 Palaeogeography—Coastline Change

14.1.5 Summary

Acknowledgment

14.2 Recent Sedimentation in the Eastern Gotland Basin: Spatial Patterns, Rates, and Drivers

14.2.1 Introduction

14.2.2 Spatial Distribution of Sedimentation Rates

14.2.3 Element Accumulation Rates

14.2.4 Vertical Versus Horizontal Fluxes of Biogenic Elements

14.2.5 Summary

14.3 Reconstruction of Pollution History in Sediment Cores from Different Baltic Sea Basins

14.3.1 Introduction and Background

14.3.2 Field Work and Laboratory Methods

14.3.3 Sediment Properties and Age Models

14.3.4 Heavy Metals and Organic Pollutants in the Sediment Cores

14.3.5 Inventories of Pollutants

14.3.6 Summary

Acknowledgments
14.4.1 Introduction
14.4.2 Methodology
14.4.3 Results
14.4.4 General Sedimentology, Hydro- and Sediment Dynamics
14.4.5 Redox-Dependent Processes
14.4.6 Fe–Mn Microconcretions
14.4.7 Pollution (Heavy Metals)
14.4.8 Conclusions and Outlook
14.4.9 Summary
Acknowledgments
References

15. Phytoplankton
15.1 History of Phytoplankton Research and Methodology in the Baltic Sea
15.1.1 Quantitative Phytoplankton Analysis
15.1.2 Chlorophyll
15.1.3 Primary Production and Nitrogen Fixation
15.1.4 Satellite Imagery
15.2 Factors Influencing Phytoplankton
15.3 Spatial Distribution
15.3.1 Phytoplankton Composition and Biomass
15.3.2 Chlorophyll
15.3.3 Primary Production and Nitrogen Fixation
15.4 Seasonal Pattern
15.4.1 Phytoplankton Succession and Blooms
15.4.2 Chlorophyll
15.4.3 Primary Production and Nitrogen Fixation
15.5 Long-Term Trends
15.5.1 Phytoplankton Composition and Biomass
15.5.1.1 Spring Bloom
15.5.1.2 Summer Bloom
15.5.1.3 Autumn Bloom
15.5.1.4 Non-Indigenous Phytoplankton
15.5.2 Chlorophyll
15.5.3 Primary Production and Nitrogen Fixation
15.6 Relationship between the Different Phytoplankton Parameters
Acknowledgments
References

16. Macrophytobenthos
16.1 Preview
16.2 Species Inventory
16.2.1 Data Available 484
16.2.2 Definition of the Term “Macrophytobenthos” 484
16.2.3 Taxonomic Problems 484
16.2.4 Species Disappeared from the Baltic Sea 486
16.2.5 Species Invading the Baltic Sea 488

16.3 Developments in the Baltic Sea by Regions 490
16.3.1 Western Baltic—Kattegat, Belt Sea, and the Southern Coast 490
16.3.2 Eastern Baltic Proper Coast and Gulf of Riga 498
16.3.3 Western Baltic Proper Coast and Archipelago/Aland Sea 499
16.3.4 Gulf of Finland and Neva Bay 500
16.3.5 Bothnian Sea and Bay 502

16.4 Summary 503
References 507

17. Zoobenthos 517

17.1 Introduction 517
17.2 How Diverse is the Macrozoobenthos in the Southern Baltic Sea? Analysis of Historical and More Recent (IOW) Data 518
17.2.1 History of Macrozoobenthic Research in the Southern Baltic Sea 518
17.2.2 Investigation Area 519
17.2.3 Literature Sources 521
17.2.4 IOW Data 521
17.2.5 Taxonomy 521
17.2.6 Database 521
17.2.7 Macrozoobenthic Diversity in the Southern Baltic 521

17.3 Macrozoobenthic Patterns and Dynamics in the Southern Baltic Sea at Selected Monitoring Stations during the Past 15 Years 525
17.3.1 Spatial Distribution of Macrozoobenthic Species 527
17.3.2 Temporal Changes in the Macrozoobenthos Distribution in the Southern Baltic 530
17.3.3 Benthic Fauna, Ecological Status and Ecosystem Functions 534
References 537

18. Fish Stock Development under Hydrographic and Hydrochemical Aspects, the History of Baltic Sea Fisheries and Its Management 543

18.1 Introduction 543
18.2 The Cod Story 550
18.3 The Flatfish Story 553
18.4 Effects of Climate- and Fishery-Induced Changes on Baltic Fish Stocks, and Ecosystem Structure 556
18.5 Cod Reproductive Success and Climate-Hydrographic Processes 557
18.6 Sprat and Herring Reproductive Success and Climate-Hydrographic Processes 558
18.7 Climate Effects on Growth 560
18.8 Climate Effects on Species Interactions and Ecosystem Structure 562
18.9 The Potential for a Recovery of the Eastern Baltic Cod Stock and Benefits from a Potentially Reestablished Balanced Ecosystem 564
18.10 Managing into and out of the Clupeid Trap—a Case for Conservation and Baltic Ecosystem Improvement 566
18.11 Influence of Contaminants on Baltic Fish and Fisheries 571
18.12 Summary and Perspective 572
References 573

19. Description of the Baltic Sea with Numerical Models 583

19.1 Introduction 583
19.2 A Model System 585
19.2.1 Circulation Models 585
19.2.2 Biogeochemical Models 589
19.2.3 Model Implementation 590
19.2.3.1 Example of a Baltic Sea Model 590
19.2.3.2 Model Grid and Topography 590
19.2.3.3 Open Boundary Conditions 591
19.2.3.4 Choice of the Horizontal Advection and Diffusion Scheme for Tracers 592
19.2.3.5 Adjustment of the Transport Cross Sections of the Belts 592
19.2.3.6 Sea Ice Model 593
19.2.3.7 Turbulent Vertical Mixing and Viscosity 595
19.2.3.8 Atmosphere-Ocean Fluxes of Matter and Momentum 597
19.2.3.9 Long Wave Radiation Budget 599
19.2.3.10 Solar Radiation in the Atmosphere 599
19.2.3.11 Penetration of Short-Wave Radiation into the Water 600
19.3 Applications of the Model System 600
19.3.1 Simulation of Circulation Patterns in the Transition Area between the Baltic and North Sea 600
19.3.2 River Plumes 601
19.3.3 Pathways of Salt Transports into the Arkona Basin 605
19.3.4 Nutrient Load Experiments and Oxygen Dynamics 606
19.3.5 Transport of Suspended Particulate Matter 609
19.3.6 Long-Term Simulations 612
19.4 Future Challenges 614
19.4.1 Highly Resolving Models 614
19.4.2 Coupled Atmosphere-Ice-Ocean Models 616
19.4.3 Higher Levels of the Food Web 616
19.4.4 Modeling across the Disciplines 617
References 618